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Abstract—In this paper a method for the analysis of a frequency
selective surface (FSS) supported by a bianisotropic substrate is
presented. The frequency selective structure is a thin metallic
pattern — the actual FSS — on a plane supporting substrate.
Integral representations of the fields in combination with the method
of moments carried out in the spatial Fourier domain are shown
to be a fruitful way of analyzing the problem with a complex
substrate. This approach results in a very general formulation
in which the supporting substrate can have arbitrary bianisotropic
properties. The bianisotropic slab can be homogeneous, stratified,
or it can have continuously varying material parameter as a function
of depth. The analysis presented in this paper is illustrated in a
series of numerical examples. Results for isotropic, anisotropic and
bianisotropic substrates are given.
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1. INTRODUCTION

Frequency selective surfaces (FSSs), used as electromagnetic windows
to affect the transmission and reflection properties for radomes, have
been addressed for several decades [18, 25, 26]. For mechanical
reasons, and to reduce the angular sensitivity [18, 23], it is often
embedded in a dielectric medium. For isotropic slabs, the impact of
the dielectric medium is traditionally taken into account by either a
cascade technique [5, 6] or by using an appropriate Green’s function
[26]. In the cascade technique, the surface current is calculated
without the substrate present. Specifically, the scattering matrices are
calculated for the free-standing FSS and the substrate, respectively,
and the coupling between these two structures is then determined by
simple matrix algebra [26]. However, in the Green’s function approach
the surface current is determined in the presence of the substrate.

More complex substrates have also been addressed. Chang,
Langley, and Parker report experimental results for FSSs printed
on ferrite substrates [4]. The main idea is that a static magnetic
field, applied on the ferrite substrate, changes the permeability of
the substrate [2, 14–16]. Chiral substrates have been analyzed in
Refs. [7, 10, 11]. In many applications, the FSS is located on a
glass fiber reinforced slab. It is a well-known fact that the glass fiber
reinforcement introduces anisotropic effects in the substrate, see e.g.,
Ref. [21]. Recently, uniaxial substrates were also analyzed [3].

In this paper, a method for the analysis of a frequency selective
surface supported on one side by a bianisotropic substrate is presented.
The bianisotropic slab is either homogeneous, stratified, or it can
have continuously varying material parameters as a function of
depth. The method used for the analysis is based on classical
integral representations of the electromagnetic fields and the concept
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of wave propagators, which maps the fields from one interface to
another. These wave propagators are used to obtain the reflection
and transmission dyadics of the slab [22].

The present method shows several similarities with the Green’s
function approach cited above. The main difference is that, in the
present approach, we have to calculate the reflection and transmission
dyadics of the slab, while these effects in the latter approach are
accounted for in the calculations of the Green’s function. The main
advantage of the present method is that the reflection and transmission
dyadics can be calculated efficiently, even for stratified bianisotropic
slabs [22].

In the derivation below, the scattering object and the incident
field are first arbitrary, e.g., the scatterer is of finite extent and
not necessarily a thin screen. This analysis serves the purpose of
being useful for a wider range of scattering problems than primarily
addressed in this paper. Then, in the following section, we restrict
the scatterer to be plane, perfectly conducting screen with a periodic
pattern, i.e., the scatterer is a FSS. Moreover, the incident field is
restricted to be a plane wave. Finally, in Section 5, the analysis
presented in this paper is illustrated in a series of numerical examples.
Results for isotropic, uniaxial, and bianisotropic substrates are given.
Moreover, results for a tripole loop FSS are presented. Predicted and
measured power reflection are compared and excellent agreement is
found.

2. GENERAL CASE — ARBITRARY SCATTERER

The geometry of interest in this paper is depicted in Figure 1. The
sources of the problem are assumed to be confined to a region Vi
(may be at infinity) located to the left of the slab, which extends
from z = z1 to z = zN−1. The depth parameter z is defined by the
normal of the interfaces as shown in the figure. The bianisotropic
slab is either homogeneous, stratified, or it can can have continuously
varying material parameters as a function of depth. In the lateral
directions, however, there are no variations in the material parameters.
The scatterer — at this stage a finite scatterer — is confined to the
volume Vs. This volume is located to the left of the slab and no parts
are intersecting the slab. Moreover, we denote the leftmost (rightmost)
position of the scattering region by z<(z>). The source region, Vi, does
not intersect the scatterer, Vs, or the slab. The space outside the slab
and the source and scattering regions is assumed to be homogeneous
and isotropic with relative permittivity ε and permeability µ, i.e., ε
and µ are constants. In all practical situations of interest in technical
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Figure 1. The geometry of the problem.

applications, these spaces are lossless, i.e., ε and µ are real numbers†.
This geometry can be relaxed in various ways, e.g., we can have

additional sources and the scatterers located on the right hand side of
the slab. Such generalizations change the result of this paper in several
details, but they do not alter the basic methods we apply to solve
this class of scattering problems. We can also treat a more complex
situation with bianisotropic slabs on both sides of the scatterer. These
generalizations will be addressed in a subsequent paper.

We start with a review of the basic equations needed for the
analysis in this paper. In Section 2.1, we review and apply the integral
representation of the electric field in an isotropic medium, and in
Section 2.2, we review and apply the plane vector wave decomposition
of the Green’s dyadic for an isotropic medium.
† This assumption is not of vital importance in the treatment below, and it can easily
be relaxed. It is only of importance in the computations of the reflectance and the
transmittance of the structure, since we then are calculating the field far away from the
slab. Moreover, it is possible to have different material parameters to the left of the slab,
z < z1, and to the right of the slab, z > zN−1.
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2.1. Integral Representation in an Isotropic Medium

The integral representation of the solution to the Maxwell equations
in an isotropic region, characterized by the relative permittivity ε
and permeability µ, and bounded by the closed surface S (outwardly
directed normal ν̂) is [24]

−iη0η
k
∇×


∇×

∫∫
S

G(k, |r− r′|) · (ν̂(r′)×H(r′))dS′



−∇×
∫∫
S

G(k, |r− r′|) · (ν̂(r′)×E(r′))dS′ =
{
E(r), r inside S
0, r outside S (1)

where the Green’s dyadic in an isotropic region is

G(k, r) = I3
eikr

4πr
(2)

where k = k0(εµ)1/2 is the wave number, η =
√
µ/ε is the relative wave

impedance, and k0 = ω/c0 and η0 are the wave number and the wave
impedance of vacuum, respectively. Notice that this Green’s dyadic
is a product of the identity dyadic in three spatial dimensions, I3,
and the Green’s function of the scalar Helmholtz equation. Therefore,
it contains a part that is not solenoidal [17]. The lower part of this
integral representation in (1) is usually referred to as the extinction
theorem. The field from the source region, Vi, without the influence of
the slab or the scatterer is denoted E i. The presence of the slab and
the scatterer alters this field by the scattered field Es. The total field
E is

E = E i +E s

A similar notation is used for the magnetic field H.
We now apply the integral representation in (1) to the geometry in

Figure 1. Specifically, we get for a volume V that consists of the space
to the left of the slab and outside the source and scattering regions
(this result is actually the limit as the radius goes to infinity from a
contribution of a large half sphere in the left half space, where the
fields are assumed to satisfy appropriate radiation conditions)

i
η0η

k
∇×


∇×

∫∫
Ss

G(k, |r− r′|) · (ν̂(r′)×H(r′))dS′




+∇×
∫∫
Ss

G(k, |r− r′|) · (ν̂(r′)×E(r′))dS′
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− iη0η
k
∇×


∇×

∫∫
z′=z1

G(k, |r− r′|) · (ẑ×H(r′))dx′y′




−∇×
∫∫
z′=z1

G(k, |r− r′|) · (ẑ×E(r′))dx′y′

=

{
E s(r), z < z1 and r outside Ss
−E i(r), r inside Ss or z > z1

(3)

where the limits of the fields in the surface integrals are taken as limit
values from the isotropic region, i.e., from the outside of the scatterer
and from z = z1 − 0. The unit normal of the scatterer, ν̂, is directed
outwards into the isotropic medium as denoted in Figure 1.

These expressions give a representation of the scattered electric
field, E s, outside the scatterer (and to the left of the slab), and a
representation of the incident field, E i, inside the scatterer or inside the
slab. The associated magnetic fields are easily found by the Faraday’s
law

H(r) =
1

ikηη0
∇×E(r)

2.2. Plane Wave Expansion of the Green’s Dyadic

In a geometry where the medium is laterally homogeneous, it is
natural to decompose the fields in a spectrum of plane waves, i.e., a
Fourier transformation of the fields with respect to the lateral variable
ρ = x̂x+ ŷy. The Fourier transform of a time-harmonic field E(r) is
defined by

E(kt, z) =
∫∞∫
−∞

E(r)e−ikt·ρdxdy

where
kt = x̂kx + ŷky

is the transverse (tangential) wave vector and

kt =
√
k2
x + k2

y

the transverse (tangential) wave number. The inverse Fourier
transform is defined by

E(r) =
1

4π2

∫∞∫
−∞

E(kt, z)eikt·ρdkxdky (4)
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Notice that, in order to avoid cumbersome notation, the same letter is
used to denote the Fourier transform of the field and the field itself.
The argument of the field shows what field is intended.

Moreover, the normal (longitudinal) wave number, kz, is defined
by

kz = (k2 − k2
t )

1/2 =




√
k2 − k2

t for kt < k

i
√
k2
t − k2 for kt > k

The pertinent expansion (Weyl’s expansion) of the Green’s dyadic
in a homogeneous, isotropic medium, (2), is [1]‡

G(k; |r− r′|) =
i

8π2

3∑
j=1

∫∞∫
−∞

ê+
j ê

+
j e

ikt·(ρ−ρ′)+ikz |z−z′|dkxdky
kz

=
i

8π2

3∑
j=1

∫∞∫
−∞

ê−j ê
−
j e

ikt·(ρ−ρ′)+ikz |z−z′|dkxdky
kz

(5)

where the (complex) unit vectors ê±j , j = 1, 2, 3, are defined as§

(kt �= 0):


ê±1 = ê±2 × ê±3 =
±ktkz − k2

t ẑ

kkt
= ±kz

k
ê‖ −

kt
k
ẑ

ê±2 =
ẑ× ê±3
|ẑ× ê±3 |

=
ẑ× kt
kt

=
−kyx̂+ kxŷ

kt
= ê⊥

ê±3 =
kt ± ẑkz

k
= ê‖

kt
k
± kz
k
ẑ

where we have introduced two (real) unit vectors in the x-y-plane:{
ê‖(kt) = kt/kt

ê⊥(kt) = ẑ× ê‖(kt)
‡ The Fourier transform G(k;kt, z) = −I3

eikz|z|
2ikz

of G(k; r) w.r.t. ρ satisfies the ODE

−
(
d2

dz2
+ k2

z

)
G(k;kt, z) = I3δ(z);

therefore,

G(k; r) =
1

4π2

∫∞∫
−∞

G(k;kt, z)e
ikt·ρdkxdky =

1

4π2

∫∞∫
−∞

(
−I3

eikz|z|

2ikz

)
eikt·ρdkxdky

§ These vectors originate from I3 = ktkt/k2
t + (ẑ× kt)(ẑ× kt)/k2

t + ẑẑ =
∑3

j=1
ê+j ê

+
j =∑3

j=1
ê−j ê

−
j which is a decomposition of the unit dyadic in cylindrical coordinates.
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The plane vector waves are denoted ê±j e
ikt·ρ±ikzz, j = 1, 2, 3. The

upper (lower) sign refers to the right- (left-) going plane vector waves.
We refrain from introducing a special notation for these plane vector
waves, since the analysis in this paper does only use the unit vectors
ê±j , j = 1, 2, 3. This is contrast to the analysis made in Refs. [9, 12,
13]. The decomposition of the Green’s dyadic in (5) is in plane vector
waves.

Moreover, the complex unit vector ê±1 (kt) is constructed from
ê‖(kt) by the dyadic γ±(kt). Specifically, we have

ê±1 =
kz
k
γ± · ê‖

where
γ±(kt) = ±

(
I2 ∓

kt
kz
ẑê‖

)
(6)

where I2 is the identity dyadic in the x-y-plane. In addition, this dyadic
is used to reconstruct the z-component of a tangential field, see also
Section 2.4.

The unit vectors ê±j , j = 1, 2, 3, are the spherical basis functions
associated with the complex vector kt ± ẑkz, i.e., they form a right-
hand oriented set of basis vectors. Index j = 1 denotes TM-fields and
j = 2 denotes TE-fields. Index j = 3 does not enter into our analysis
due to the fact that the electric and magnetic fields are solenoidal.
From these definitions we easily see that


∇× ê±1 eikt·ρ±ikzz = ikê±2 e

ikt·ρ±ikzz = ikê±
1̄
eikt·ρ±ikzz

∇× ê±2 eikt·ρ±ikzz = −ikê±1 eikt·ρ±ikzz = −ikê±
2̄
eikt·ρ±ikzz

∇× ê±3 eikt·ρ±ikzz = 0

where we have introduced the dual index 1̄ = 2 and 2̄ = 1. From these
results, and the fact that the integral representations in (3) always
contain a curl operator in front of the integrals, we see that j = 3 does
not enter in this electromagnetic application. The summation in (5) is
therefore effectively over j = 1, 2.

In this paper, we work in a dyadic notation. Several dyadics are
important in this context. The symmetric projection dyadic P±(kt)
defined by

P±(kt) = I3 − ê±3 (kt)ê±3 (kt)

=
k2
z

k2
ê‖ê‖ + ê⊥ê⊥ ∓

ktkz
k2

(
ẑê‖ + ê‖ẑ

)
+
k2
t

k2
ẑẑ (7)
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projects out the divergence-free (solenoidal) parts of any vector, i.e.,
the j = 1, 2 parts. We also have use for the x-y-part of this projector.
To this end, we define

Γ(kt) =
k2
z

k2
ê‖ê‖ + ê⊥ê⊥ =

k2I2 − ktkt
k2

which also can be written as

Γ(kt) = (I3 − ẑẑ) ·P±(kt) · (I3 − ẑẑ) = I2 ·P±(kt) · I2

Note also that the projection dyadic P± can be expressed in the dyadic
γ± in (6). The result is

P± =
k2
z

k2
γ± · (γ±)t +

k2
t

k2
ê⊥ê⊥

where superscript ()t denotes the transpose of the dyadic.
We also introduce the rotated dyadic Q±(kt) defined by

Q±(kt) = P±(kt)× ê±3 (kt)
= ê±2 (kt)ê±1 (kt)− ê±1 (kt)ê±2 (kt)

= ±kz
k

(
ê⊥ê‖ − ê‖ê⊥

)
− kt
k

(
ê⊥ẑ− ẑê‖

)
(8)

Note that this dyadic is anti-symmetric.
These projection dyadics are useful in expressing the curl of the

Green’s dyadic in (5), viz.


∇×G(k; |r− r′|) = − k

8π2

∫∞∫
−∞

Q±(kt)eikt·(ρ−ρ
′)+ikz |z−z′|dkxdky

kz

∇× (∇×G(k; |r− r′|)) =
ik2

8π2

∫∞∫
−∞

P±(kt)eikt·(ρ−ρ
′)+ikz |z−z′|dkxdky

kz

2.3. Expansion Relations

In this section, we apply the result of Section 2.2 to the integral
representation (3) in Section 2.1.

For a point r such that z> < z < z1, i.e., between the scatterer
and the slab, see Figure 1, we get

Es(r) =
1

4π2

∫∞∫
−∞
α(kt)eikt·ρ+ikzzdkxdky+

1
4π2

∫∞∫
−∞
β(kt)eikt·ρ−ikzzdkxdky

(9)
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where


α(kt) = − k

2kz


P+(kt) ·

∫∫
Ss

(ν̂(r′)× η0ηH(r′))e−ikt·ρ
′−ikzz′dS′

+ Q+(kt) ·
∫∫
Ss

(ν̂(r′)×E(r′))e−ikt·ρ
′−ikzz′dS′




β(kt) =
k

2kz

{
P−(kt) · (ẑ× η0ηH(kt, z1))

+ Q−(kt) · (ẑ×E(kt, z1))} eikzz1
(10)

where E(kt, z1) and H(kt, z1) denotes the Fourier transformed field
over the interface z = z1. This expression of the scattered field between
the scatterer and the slab is a decomposition of the field into right- and
left-going plane vector waves.

The great advantage with the approach used here is that we have
an exact relation between the expansion coefficients, α(kt) and β(kt),
and the surface fields on Ss, E and H, and the Fourier transformed
fields, E(kt, z1) and H(kt, z1), on z = z1. These relations, and the
analogous relations below, are in fact the key to the solution of the
entire scattering problem.

Similarly, for a point r such that z < z<, i.e., to the left of the
scatterer, we get

E s(r) =
1

4π2

∫∞∫
−∞

f(kt)eikt·ρ−ikzzdkxdky (11)

where

f(kt) = − k

2kz


P−(kt) ·

∫∫
Ss

(ν̂(r′)× η0ηH(r′))e−ikt·ρ
′+ikzz′dS′

+ Q−(kt) ·
∫∫
Ss

(ν̂(r′)×E(r′))e−ikt·ρ
′+ikzz′dS′




+
k

2kz

{
P−(kt) · (ẑ×η0ηH(kt, z1))

+ Q−(kt) · (ẑ×E(kt, z1))
}
eikzz1 (12)
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This expression is a representation of the scattered (reflected) field to
the left of the scattering region. This representation contains only
left-going plane vector wave, due to the fact that all scatterer lie to
the right of the observation point. Notice that this intuitive result
is obtained by a systematic use of the integral representation and a
decomposition of the Green’s dyadic in plane vector waves.

Moreover, for a point r such that z > z1 we get an expansion of
the incident field E i. The result is

E i(r) =
1

4π2

∫∞∫
−∞

a(kt)eikt·ρ+ikzzdkxdky (13)

where

a(kt) =
k

2kz


P+(kt) ·

∫∫
Ss

(ν̂(r′)× η0ηH(r′))e−ikt·ρ
′−ikzz′dS′

+ Q+(kt) ·
∫∫
Ss

(ν̂(r′)×E(r′))e−ikt·ρ
′−ikzz′dS′




− k

2kz

{
P+(kt) · (ẑ×η0ηH(kt, z1))

+ Q+(kt) · (ẑ×E(kt, z1))
}
e−ikzz1 (14)

This is a decomposition of the incident field to the right of the source
region, therefore, the expansion only contains right-going plane vector
waves. Since the incident field is given, a(kt) is a known quantity.

2.4. Propagation in the Stratified Region

The Fourier transform of the fields at the interface z = z1 and the fields
at z = zN−1 are related [22]. As a first step in finding this relation,
we introduce a wave-splitting technique that decomposes any Fourier
transformed field into two components that transport power in the +z-
or the −z-directions, respectively. The wave-splitting technique in a
homogeneous, isotropic medium and the concept of wave propagators
is presented in detail in e.g., [22]. We have(

Exy(kt, z)
ηη0ẑ×Hxy(kt, z)

)
=

(
I2 I2

−O−1(kt) O−1(kt)

)
·
(
F+(kt, z)
F−(kt, z)

)
(15)
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where

O−1 =
k

kz

(
I2 +

1
k2
kt × (kt × I2)

)
= ê‖ê‖

k

kz
+ ê⊥ê⊥

kz
k

(16)

where, as above, I2 is the identity dyadic in the x-y-plane. The inverse
of this dyadic in the x-y-plane is

O =
kz
k

(
I2−

1
k2
z

kt×(kt×I2)
)

= ê‖ê‖
kz
k

+ê⊥ê⊥
k

kz
=
k

kz
I2 −

k2
t

kkz
ê‖ê‖

and we have(
F+(kt, z)
F−(kt, z)

)
=

1
2

(
I2 −O(kt)
I2 O(kt)

)
·
(

Exy(kt, z)
ηη0ẑ×Hxy(kt, z)

)
(17)

To see the physical implications of this transformation, we proceed
by eliminating the transverse magnetic field Hxy(kt, z) in order to get
an expression that involves only the transverse electric field Exy(kt, z)
on the right hand side. In a homogeneous, isotropic region the electric
and the magnetic fields are related by

kηη0H(kt, z) = kt ×E(kt, z)± kzẑ×E(kt, z)

depending on whether the z-dependence is exp{ikzz} (upper sign) or
exp{−ikzz} (lower sign), respectively. From this relation we get

kηη0ẑ×Hxy(kt, z) = ktEz(kt, z)∓ kzExy(kt, z)

= ∓
(

1
kz
kt(kt ·Exy(kt, z)) + kzExy(kt, z)

)
(18)

where we have used ∇ ·E(r) = 0 to eliminate the z-component of the
electric field. From this and (17) we get



F+(kt, z) =
1
2
Exy(kt, z)±

1
2k

O(kt)

·
(

1
kz
kt(kt ·Exy(kt, z)) + kzExy(kt, z)

)

F−(kt, z) =
1
2
Exy(kt, z)∓

1
2k

O(kt)

·
(

1
kz
kt(kt ·Exy(kt, z)) + kzExy(kt, z)

)
or

F+(kt, z) =

(
1
2
± 1

2

)
Exy(kt, z) =

{
Exy(kt, z) (exp{ikzz})
0 (exp{−ikzz})

F−(kt, z) =
(

1
2
∓ 1

2

)
Exy(kt, z) =

{
0 (exp{ikzz})
Exy(kt, z) (exp{−ikzz})
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From this derivation we see that the upper (lower) sign, which has an
exp{ikzz} (exp{−ikzz}) dependence, represents the part of the field
that transports the power to the right (left). In fact, if the evanescent
wave contribution is neglected, the power flow (Poynting’s vector),
averaged over a plane z = constant, see (A2), is

∫∞∫
−∞

ẑ · S(r)dx dy

=
1

8π2ηη0

∫ ∫
kt≤k

kz
k

(∣∣γ+(kt) · F+(kt, z)
∣∣2 − ∣∣γ−(kt) · F−(kt, z)

∣∣2) dkxdky
Specifically, the power flow of the incident field is

Pi =
1

8π2ηη0

∫ ∫
kt≤k

kz
k

∣∣γ+(kt) · axy(kt)
∣∣2 dkxdky (19)

2.4.1. Reflection and Transmission Dyadics

The relation between the F±-fields at z = z1 is the well-known
reflection dyadic

F−(kt, z1) = r(kt) · F+(kt, z1) (20)

Similarly, the relation between the F+-fields evaluated at z = zN−1

and z = z1 is the well-known transmission dyadic

F+(kt, zN−1) = t(kt) · F+(kt, z1) (21)

The reflection and transmission dyadics for the tangential electric
field, r(kt) and t(kt), respectively, are found by the method of
propagators. For a stratified, bianisotropic slab the reflection and
transmission dyadics are readily found by 4 × 4 matrix algebra. This
technique is presented in detail in [22], and we here present the results
of this analysis. {

r = −T−1
22 ·T21

t = T11 + T12 · r
where the Tij , i, j = 1, 2 are defined as [22]

2Tij = P11 + (−1)jP12 ·O−1 + (−1)iO ·P12 + (−1)i+jO ·P22 ·O−1

i, j = 1, 2
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and where the propagator dyadics Pij , i, j = 1, 2 relates the total fields
at z = zN−1 and z = z1(

Exy(zN−1)
ηη0ẑ×Hxy(zN−1)

)
=

(
P11 P12

P21 P22

)
·
(

Exy(z1)
ηη0ẑ×Hxy(z1)

)

The propagator dyadics Pij , i, j = 1, 2 are readily found for a
material that is stratified, e.g., for a homogeneous, isotropic slab we
have (

P11 P12

P21 P22

)
= eik0(zN−1−z1)M

where

M =




0 −µI2 +
1
εk2

0

ktkt

−εI2 −
1
µk2

0

J · ktkt · J 0




From the definition of the wave-spitting, (15), and the definition
of the reflection dyadic, (20), we get{

Exy(kt, z1) = (I2 + r) · F+(kt, z1)
ηη0ẑ×Hxy(kt, z1) = O−1 · (r− I2) · F+(kt, z1)

(22)

The analysis presented so far in this paper is simplified with the
use of the following useful relation:



P+(kt) ·O−1 + Q+(kt) · J = 0

P+(kt) ·O−1 −Q+(kt) · J = 2
kz
k

I2 − 2
kt
k
ẑê‖ = 2

kz
k
γ+

P−(kt) ·O−1 + Q−(kt) · J = 2
kz
k

I2 + 2
kt
k
ẑê‖ = −2

kz
k
γ−

P−(kt) ·O−1 −Q−(kt) · J = 0

These equations are readily derived from the definitions of the P± and
Q± dyadics, (7) and (8), the definition of the wave-splitting dyadics
O−1, (16), and the definition of the γ± dyadics in (6). We have also
introduced the dyadic J = ẑ × I2, which is a rotation of π/2 in the
x-y-plane. This implies

P±(kt) · (J ·η0ηH(kt, z))+Q±(kt) · (J ·E(kt, z)) = −2
kz
k
γ± ·F±(kt, z)

(23)
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3. SPECIAL CASE — FLAT METALLIC SCREEN

In this section we specialize the scatterer to a perfectly conducting
thin sheet located at z = z0, i.e., z< = z0 = z>. The scatterer can be
a single scatterer, such as a patch antenna, or many scatterers, e.g.,
infinite arrays. We get∫∫

Ss

(ν̂(r)×H(r))e−ikt·ρ−ikzz0dx dy = JS(kt)e−ikzz0

where

JS(kt) =
∫∫
R

2

(ẑ× (Hs(ρ, z0 + 0)−Hs(ρ, z0 − 0))) e−ikt·ρdx dy

Here JS(kt) denotes the sum of Fourier transformed surface currents
(exist only the metallic parts) on the left and right sides of the plane
z = z0.

We collect the relevant equations, see (10) and (14) and use wave-
split fields, see (22), to replace the fields ẑ×E(kt, z1) and ẑ×H(kt, z1).
We get using (23)


a(kt) =
kη0η

2kz
P+(kt) · JS(kt)e−ikzz0 + γ+ · F+(kt, z1)e−ikzz1

α(kt) = −kη0η
2kz

P+(kt) · JS(kt)e−ikzz0

β(kt) = −γ− · r · F+(kt, z1)eikzz1

Especially, the x-y-components are, see (6) and (7)


axy(kt) =
kη0η

2kz
Γ(kt) · JS(kt)e−ikzz0 + F+(kt, z1)e−ikzz1

αxy(kt) = −kη0η
2kz

Γ(kt) · JS(kt)e−ikzz0

βxy(kt) = r · F+(kt, z1)eikzz1

(24)

The Fourier transform of the transverse scattered electric field in
the region z0 < z < z1 is, see (9)

Esxy(kt, z) = αxy(kt)eikzz + βxy(kt)e
−ikzz

= αxy(kt)eikzz + r · F+(kt, z1)eikz(z1−z)

=
(
I2e

ikzz + reikz(2z1−z)
)
·αxy(kt) + r · axy(kt)eikz(2z1−z)
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This field is evaluated at z = z0. We have

Esxy(kt, z0)e
−ikzz0 =

(
I2 + re2ikzh

)
·αxy(kt) + r · axy(kt)e2ikzh

where h = z1 − z0 > 0. Moreover, we have, see (13)

axy(kt) = E i
xy(kt, z0)e

−ikzz0

We therefore get

Esxy(kt, z0) = −kη0η
2kz

(
I2 + re2ikzh

)
·Γ(kt)·JS(kt)+r·E i

xy(kt, z0)e
2ikzh

(25)
We introduce the transverse vector field

x(kt) =
kη0η

2kz
Γ(kt) · JS(kt)

and (25) is reduced to

Esxy(kt, z0) = −
(
I2 + re2ikzh

)
· x(kt) + r ·E i

xy(kt, z0)e
2ikzh (26)

3.1. Transmittance and Reflectance

The field at a point r such that z < z0 is given by (11)

Es(r) =
1

4π2

∫∞∫
−∞

f(kt)eikt·ρ−ikzzdkxdky

where, see (12), (20), and (23)

f(kt) = −kη0η
2kz

P−(kt) · JS(kt)eikzz0 − γ− · r · F+(kt, z1)eikzz1

The x-y-components are

fxy(kt) = −x(kt)eikzz0 + r · F+(kt, z1)eikzz1 (27)

and from (24) we get

fxy(kt) = −x(kt)eikzz0 + r ·
(
axy(kt)− x(kt)e−ikzz0

)
e2ikzz1

The power flow of this field is (contains only a F−-part)

Pr = − 1
8π2ηη0

∫ ∫
kt≤k

kz
k

∣∣∣γ−(kt) · (−x(kt)eikzz0

+ r ·
(
axy(kt)− x(kt)e−ikzz0

)
e2ikzz1

)∣∣∣2 dkxdky
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The reflected power divided by the incident power, Pi, see (19), is the
reflectance R, i.e.,

R =
Pr
Pi

The transmitted field z > zN−1 is determined by, see (21)

F+(kt, zN−1) = t(kt) · F+(kt, z1)

Use (24) and we get

F+(kt, zN−1) = t(kt) ·
(
axy(kt)eikzz1 − x(kt)eikzh

)
The power flow of this field is

Pt=
1

8π2ηη0

∫ ∫
kt≤k

kz
k

∣∣∣γ+(kt) · t(kt) ·
(
axy(kt)eikzz1−x(kt)eikzh

)∣∣∣2dkxdky
The transmitted power divided by the incident power, Pi, see (19), is
the transmittance T , i.e.,

T =
Pt
Pi

4. SPECIAL CASE — FSS

In the previous sections, we started with a general formulation where
the scatterer enclosed inside the surface Ss was a general body (metallic
or permeable). This assumption was relaxed in Section 3 where we
specialized the scatterer to a thin metallic sheet. We now restrict our
scatterer further, so that in addition to being flat, we also assume it
to be periodic in the plane z = z0, see Figure 2. Moreover, in this
section we treat only the patch case — the corresponding aperture
case is treated by the duality principle [18].

In this section, we assume the incident wave to be a plane wave,
i.e.,

E i(r) = E i
0e
iki·r

where ki is the wave vector of the incident wave, and E i
0 is a constant

complex vector such that E i
0 · ki = 0. The Fourier transform of this

field evaluated at z = constant is

axy(kt)eikzz = E i(kt, z) = 4π2E i
0e
ikizzδ2(kt − kit)
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z

z = z1 z = zN−1

ε µ

Stratified bianisotropic slab

ε µ

z = z0

FSS

Figure 2. The geometry of the FSS and the slab.

where kiz = ki ·ẑ and kit = I2 ·ki. The spherical angles of ki are denoted
θ (polar angle) and φ (azimuth angle) and the components of ki in the
x-y-plane are denoted by kix and kiy, respectively.

The periodicity of the scatterer (FSS) in the x-y-plane is a and
b, respectively, see Figure 3. The periodic pattern can be obliquely
oriented and φ0 denotes the angle between the axes of periodicity. We
denote the unit cell by E (area AE), and the metallic parts in the unit
cell by Sσ.

4.1. Integral Equation for the Surface Current

We employ the Floquet’s theorem [8] to the surface current JS and the
result is [20]

JS(ρ) = ẑ× (Hs(ρ, z0 + 0)−Hs(ρ, z0 − 0))

=
1
AE

∞∑
m,n=−∞

JE(kmn)eikmn·ρ

where ρ ∈ R
2, and kmn = x̂αm + ŷβmn with


αm =

2πm
a

+ kix

βm =
2πn
b sinφ0

− 2πm
a

cotφ0 + kiy
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Figure 3. The unit cell E with the sides a and b.

and where JE(kmn) is the Fourier transform of JS(ρ) over the unit
cell E evaluated at kmn. The Fourier transform of the current is

JS(kt) =
4π2

AE

∞∑
m,n=−∞

JE(kmn)δ2(kt − kmn), kt ∈ R
2 (28)

Insert (28) into (26) and take an inverse Fourier transform. The
result is

Esxy(r)
∣∣∣
z=z0

= −
∞∑

m,n=−∞

(
I2 + r(kmn)e2ikzmnh

)
· xmneikmn·ρ

+ r(k00)e2ikz00h ·E i
xy(r)

∣∣∣
z=z0

(29)

where

kzmn =

{√
k2 − |kmn|2 for |kmn| < k

i
√
|kmn|2 − k2 for |kmn| > k

and where we have introduced the vector field

xmn =
kη0η

2AEkzmn
Γ(kmn) · JE(kmn)
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to simplify the notation.
For a ρ on Sσ we get from (29)(

I2 + r(k00)e2ikz00h
)
· Eixy(r)

∣∣∣
z=z0

=
∞∑

m,n=−∞

(
I2 + r(kmne2ikzmnh

)
· xmneikmn·ρ (30)

This relation is the basic equation used for the determination of the
unknown quantity xmn. Once this quantity is determined, all other
fields can be obtained.

4.2. Galerkin’s Procedure

The current in the unit cell, JE(ρ), can be expanded with arbitrary
precision in a pertinent complete set of entire domain basis functions
jp(ρ), i.e.,

JE(ρ) =
∑
p∈χ

Cpjp(ρ) (31)

where χ is a set of indices (countable set) and the scalars Cp are the
unknown expansion coefficients. We also have from (31) by taking the
Fourier transform

xmn =
∑
p∈χ

Cpxmn,p (32)

where
xmn,p =

kη0η

2AEkzmn
Γ(kmn) · jp(kmn)

We make a scalar multiplication of (30) with j∗q(ρ), where ∗
denotes the complex conjugate, and integrate over the conducting part
of the unit cell, Sσ. Then, the left and right hand side can be identified
as a Fourier transform, i.e.,

j∗q(k00)·
(
I2 + r(k00)e2ikz00h

)
·E i

xye
ikizz0

=
∞∑

m,n=−∞
j∗q(kmn) ·

(
I2 + r(kmn)e2ikzmnh

)
· xmn q ∈ χ

Finally, we replace the unit cell current with its basis function
expansion (32). We have

j∗q (k00) ·
(
I2 + r(k00)e2ikz00h

)
·E i

xye
ikizz0

=
∞∑

m,n=−∞

∑
p∈χ

Cpj
∗
q(kmn) ·

(
I2 + r(kmn)e2ikzmnh

)
· xmn,p q ∈ χ
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If χ is an infinite set of indices, the above equation is an infinite
system of linear equations for the unknown current coefficients Cp.
We assume that if this infinite system is truncated, the solution to the
truncated system approximates the exact solution. When the linear
system is truncated, it can be written

AC = b

where A is a square matrix, C is a vector containing the unknown
coefficients Cp, and b is a known vector.

4.3. The Reflection and Transmission Coefficients

We assume that the solution of (30), xmn is known, e.g., it is obtained
by the Galerkin method presented in Section 4.2. Therefore, the
current JE(ρ) is known or even more appropriate its Fourier transform
JE(kmn) The relation to the Fourier transform of the current JS(kt)
is, (28)

x(kt) = 4π2
∞∑

m,n=−∞
xmnδ

2(kt − kmn), kt ∈ R
2

The field at a point r such that z < z< is given by (11) as

Es(r) =
1

4π2

∫∞∫
−∞

f(kt)eikt·ρ−ikzzdkxdky

where, see (27),

f(kt) = −kη0η
2kz

P−(kt) · JS(kt)eikzz0 − γ− · r · F+(kt, z1)eikzz1

Moreover, from (24) we get

F+(kt, z1) = eikzz1
(
axy(kt)−

kη0η

2kz
Γ(kt) · JS(kt)e−ikzz0

)

and thus, f(kt) is simplified to

f(kt) =
kη0η

2kz
eikzz0

{
e2ikz(z1−z0)γ− · r · Γ(kt)−P−(kt)

}
· JS(kt)

− eikz(z1+z0)γ− · r · axy(kt)
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We introduce the wave vector of the transmitted and reflected field as
k±mn = kmn ± ẑkzmn. Then, from (28) we obtain

Es(r) = (S− ·Eixy)eik
−
00·r +

∞∑
m,n=−∞

G−mn · JE(kmn)eik
−
mn·r z < z<

where


G−mn =
kη0η

2AEkzmn
eikzmnz0

[
e2ikzmnhγ−mn · rmn · Γmn −P−mn

]
S− = −eikz00 (h+2z0)γ−00 · r00

where, as before, h = z1 − z0. We have also introduced the notation
γmn = γ(kmn) and similarly for the other quantities with indices mn.

In the absence of the slab, i.e., r = 0, and with the FSS located
at z0 = 0, we have

G−mn = − kη0η

2AEkzmn
P−(kmn)

S− = 0
no slab

In order to identify the reflection dyadic of the FSS and the
substrate, we introduce the dyadic C−mn implicitly defined by

C−mn ·E i
xy = G−mn · JE(kmn)

This definition enables us to define the reflection dyadic Rmn of the
FSS and the slab as

Rmn = S−δm,0δn,0 + C−mn

The co- and cross-polarized components of the reflection dyadic are

êi(kmn) ·Rmn · êj(kmn)
The i = 1 (i = 2) and j = 1 (j = 2) are the co-polarized TM (TE)
contributions. The off diagonal parts give the cross-polarizations. The
fundamental mode corresponds to m = n = 0.

Only the homogeneous part of the field (kt < k) contributes to the
far field. If kmn > k for all (m,n) �= (0, 0), we have no grating lobes.
This is the case of most technical interest. Assuming this is the case,
we have the reflectance R of the FSS defined as

R = lim
z→−∞

|Es(r)|2
|Ei0|2

=
|S− ·E i

xy + G−00 · JE(k00)|2

|E i
0|2

=
|R00 ·E i

xy|2

|E i
0|2

, no grating lobes
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Figure 4. Power transmission (in dB scale) at normal incidence of
the co-polarization at 8.2–12.4 GHz for a hexagonal pattern of loaded
tripoles on an isotropic slab. The tripoles are 9 mm long with 3 mm
long ends, see Figure 5. The width of the metallic strips is 0.5 mm.
The elements are arranged in an equi-lateral lattice with side a = b =
16.5 mm. The polarization of the incident field is perpendicular with
one of the sides in the hexagonal pattern. The thickness of the isotropic
substrate is d = 0.12 mm and the permittivity is ε = 4.3(1 + i0.021).
The broken line shows the numerical computations and the solid line
shows the measured results.

We now proceed and calculate the transmitted field. On the right
side of the slab, z > zN−1, the fields only propagate in the positive z-
direction, thus F+(kt, z) = E t

xy(kt, z). We obtain the relation between
F+(kt, zN−1) and F+(kt, z1) in terms of the transmission dyadic t(kt)
from (21).

F+(kt, zN−1) = t(kt) · F+(kt, z1)

The field F+(kt, z1) is derived from the quantity xmn and are therefore
assumed known, see (24), i.e.,

F+(kt, z1) = axy(kt)eikzz1 −
kη0η

2kz
Γ(kt) · JS(kt)eikzh

All three components of the field (including the z-component) is
obtained from the field E t

xy by a multiplication by the dyadic γ+(kt).



106 Kristensson, Åkerberg, and Poulsen

9 mm

3 mm
0.5 mm

Figure 5. The geometry of the loaded tripoles.

Take the inverse Fourier transform and we obtain the transmitted field
in the region z > zN−1

E t(r) =
1

4π2

∫∫
γ+(kt) · F+(kt, zN−1)eikt·ρeikz(z−zN−1)dkxdky

Finally, (28) gives the final expression

E t(r) = (S+ ·E i
xy)e

ik+
00·r +

∞∑
m,n=−∞

G+
mn · JE(kmn)ek

+
mn·r

where 


G+
mn = − kη0η

2AEkzmn
e
ikzmn(h−zN−1)γ+

mn · tmn · Γmn

S+ = eikz00 (h−2z0−zN−1)γ+
00 · t00

Analogous to the reflection dyadic defined above, we introduce
the transmission dyadic of the FSS and the substrate. To this end, the
dyadic C+

mn is implicitly defined by

C+
mn ·E i

xy = G+
mn · JE(kmn)

This definition enables us to define the transmission dyadic Tmn of the
FSS and the slab as

Tmn = S+δm,0δn,0 + C+
mn
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Figure 6. Power transmission (in dB scale) of the co-polarization at
8.2–12.4 GHz for a hexagonal pattern of loaded tripoles on an isotropic
slab. The geometry is same as in Figure 4, but the angle of incidence is
θ = 60◦ and φ = 0◦, and the polarization is TE. The broken line shows
the numerical computations and the solid line shows the measured
results.

The co- and cross-polarized components of the transmission dyadic are

êi(kmn) ·Tmn · êj(kmn)

The i = 1 (i = 2) and j = 1 (j = 2) are the co-polarized TM (TE)
contributions. The off diagonal parts give the cross-polarizations. The
fundamental mode corresponds to m = n = 0.

As before, only the homogeneous part of the field (kt < k)
contributes to the far field. In the absence of grating lobes, we have
the transmittance T of the FSS defined as

T = lim
z→∞

|E t(r)|2
|E i

0|2

=
|S+ ·E i

xy + G+
00 · JE(k00)|2

|E i
0|2

=
|T00 ·E i

xy|2

|E i
0|2

, no grating lobes
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Figure 7. The relative change in the resonance frequency for crossed
dipoles versus the degree of relative anisotropy of the slab relative an
FSS without substrate. The left side of the graph corresponds to the
shift in the resonance frequency due to the presence of an isotropic
substrate. The thickness of the substrate is d = 5 mm. The arms of
the dipoles are 9 mm long and 1 mm wide, and the crossed dipoles are
arranged in a oblique pattern tilted φ0 = 45◦ with a = 14.1 mm and
b = 10 mm. The angle of incidence is θ = 0◦ and φ = 45◦.

5. RESULTS

We illustrate the theory presented in this paper by a series of
numerical computations for a set of standard element patterns and
a multitude of slabs. In some cases the computations are compared
with experimental measurements. These computations are not meant
to be good candidates for a FSS design, but merely an illustration of
what we can accomplish with the method.

As a first example, we illustrate the effect of an isotropic,
homogeneous dielectric substrate on the transmission properties of the
FSS in Figure 4. The geometry of the elements and periodicity are
given in the captions and in Figure 5. The broken line shows the
numerical computations and the solid line shows the measured results.
A similar case for oblique incidence is given in Figure 6.

In a multitude of applications, the substrate is reinforced by a
glass fiber layer for mechanical reasons. The glass fiber introduces an
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Figure 8. The same element and unit cell geometry as in Figures
4 and 6 but the substrate is bianisotropic and the frequency range is
larger. The material parameters is given in (33) and the thickness
of the substrate is d = 6 mm. The curves that correspond to
the co-polarization are given by lines without crosses and the cross-
polarization curves are given by lines with crosses. The solid lines
show the cases where εyy = 3 and Ω = 0 (i.e., an isotropic substrate),
and the dashed lines show the cases where εyy = 10 and Ω = 0.9. The
angle of incidence is θ = 30◦ and φ = 0◦, and the polarization is TE.

uniaxial effect that in most practical situations can be modelled by
a homogenized layer, see e.g., Ref. 21. To illustrate the effect of the
presence of a uniaxial substrate, we compute the resonance frequency
for a series of different values of the permittivity of the substrate. The
shift in the resonance frequency is depicted in Figure 7. We observe
that the shift in the resonance frequency due to the anisotropy is small
for small anisotropies, but larger for a larger value on the permittivity.
We also note that the transverse components of the permittivity dyadic
effect the resonance frequency more than the z-component.

The effect of a bianisotropic substrate is illustrated in Figure 8.
The constitutive relations used here are [22]


D = ε0{ε ·E+ η0ξ ·H}

B =
1
c0
{ζ ·E+ η0µ ·H}
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The material parameters of the slab is [19]

ε =


 3 0 0

0 εyy 0
0 0 3


 µ =


 1 0 0

0 1 0
0 0 1




ξ =


 0 0 0

0 0 iΩ
0 0 0


 ζ =


 0 0 0

0 0 0
0 −iΩ 0




(33)

6. CONCLUSION AND DISCUSSION

In this paper we present a new method to compute the reflection and
transmission properties of FSSs supported by bianisotropic substrates.
The elements of the FSS are arbitrary, and the substrate, located on
one side of the FSS, consists of an arbitrary bianisotropic material,
which is stratified (piecewise constant parameters) or has continuously
varying parameters with respect to depth. The method presented in
this paper relies on a systematic use of the integral representation of
the electromagnetic fields outside the slab. The unknown current on
the FSS is obtained by an application of the method of moments, and
from its solution all other quantities are calculated. In a series of
numerical computations the performance of the method is illustrated.
These illustrations are not intended to be candidates for an actual
design, but merely an illustration of the performance of the method
and its potential.

The method applies to a slab located on one side of the FSS, but
with appropriate generalizations it will apply to the situation where we
have a bianisotropic slab on each side of the FSS, as well as the situation
of multi-layered FSSs. These generalizations will be addressed in a
subsequent paper.

ACKNOWLEDGMENT

The work reported in this paper is supported by grants from
the Swedish Defence Materiel Administration (FMV) and by the
Swedish Foundation for Strategic Research (SSF), which are gratefully
acknowledged.

APPENDIX A. POWER FLOW

The average power in the z-direction is determined by the integral of
Poynting’s vector over a plane z = constant. Provided the material
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parameters are constant on the plane z = constant, we have a Fourier
representation of the fields. Using the Parseval’s identity, we get
∫∞∫
−∞

ẑ · S(r)dxdy =
1
2
Re

∫∞∫
−∞

ẑ · (E(r)×H∗(r))dxdy

= − 1
8π2

Re
∫∞∫
−∞

Exy(kt, z) ·
(
ẑ×H∗xy(kt, z)

)
dkydky

We rewrite the integrand with the wave-splitting, (15)

−Re
{
Exy(kt, z) ·

(
ẑ×H∗xy(kt, z)

)}
= Re

{
1
ηη0

(
F+∗(kt, z)+F−

∗(kt, z)
)
·O−1(kt) ·

(
F+(kt, z)−F−(kt, z)

)}

Two types of components occur


Re
(
F+∗ ·O−1 · F+ − F−∗ ·O−1 · F−

)
Re

(
F−∗ ·O−1 · F+ − F+∗ ·O−1 · F−

) (A1)

The first term in (A1) has the form, see (16)

F± ·O−1 · F±∗ = F± ·
(
ê‖ê‖

k

kz
+ ê⊥ê⊥

kz
k

)
· F±∗

=
kz
k

(∣∣∣F±‖
∣∣∣2 k2

k2
z

+
∣∣∣F±⊥

∣∣∣2
)

where the projections F±⊥ and F±‖ are defined by F±⊥ = ê⊥ · F± and
F±‖ = ê‖ · F±. From (6), we get for kt ≤ k

∣∣γ± · F±∣∣2 =
∣∣∣∣ê‖F±‖ + ê⊥F±⊥ ∓ ẑF±‖

kt
kz

∣∣∣∣
2

=

(
|F±‖ |

2k
2

k2
z

+ |F±⊥ |2
)

and we have

ReF± ·O−1 · F±∗ = |γ± · F±|2kz
k
, kt ≤ k

Similarly for the second term in (A1). We get (O−1 is a symmetric
dyadic)

Re
(
F−
∗ ·O−1 · F+ − F+∗ ·O−1 · F−

)
= 2Re

(
iF−

∗ · Im(O−1) · F+
)

= −2
(

Im
k

kz
Im

(
F+
‖ F

−
‖
∗) + Im

kz
k

Im
(
F+
⊥F

−
⊥
∗))
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Finally, we get

∫∞∫
−∞

ẑ · S(r)dxdy

=
1

8π2ηη0

∫ ∫
kt≤k

kz
k

(∣∣γ+(kt) · F+(kt, z)
∣∣2−∣∣γ−(kt) · F−(kt, z)

∣∣2) dkxdky
− 1

4π2ηη0

∫ ∫
kt≥k

(
Im

k

kz
Im

(
F+
‖ F

−
‖
∗) + Im

kz
k

Im
(
F+
‖ F

−
‖
∗))

dkxdky (A2)
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