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Abstract—Rigorous Coupled Wave Analysis (RCWA) (used for
electromagnetic (EM) analysis of planar diffraction gratings) has been
applied to solve EM scattering and diffraction problems for spatially
inhomogeneous, cylindrical, elliptical systems. The RCWA algorithm
and an appropriate method for matching EM boundary conditions
in the elliptical system are described herein. Comparisons of the
eigenfunctions determined by RCWA (found in spatially homogeneous
elliptical regions) and Mathieu functions are presented and shown
to agree closely with one another. Numerical results of scattering
from a uniform elliptical shell system (excited by an electrical surface
current) obtained by using both a Mathieu function expansion method
and by using the RCWA algorithm are presented and also shown to
agree closely with one another. The RCWA algorithm was used to
study EM scattering and diffraction from an elliptical, azimuthally
inhomogeneous dielectric permittivity, step profile system. EM field
matching and power conservation were shown to hold for this step
profile example. A comparison of the EM fields of the step profile
elliptical shell example and that of a uniform profile elliptical shell
having the same excitation and bulk material parameters (permittivity
and permeability) was made and significant differences of the EM fields
of the two systems were observed.
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1. INTRODUCTION

An important problem in electromagnetics is the problem of
determining the EM scattering that arises from a circular or
elliptical, cylindrical object whose permittivity and permeability is
inhomogeneous, that is, a function of position inside the object. This
problem is important, for example in the areas of; dosimetry where
one might want to know EM fields levels in biological materials (for
example EM field penetration in a limb or torso); terrain clutter
where one might want to model EM scattering from cylindrical shaped
vegetation (i.e., a tree branch); as exact and approximate solutions to
validate other mathematical methods; and many other applications as
well.

The problem of EM scattering from radially [1, 2] and azimuthally
[3–7] inhomogeneous circular, cylindrical objects has been studied
by several authors. Azimuthal, inhomogeneity profile cases have
been studied when the object permittivity was a cosine function
of φ [3–5], when the inhomogeneity profile was a step function [6],
when the cylindrical object was inhomogeneous, anisotropic material
[7], and in the case when the inhomogeneous scattering object was
an approximately circular, cylindrical biological material [8]. The
solution method used to study circular, cylindrical inhomogeneous
object scattering [6–8] is based on an algorithm called rigorous
coupled wave analysis [9–14] which was originally developed to study
EM scattering from planar diffraction gratings. The EM RCWA
analysis as applied to circular, cylindrical systems was carried out
in [6–8] by; (1) solving Maxwell’s equation in the interior and
exterior regions of the inhomogeneous system in terms of cylindrical
Bessel functions, (2) solving Maxwell’s equation in the inhomogeneous
material region by using a multi-layer state variable (SV) approach,
and (3) matching EM boundary conditions at the interfaces. State
variable equations arise from using Floquet harmonics (Fourier series)
to solve Maxwell’s equations in the inhomogeneous material region.
The three dimensional problem of EM scattering from a spherical
inhomogeneous object has also been studied using RCWA [15, 16].
A recent book [17] has a given a general review of the research work
in this area.

A limitation of the circular, cylindrical RCWA method is that
the algorithm can only conveniently handle inhomogeneous scattering
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Figure 1. The geometry of the inhomogeneous elliptical system is
shown where ρ = 20, ua = .602, ub = 1.198, us = .3, λ is the
free space wavelength, and R1, R2, R3 refer to Regs. 1, 2, 3 respectively.
The figure is drawn to scale in the x and y directions. The relative
permittivity ε(x, y) of Reg. 2 is assumed symmetric in the x and y
coordinates. For all calculations is assumed: Reg. 1: ε1 = 1., µ1 = 1.;
Reg. 3; ε3 = 1.5, µ3 = 1.2; and for the uniform profile example it is
assumed ε(x, y) = ε2 ≡ ε2U = 2.9851786 and µ2 = 1.4.

objects which have approximately equal transverse dimensions (i.e.,
circular or square shaped). In the case when the shape is elongated
with even a moderate eccentricity (for example, the elliptical system
shown in Figs. 1 and 2) it is difficult to accurately expand the elongated
shape in a circular, Fourier series unless an extremely large number of
Fourier harmonics are used. Use of a large number of Fourier terms
then leads to a large SV matrix which can be difficult and cumbersome
to solve. For elongated objects which also have an inhomogeneous
permittivity and permeability profiles, a better option is to apply
the basic RCWA method using a shape which fits the bulk of the
inhomogeneous object as closely as possible.

With this end in mind. the purpose of this paper is to present a
RCWA algorithm which is based on a coordinate system which can fit
an elongated inhomogeneous object comfortably, namely the elliptical,
cylindrical coordinate system. Figs. 1 and 2 show a schematic of the
system to be studied. In Figs. 1 and 2, Regs. 1 and 3 are assumed to
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Figure 2. The geometry of the step profile, elliptical system is shown.
The relative permittivity step profile is defined by; ε(x, y) = ε2a = 2.95
in R2a, (Reg. 2a) and ε(x, y) = ε2b = 3.05 in R2a (Reg. 2b). ε2U has
been chosen (see Fig. 1 caption) so ε2U = (ε2aS2a+ε2bS2b)/(S2a+S2b)
where S2a and S2b are the areas of regions of R2a and R2b. All other
parameters are specified in the Fig. 1 caption.

be homogeneous. and Reg. 2 is assumed to have a permittivity and
permeability profiles which are functions of position.

As an overview of the paper, Sec. 2 of the paper will present the
basic elliptical, cylindrical RCWA formulation of the algorithm, Sec.
3 will present an EM field validation solution for the case when all
three regions are homogeneous (using Mathieu function expansions),
Sec. 4 will present RCWA numerical results for an permittivity step
profile (Fig. 2), and Sec. 5 will present conclusions. For simplicity
the present paper will present the elliptical RCWA for the case
when the inhomogeneity profiles are symmetric in the transverse x, y
coordinates and for the case when the exciting EM source is an
elliptical, vertically, directed electrical surface current, also assumed
symmetric in the transverse x, y coordinates. The extension of the
formulation for arbitrary elliptical inhomogeneity profile variation and
source excitation is complicated but straight forward.

The study of EM scattering and diffraction from elliptical,
cylindrical systems has received a tremendous amount of study in the
literature [18, 19]. Reference [18] is a detailed article on scattering
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from metallic, elliptical cylinders and also contains a large review of the
literature on this subject. A very recent article [19] studies scattering
from a spatially uniform, dielectric-coated impedance cylinder.

2. RIGOROUS COUPLED WAVE ANALYSIS
FORMULATION

This paper is concerned with the problem of determining the EM fields
that arise when an interior, elliptical surface current source (located
at u = us, us < ua) excites EM fields in an elliptical cylindrical system
whose permittivity varies with position as shown in Figs. 1 and 2 by
using the RCWA method. The EM analysis will be carried out by; (1)
solving Maxwell’s equations in the interior and exterior homogeneous
regions (Regs. 1, 3) of Figs. 1 and 2 in terms of Mathieu functions,
(2) solving Maxwell’s equation in the inhomogeneous region (Reg. 2)
by using a multi-layer state variable approach, and (3) matching EM
boundary conditions at the interfaces. It is convenient to use elliptical
coordinates as specified in [20] and then normalize them. We let,
ρ = k0ρ̃, x = k0x̃, y = k0ỹ, x̃ = ρ̃cosh(u) cos(v), ỹ = ρ̃sinh(u) sin(v),
etc. where unnormalized coordinates (ρ̃, x̃, ỹ, etc.) are in meters and
k0 = 2π/λ is the free space wavenumber (1/meters) and λ is the free
space wavelength.

It is assumed that all fields and the inhomogeneity of the medium
are z-independent and that the relative dielectric permittivity in an
inhomogeneous region of the material system (namely Reg. 2 of Fig. 1)
is given by

ε(u, v) =
∞∑

i=−∞
ε̆i(u)ejiv, 0 ≤ v ≤ 2π

where ε̆i(u) represent v-exponential, Fourier coefficients.
The EM fields interior (Reg. 1 of Fig. 1) and exterior (Reg. 3

of Fig. 1) when an interior, elliptical surface current source �Js =
Jsz(us, v)âz (assumed to be symmetric in both x and y) is present may
be expressed as an infinite expansion of radial and angular Mathieu
functions [20]. The z-directed electric field and v-directed magnetic
field in Reg. 1 are given by

E(1)
z (u, v, q1) =

∞∑
m=0,2,...

(
AI−m + A

(1)
1m

)
M (1)
cm (u, q1)cem(v, q1)

≡
∞∑

m=0,2,...

E(1)
m (u, q1)cem(v, q1), 0 ≤ u < us (1)
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U (1)
v (u, v, q1) ≡ η0h(u, v)H(1)

v (u, v, q1)

=
∞∑

m=0,2,...

U (1)
m (u, q1)cem(v, q1)

U (1)
m (u, q1) =

1
jµ1

(
AI−m + A

(1)
1m

)
M (1)
cm

′
(u, q1), 0 ≤ u < us (2)

E(1)
z (u, v, q1) =

∞∑
m=0,2,...

E(1)
m (u, q1)cem(v, q1),

E(1)
m (u, q1) = AI+m M (4)

cm (u, q1) + A
(1)
1mM (1)

cm (u, q1), us ≤ u ≤ ua (3)

U (1)
v (u, v, q1) ≡ η0h(u, v)H(1)

v (u, v, q1)

=
∞∑

m=0,2,...

U (1)
m (u, q1)cem(v, q1),

U (1)
m (u, q1) =

1
jµ1

[
AI+m M (4)

cm

′
(u, q1)+A

(1)
1mM (1)

cm

′
(u, q1)

]
, us<u≤ua(4)

where q1 = µ1ε1ρ
2/4, µ1 is the relative permeability of Reg. 1, ε1 is

the relative permittivity of Reg. 1, where η0 = 377Ω is the intrinsic
impedance of free space, where the prime denotes differentiation with
respect to u and where h(u, v) is the scale factor of elliptical coordinates
and is given by [20]

h(u, v) =
(

ρ√
2

)
[cosh(2u)− cos(2v)]1/2 (5)

The amplitude excitation coefficients AI+m and AI−m may be found by
expanding the source current in a set of orthogonal, angular cem(v, q1)
Mathieu functions and then evaluating EM boundary conditions at the
location u = us of the surface current.

The modal function
∑∞
m=0,2,...A

(1)
1mM

(1)
cmcem (Eqs. (1), (3)) and

its associated derivative (Eqs. (2), (4)) represents the scattered EM
field solution of Maxwell’s equations in elliptical coordinates which
arises in Reg. 1. The modal functions

∑∞
m=0,2,...A

I−
m M

(1)
cmcem (Eq. (1))

and
∑∞
m=0,2,...A

I+
m M

(4)
cmcem (Eq. (3)) and their associated derivatives,

represent respectively, the EM fields which arises inside and outside
the current source when the current source is located in an unbounded
space having material parameters ε1, µ1. The radial Mathieu function
M

(1)
cm has been used in Eqs. (1), (2) because it is bounded at the

origin and the radial Mathieu function M
(4)
cm has been used in Eqs. (3),

(4) because it radiates outward from the current source. The radial



Rigorous coupled wave analysis 95

Mathieu function M
(1)
cm is analogous to the circular Bessel function

Jm, and the radial Mathieu function M
(4)
cm is analogous to the circular

Hankel-Bessel function H
(2)
m .

The z-directed electric field and v-directed magnetic field in Reg.
3 are given by

E(3)
z (u, v, q3) =

∞∑
m=0,2,...

A
(4)
3mM (4)

cm (u, q3)cem(v, q3)

≡
∞∑

m=0,2,...

E(3)
m (u, q3)cem(v, q3), ub ≤ u (6)

U (3)
v (u, v, q3) ≡ η0h(u, v)H(3)

v (u, v, q3)

=
1

jµ3

∞∑
m=0,2,...

A
(4)
3mM (4)

cm

′
(u, q3)cem(v, q3)

≡
∞∑

m=0,2,...

U (3)
m (u, q3)cem(v, q3) ub ≤ u (7)

where q3 = µ3ε3ρ
2/4, µ3 is the relative permeability of Reg. 3, ε3 is the

relative permittivity of Reg. 3. Reference [20] gives a complete listing
of the Mathieu expansions used subsequently in this paper.

In Region 2, the middle cylindrical dielectric region. we divide the
dielectric region into L thin shell layers of thickness ∆u�, ub − ua =∑L
�=1 ∆u� (" = 1 is adjacent to u = ub and " = L is adjacent

to u = ua) and solve Maxwell’s equations in elliptical coordinates
by a state variable approach in each thin layer. The layers are
assumed to be thin enough in order that the u dependence of ε(u, v)
and the h(u, v) scale factors may be treated as a constant in each
layer. Making the substitutions Uu(u, v) = η0h(u, v)Hu(u, v), and
Uv(u, v) = η0h(u, v)Hv(u, v) where Hu(u, v) and Hv(u, v) represent
the magnetic fields in each thin shell region we find that Maxwell’s
equations in an elliptical, cylindrical shell of coordinate value u are
given by

∂Ez(u, v)
∂v

= −jµUu(u, v) (8)

∂Ez(u, v)
∂u

= jµUv(u, v) (9)

∂Uv(u, v)
∂u

− ∂Uu(u, v)
∂v

= jε(u, v)h2(u, v)Ez(u, v) (10)

where µ is the permeability of the thin shell region.
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To solve Eqs. (8)–(10), we expand in the Floquet harmonics:

Ez(u, v) =
∞∑

i=−∞
Szi(u)ejiv,

Uu(u, v) =
∞∑

i=−∞
Uui(u)ejiv,

Uv(u, v) =
∞∑

i=−∞
Uvi(u)ejiv,

εh(u, v)Ez(u, v) =
∞∑

i=−∞


 ∞∑
i′=−∞

ε̆h,i−i′Szi′


 ejiv,

εh(u, v) ≡ ε(u, v)h2(u, v) =
∞∑

i=−∞
ε̆hi(u)ejiv, (11)

If these expansions are substituted in Eqs. (8)–(10), and after letting
Sz(u) = [Szi(u)], Uu(u) = [Uui(u)], and Uv(u) = [Uvi(u)] be column
matrices and εh(u) = [ε̆h,i−i′(u)], K = [iKδi,i′ ], K = 2π/Λv, Λv =
2π(Λv is the elliptical grating period and δi,i′ is the Kronecker delta)
be square matrices we find after manipulation

∂V

∂u
= AV , V =

[
Sz
Uv

]
, A =

[
A11 A12

A21 A22

]
(12)

where

A11 = 0, A12 = jµI, A21 = j

[
εh −

1
µ
K2

]
, A22 = 0 (13)

These equations were obtained after eliminating Uu from Eqs. (8)–(10).
Eqs. (12)–(13) represent state variable equations which can

determine all possible eigenmodes that exist in each thin layer shell.
In the present case, because both the inhomogeneity and the source
are assumed symmetric with respect to x and y, only even values
of the integer i need to be kept in Eqs. (11)–(13). If Eq. (12) is
truncated at order MT , (i = −MT ,−MT + 2, . . . ,MT − 2,MT ), (MT

is even), Eq. (12) represents a NT = 2(MT +1) state variable equation
(with matrix (A)NT xNT ). The solution of this equation is given by
Vn(u) = Vn exp(Qnu) where Qn and Vn are the nth eigenvalue and
eigenvector of the constant matrix A respectively. The quantities
A, Vn, and Qn satisfy AVn = QnVn where Vn

T = [SznT , UvnT ] and
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where T represents matrix transpose. The general EM fields in the "th
thin shell for the nth mode n = 1, 2, . . . , NT region are given

Ezn�(u, v) = Eezn�(v) exp(Qn�u)

Eezn�(v) =
MT∑

i=−MT
(even i)

Szin� exp(jiv), (14)

Uvn�(u, v) ≡ η0h(u, v)Hvn�(u, v) = U evn�(v) exp(Qn�u)

U evn�(v) =
MT∑

i=−MT
(even i)

Uvin� exp(jiv), n = 1, 2, . . . , NT (15)

The next general part of the analysis is to match EM boundary
conditions at each interface of the system. Before carrying out this
numerical procedure, it was decided to initially study the case of
scattering from a homogeneous elliptical shell using RCWA (discussed
in detail in Sec. 3) and compare this solution to that obtained using
a Mathieu function expansion in the elliptical shell. It was felt
that this was a good initial step as one could validate the RCWA
method and also gain insight into how well the RCWA converged
to the correct solution. In comparing numerical results for the
homogeneous case, it was found that the propagating eigenmode
that had the largest magnitude, eigenvalue (plus and minus roots,
Qn = ±j|Qn|,Real(Qn) ∼= 0.), corresponded almost exactly to
the m = 0 Mathieu function linear combination [C0M

(3)
c0 (u, q2) +

D0M
(4)
c0 (u, q2)]ce0(v, q2), (with the constants C0 and D0 properly

chosen), the propagating eigenmode that had the next largest,
eigenvalue (plus and minus roots, Qn = ±j|Qn|,Real(Qn) ∼= 0.),
corresponded almost exactly to the m = 2 Mathieu function
linear combination [C2M

(3)
c2 (u, q2) + D2M

(4)
c2 (u, q2)]ce2(v, q2), (with

the constants C2 and D2 properly chosen), and so on, until the
eigenfunction magnitudes approached zero and became evanescent.
It was also found that in solving the homogeneous case using the
Mathieu function expansion, that only a relatively few of the lowest
order Mathieu functions m = 0, 2, 4, . . . were necessary for an accurate
solution.

For the reasons that the RCWA eigenfunctions and the Mathieu
functions matched closely in the homogeneous case and that only
a relatively few Mathieu functions were needed to solve the
homogeneous case, it was decided in the present work to consider
only elliptical inhomogeneities which are only modestly different from
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the homogeneous case. It was expected in this case then that the
exact eigenfunctions of the inhomogeneous case would then behave
in a similar way numerically as did the RCWA eigenfunctions of the
homogeneous case.

With the previous comments and assumptions in mind, we will
now proceed with imposing EM boundary at all elliptical interfaces
and determining a matrix equation to find all of the unknowns of
the system. We begin by expanding the unknown EM RCWA field
solution in a thin layer of Reg. 2 of the system in a limited sum of
N inward propagating (Qn = j|Qn|,Real(Qn) ∼= 0, n = 1, . . . , N)
and N outward propagating (Qn = −j|Qn|,Real(Qn) ∼= 0, n = N +
1, . . . , 2N) RCWA eigenfunctions, and then imposing EM boundary
conditions at all interfaces of the system using this expansion. The
EM fields in a thin layer of Reg. 2 (Eqs. (14), (15)), is given by

E
(2)
z� (u, v) =

2N∑
n=1

Cn�E
e
zn�(v) exp(Qn�u) (16)

U
(2)
v� (u, v) =

2N∑
n=1

Cn�U
e
vn�(v) exp(Qn�u) (17)

where in Eqs. (16) and (17), Cn� are the unknown expansion coefficients
of the system.

The next step is evaluate (16) and (17) at each thin layer interface
and then impose EM boundary conditions from layer to layer. This
has been accomplished by defining the electric field angular functions
of Eq. (14) of each thin layer to be weighting functions or testing
functions, and then using these weighting functions or testing functions
to multiply and integrate the boundary matching equations and thus
enforce boundary conditions. The testing or weighting functions for
each thin layer were defined to be the inward propagating RCWA
electric field eigenmodes, (Qn = j|Qn|, Real(Qn) ∼= 0, n = 1, . . . , N),
and are given by

Etzn�(v) ≡ Eezn�(v), n = 1, . . . , N, " = 1, . . . , L (18)
Etzn�(v) ≡ EeznL(v), n = 1, . . . , N, " = L + 1 (19)

A testing function Etzn,L+1(v) has been defined because it will be
needed for boundary matching at the Reg. 2, " = L and Reg. 1 layer
interface.

The boundary testing procedure which has just been described
may be called a semi-Galerkin procedure. Using this procedure, one
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finds the following equations
2N∑
n′=1

K
(�+1)
+,nn′Cn′,�+1 =

2N∑
n′=1

K
(�)
−,nn′Cn′,�, (20)

for " = 1, . . . , L − 1, n = 1, . . . , 2N . The interaction terms
K

(�+1)
+,nn′ , K

(�)
−,nn′ are given by

K
(�+1)
+,nn′ =

∫ 2π

0
Etzn,�+1(v)Eezn′,�+1(v)dv (21)

K
(�)
−,nn′ =

[∫ 2π

0
Etzn,�+1(v)Eezn′,�(v)dv

]
exp(−Qn′�∆u�) (22)

for n = 1, . . . , N and n′ = 1, . . . , 2N , and

K
(�+1)
+,nn′ =

∫ 2π

0
Etzn,�+1(v)U evn′,�+1(v)dv (23)

K
(�)
−,nn′ =

[∫ 2π

0
Etzn,�+1(v)U evn′,�(v)dv

]
exp(−Qn′�∆u�) (24)

for n = n + 1, . . . , 2N and n′ = 1, . . . , 2N .
Defining for " = 1, . . . , L − 1, two 2N × 2N size matrices,

K
(�+1)
+ =

[
K

(�+1)
+,nn′)

]
and K

(�)
− =

[
K

(�)
−,nn′

]
and defining a 2N size column

matrix C� = [Cn�], and after matrix inversion of K
(�+1)
+ , it it found

C�+1 = K(�+1) C� where K(�+1) =
[
K

(�+1)
+

]−1 [
K

(�)
−

]
. If successive

substitution of each layer column matrix C� is made it is found that
the CL column matrix may be expressed in terms of the first layer
column matrix as

CL = K(L) K(L−1), . . . ,K(2) C1 ≡M C1 (25)

It is also necessary to match boundary conditions at the Reg. 3-Reg.
2 and the Reg. 1-Reg. 2 interfaces. At the Reg. 3: (Reg. 2, " = 1)
interface after enforcing the boundary conditions using the testing
function set Etzn,1(v) n = 1, . . . , N it is found

K
(1)
+ C1 = V (3) ≡

[(
E(3)
z

)T
,
(
U (3)
z

)T ]T
(26)

where K
(1)
+ is given by Eqs. (21), (23) with " set to zero and where

E(3)
z =

[
E

(3)
zn1

]
, E

(3)
zn1 =

2(N−1)∑
m=0,2,...

βn,mE(3)
m (ub, q3),
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U (3)
v =

[
U

(3)
vn1

]
, E

(3)
zn1 =

2(N−1)∑
m=0,2,...

βn,mU (3)
m (ub, q3),

βn,m =
∫ 2π

0
Etzn,1(v)cem(v, q3)dv (27)

At the (Reg. 2, " = L): Reg. 1 interface, after enforcing the boundary
conditions using the testing function set Etzn,L+1(v), n = 1, . . . , N , it
is found

V (1) ≡
[(

E(1)
z

)T
,
(
U (1)
v

)T ]T
= K

(L)
− CL (28)

where K
(L)
− is defined by Eqs. (22) and (24) with " = L and ∆uL set

to zero, where

E(1)
z =

[
E

(1)
zn,L+1

]
, E

(1)
zn,L+1 =

2(N−1)∑
m=0,2,...

αn,mE(1)
m (ua, q1),

U (1)
v =

[
U

(1)
vn,L+1

]
, U

(1)
vn,L+1 =

2(N−1)∑
m=0,2,...

αn,mU (1)
m (ua, q1),

αn,m =
∫ 2π

0
Etzn,L+1(v)cem(v, q1)dv (29)

We note that in the numerical evaluation of Eqs. (18)–(29), that all of
the angular integrals, that are defined over the period 0 ≤ v ≤ 2π and
have the form

I =
∫ 2π

0
f(v)g(v)dv where f(v) =

∞∑
i′=−∞

f̆i′ exp(ji′v)dv

and g(v) =
∞∑

i′′=−∞
ği′′ exp(ji′′v)dv (30)

may be evaluated exactly and have the value I = 2π
∑∞
i=−∞ f̆iğ−i.

Inverting K
(1)
+ of Eq. (26) and inverting K

(L)
− of Eq. (28), one finds

C1

[
K

(1)
+

]−1

V (3), CL =
[
K

(L)
−

]−1

V (1) (31)

If C1 and CL of are now substituted in Eq. (25) we have[
K

(L)
−

]−1

V (1) = M

[
K

(1)
+

]−1

V (3) (32)
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The V (1) column matrix of Eqs. (28), (29), involves the Reg.
1 coefficient terms E

(1)
m (ua, q1) and U

(1)
m (ua, q3) which are given

in Eqs. (3), (4) and the V (3) column matrix of Eqs. (26),
(27) involves the Reg. 3 coefficient terms E

(3)
m (ub, q3) and

U
(3)
m (ub, q3) which are given in Eqs. (6), (7). If one substitutes

E
(1)
m (ua, q1), U

(1)
m (ua, q1), E

(3)
m (ub, q3), and U

(3)
m (ub, q3) of Eqs. (3),

(4), (6), (7) in Eq. (32), and separates the known source terms (pro-
portional to AI+m ) from the unknown EM field expansion terms (pro-
portional to A

(1)
1m and A

(1)
3m), one finds a final matrix equation which

may be solved to find the unknown coefficients A
(1)
1m and A

(4)
3m, m =

0, 2, . . . , 2(N − 1) of the system. Once the coefficients A
(1)
1m and

A
(4)
3m, m = 0, 2, . . . , 2(N − 1) have been found. all other EM field

quantities may also be determined.

3. MATHIEU FUNCTION VALIDATION SOLUTION

As mentioned earlier, an important issue is validating the RCWA
elliptical calculations of Sec. 2 using an independent numerical method.
This has been accomplished by using Mathieu functions to calculate
the EM fields that arise from the elliptical cylinder system shown in
Fig. 1 when Reg. 2 is assumed to be a uniform dielectric material of
relative permittivity value ε2. The basic method consists of expanding
the EM fields in Regs. 1, 2, and 3 in terms of a finite number
m = 0, 2, . . . , 2(N − 1) of radial and angular Mathieu functions which
meet proper boundary conditions, and then boundary matching these
solutions at the interfaces of Reg. 1–Reg. 2 and Reg. 2–Reg. 3. Because
this method is to be directly compared to the RCWA method, the
integer N is assumed to the same as is used for the RCWA analysis.
The Mathieu function expansions of Regs. 1 and 3 have already been
given in Eqs (1)–(7) assuming truncation at order 2(N − 1). The
Mathieu function expansion for Reg. 2 is given by

E(2)
z (u, v, q2) =

2(N−1)∑
m=0,2,...

E(2)
m (u, q2)cem(v, q2),

E(2)
m (u, q2) = A

(3)
2mM (3)

cm (u, q2) + A
(4)
2mM (4)

cm (u, q2), ua ≤ u ≤ ub (33)

U (2)
v (u, v, q2) ≡ η0h(u, v)H(2)

v (u, v, q2)

=
2(N−1)∑
m=0,2,...

U (2)
m (u, q2)cem(v, q2),
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U (2)
m (u, q2) =

1
jµ2

[
A

(3)
2mM (3)

cm

′
(u, q2) + A

(4)
2mM (4)

cm

′
(u, q2)

]
ua ≤ u ≤ ub (34)

q2 = µ2ε2ρ
2/4, µ2 is the relative permeability of Reg. 2, ε2 is the

relative permittivity of Reg. 2, and where M
(3)
cm (u, q2) and M

(4)
cm (u, q2)

represent incoming and outgoing radial Mathieu functions [20]. The
boundary matching has been accomplished by; (1) evaluating the EM
fields Eqs. (1)–(7) and Eqs. (33)–(34) at the interfaces ua and ub; (2)
multiplying the resulting equations by a set of angular weighting or
testing functions, and (3) integrating the resulting equations over the
interval 0 ≤ v ≤ 2π. In the present application the weighting or testing
functions were taken to be the angular Mathieu functions cem(v, q2).

The result of this operation was a 4N × 4N nondiagonal (and
in general nonsymmetric), matrix equation from which all of the 4N
unknowns A

(1)
1m, A

(3)
2m, A

(4)
2m, A

(4)
3m, m = 0, 2, . . . , 2(N−1) of the system

could be determined. The 4N × 4N matrix equation is nondiagonal
(and in general nonsymmetric), because the angular Mathieu functions
cem(v, q2) are not in general orthogonal to cem(v, q1) or cem(v, q3)
when q2 	= q1 or q2 	= q3. Once the 4N unknowns of the system
are determined, it is then possible to evaluate all of the EM fields of
the system anywhere in space.

4. NUMERICAL RESULTS

This section will present numerical examples of EM scattering from
a uniform elliptical cylinder shell as obtained by using Mathieu
functions and obtained by RCWA and will also present examples of
EM scattering from a non-uniform, step-profile elliptical cylinder shell
as obtained by the RCWA method. The purpose of presenting Mathieu
and RCWA numerical results for a uniform elliptical cylinder will be
to validate the numerical results of the RCWA method.

The uniform and step profile elliptical cylinder shell examples to
be studied are illustrated in Figs. 1 and 2 and consists of a three
elliptical regions all assumed to have ρ = 20 which are excited by a
non uniform surface current source located in Reg. 1 of the system.
Figs. 1 and 2 which are drawn to scale in the x and y directions, show
the homogeneous (homogeneous when ε(x, y) = ε2 = constant in Fig.
1) and inhomogeneous elliptical cases under consideration. In these
figures λ is the free space wavelength and R1, R2, R3, R2a, and R2b refer
to the Regs. 1, 2, 3, 2a, and 2b respectively. For both of these examples
it is assumed that the region interfaces are located at u = ua = .602
(Reg. 1-Reg. 2), and u = ub = 1.198 (Reg. 2-Reg. 3) and it is also
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assumed that the material parameters of Regs. 1, 3 respectively, have
the permittivity and permeability values: Reg. 1; ε1 = 1., µ1 = 1. :
and Reg. 3; ε3 = 1.5, µ3 = 1.2. As can be seen from Figs. 1 and
2, the outer dimensions of the elliptical objects are approximately
12λ × 10λ. In Reg. 2 of the uniform profile example (illustrated in
Fig. 1) it is assumed that Reg. 2 has the relative permittivity and
permeability parameters ε(x, y) = ε2 ≡ ε2U = 2.9851786 and µ2 = 1.4
and in Reg. 2 of the step profile example (illustrated in Fig. 2) it is
assumed that the regions making up the step have permittivity and
permeability parameters: Reg. 2a; ε2a = 2.95, µ2 = 1.4; and Reg. 2b
ε2b = 3.05, µ2 = 1.4. In the step profile example, Reg. 2a (labeled
R2a) is defined by the coordinates ua ≤ u ≤ ub, −65◦ ≤ v ≤ 65◦
and 115◦ ≤ v ≤ 245◦ and the Reg. 2b (labeled R2b) is defined by the
coordinates ua ≤ u ≤ ub, 65◦ ≤ v ≤ 115◦ and 245◦ ≤ v ≤ 295◦.
The dielectric permittivity of the step profile is symmetric in the x
and y directions. In the uniform profile example the value of the
relative dielectric permittivity ε(x, y) = ε2 ≡ ε2U = 2.9851786 was
chosen so that its value exactly equaled the average or bulk value of
the step profile case. In other words if S2a and S2b represent the
total areas of regions of R2a and R2b then ε2U = ε2aS2a+ε2bS2b

S2a+S2b
. The

bulk values of the uniform and step profile cases were chosen to be
equal in order to ensure that a more meaningful comparison of the EM
fields and powers of a homogeneous and inhomogeneous case could be
made. A difference in the EM fields or powers tor two cases due to a
difference in the dielectric permittivity bulk parameters in each case,
would not represent an EM field difference due to the elliptical shell
being homogeneous or inhomogeneous. For both the homogeneous
and inhomogeneous examples it is assumed that the excitation surface
current is given by

�JS(us, v) = Js0ce0(v, q1)/h(us, v)âz (35)

where h(us, v) is the elliptical scale factor and is given in Eq. (5) and
ce0(v, q1) is an angular Mathieu function of order m = 0. By matching
EM boundary conditions at the current source location it can be shown
mathematically that the current source of Eq. (35) will only excite a
m = 0 Mathieu function mode in a uniform, infinite region of space.
For both examples to be presented, the surface current amplitude Js0
was chosen to have a value Js0 = 1. (Amp/m) and the surface current
was assumed to be located at ρ = 20, u = us = .3. The number of
thin layers L used to make all RCWA calculations was results for both
the uniform and step profile examples calculations in this paper was
L = 298. All RCWA eigenfunctions were calculated using a truncation
value of MT = 32 in Eqs. (12), (13). The parameter N was chosen
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Figure 3. A comparison of the ce0(v, q) angular Mathieu function
(line) as obtained by the numerical algorithm of [21] and as obtained
by the RCWA algorithm for q = 420. This value of q(q = µερ2/4)
would correspond to the case when ρ = 20, µ = 1.4, ε = 3.

to have a value of N = 12 for numerical results to be presented.
All Mathieu function calculations in the paper were made using the
numerical algorithm of [21].

We will now present numerical results of the m = 0 angular and
radial Mathieu functions which were obtained using the RCWA method
and compare these to the Mathieu functions obtained from [20, 21] for
the case when the parameter q was taken to be q = 420. This value
of q corresponds to the case when Reg. 2 of Figs. 1 or 2 is a uniform
elliptical shell (ρ = 20 in Reg. 2) and ε(x, y) = ε2 = 3., µ2 = 1.4.
Fig. 3 shows a plot of the of the Reg. 2 ce0(v, q) angular Mathieu
function (line) as obtained by the numerical algorithm of [21] and as
obtained by the RCWA algorithm (line and dot). Figs. 4 and 5 show

respectively the Reg. 2, M (1)
c0 (u, q), dM

(2)
c0 (u,q)
du (line) as obtained by [21]

and as obtained by the RCWA algorithm (line and dot). The plots in
Figs. 4 and 5 have been made over the entire Reg. 2 radial interval
ρ = 20, ua ≤ u ≤ ub. As can be seen from Figs. 3–5, extremely close
agreement exists between the Mathieu functions as obtained by RCWA
method and by the numerical algorithm of [21] over the angular and
radial intervals displayed.

We will now present numerical results of the EM fields which
resulted for the two cases under consideration. Fig. 6 shows a plot
of η0HvR (η0 = 377Ω, HvR is the real part of the phasor magnetic
field the Hv) for interval ρ = 20, 0 < u ≤ 1.8 with v = 70◦ (an x-y
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Figure 4. A comparison of the M
(1)
c0 (u, q) radial Mathieu function as

calculated by [21] and as calculated by RCWA is shown for q = 420.

Figure 5. A comparison of the dM
(2)
c0 (u,q)
du radial Mathieu function as

calculated by [21] and as calculated by RCWA is shown for q = 420.
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Figure 6. A comparison of η0HvR (η0 = 377Ω, HvR is the real part
of the phasor magnetic field the Hv) for interval ρ = 20, 0 < u ≤ 1.8
with v = 70◦ as obtained by a Mathieu expansion method of Sec. 3
and as obtained by RCWA algorithm of Sec. 2. Please see Fig. 2 for
an x-y line plot of u for ρ = 20, v = 70◦.

line plot of v = 70◦ is shown in Fig. 2, dashed curve) as obtained by
a Mathieu function expansion of Sec. 3 (line) and as obtained by the
RCWA algorithm of Sec. 2 (line and dot). The discontinuous behavior
of the plot at u = .3 in Reg. 1 is caused by the presence of the surface
current Eq. (35) located at u = us = .3. As can be seen, extremely close
agreement exists between the Mathieu and RCWA solution methods.

Figs. 7a–h for uniform and step profile cases, display the real and
imaginary parts of the electric and magnetic fields over the interval
0 ≤ v ≤ π as calculated at radial values which are just above and just
below the region interfaces values ua and ub. In these plots the EM
fields for the uniform elliptical case set (dashed curves) were calculated
using the Mathieu matching method of Sec. 3 and using the RCWA
method of Sec. 2. Each set of dashed curves in Figs. 7a–h represents
a set four curves (RCWA and Mathieu at u−a and u+

a Figs. 7a–d) or
(RCWA and Mathieu at u−b and u+

b , Figs. 7e–h). As can be seen
from the dashed line plots of Figs. 7a–h, the Mathieu and RCWA
methods give close agreement with each other. We also notice that the
Mathieu and RCWA methods each method separately gives extremely
close boundary matching agreement at the interfaces.

In the plots of Figs. 7a–h the EM results of the inhomogeneous,
step profile case were studied using only the RCWA method of Sec. 2.
Only the RCWA method was used since the Mathieu matching solution
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(a)

(b)

Figure 7. For uniform and step profile cases, Figs. 7a–h display the
real (denoted by subscript R) and imaginary (denoted by subscript I)
parts of the electric (Ez) and magnetic (Hv) fields over the interval
0 ≤ v ≤ 180◦ as calculated at radial values which are just above and
just below the region interfaces values ua and ub.
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(c)

(d)

(e)

Figure 7.
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(f)

(g)

(h)

Figure 7.
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described in Sec. 3 applies only to the uniform elliptical shell case. In
these figures the EM fields of the RCWA method which were exterior
to Reg. 2 (either u−a or u+

b ) were plotted as a solid line and dot and
the EM fields which were interior to region 2 (either u+

a or u−b were
plotted as a solid line. In observing the RCWA EM step profile results
we notice that the numerical solutions satisfy EM boundary conditions
fairly closely as there is little difference in the curves marked line and
line and dot.

It is interesting to compare the EM results for the uniform and
step profile cases. As can be seen from Figs. 7a–h, despite the fact
that the two profiles had the same overall bulk dielectric value in
Reg. 2, one notices that in all but Fig. 7c that two fairly significant
differences occurred between the EM fields (both electric and magnetic)
for the two cases under consideration. The first difference was that
the magnitude of the peak EM field value which occurs at v = 90◦
was smaller than the peak magnitude in the uniform case. The
second major difference between the profiles was that the EM fields
of step profile showed a much greater interference pattern over the
0 ≤ v ≤ 180◦ range than did the uniform shell example. Both of
the differences in the EM field patterns are reasonable. The reduction
in peak magnitude for the step profile is probably a dielectric bulk
effect caused by the fact that in the step profile case, a large amount
of the incident power of the current source (largest at v = 90◦)
encountered the Reg. 2b dielectric (ε2b = 3.05). This dielectric region
thus acted as if were the overall bulk dielectric of the entire elliptic
shell. The second difference the interference effect is caused by the
EM fields of the system being diffracted, reflected, and refracted from
the discontinuities of step profile and subsequently interfering with one
another to form the oscillatory EM field patterns seen in most of the
RCWA plots of Figs. 7a–h.

In addition to the EM field results, calculations have been made of
both the total power per unit length which is radiated from the system
at any radial coordinate u in space and the power per unit length which
is radiated from the different Mathieu orders (m = 0, 2, . . .) at any
radial coordinate u which is located in Regs. 1 or 3. The total, time
averaged EM power radiated through a given elliptical shell located at
any radial coordinate u is found by integrating

PTOT =
∫ 2π

0
.5Real

(
�E × �H∗

)
· âuh(u, v)dv (36)

(Poynting vector power) where �E and �H are the electric and magnetic
fields obtained from the RCWA or Mathieu matching methods, and
�H∗ is the complex conjugate �H. The power per unit length which
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Table 1. The power ratio PTOT /PJS as calculated at u−a , u
+
a , u

−
b and

u+
b for the uniform elliptical shell case as calculated by the RCWA

method (first column), the uniform elliptical shell case as calculated
by the Mathieu matching (second column), and the step profile case
as calculated by the RCWA method (third column) is shown. When
Reg. 1 is infinite and ε1 = 1., µ1 = 1., it turns out that the total
power radiated form �JS(us, v) of Eq. (35) is PJS = 6.816674 × 10−2

(Watts/m).

u

PTOT /PJS PTOT /PJS PTOT /PJSPower

(RCWA, Uniform) (Mathieu, Uniform) (RCWA, Step Profile)

u = u−a (Reg. 1) 0.7172154 0.7270283 0.586915

u = u+
a (Reg. 2) 0.7172139 0.7270261 0.5936726

u = u−b (Reg. 2) 0.7172139 0.7270261 0.5936726

u = u+
b (Reg. 3) 0.7172258 0.727046 0.5940894

is radiated from the different Mathieu orders (m = 0, 2, . . .) at any
radial coordinate u which is located in Regs. 1 or 3 is calculated by
substituting the Mathieu function expansions that apply in Reg. 1
or 3 into Eq. (36) and then using the orthogonality of the Mathiueu
functions to identify the order power for each m.

Table 1 displays the power ratio PTOT /PJS . as calculated at
u−a , u

+
a , u

−
b , and u+

b for the uniform elliptical shell case as calculated
by the RCWA method (first column), the uniform elliptical shell case
as calculated by the Mathieu matching (second column), and the step
profile case as calculated by the RCWA method (third column) where
PJS (also calculated using Eq. (36)) represents the total power per unit
length associated with the case when the current source of Eq. (35)
radiates into an infinite space with material parameters ε1, µ1. For the
case when Reg. 1 is infinite and ε = 1., µ1 = 1., it turns out that the
total power radiated form �JS(us, v) of Eq. (35) is PJS = 6.816674×10−2

(Watts/m) . As can be seen from Table 1, close agreement exists in the
power ratio that was calculated at u−a , u

+
a , u

−
b , and u+

b for each column,
thus showing that conservation of power holds numerically as it should.
We also notice that the power ratio of the RCWA method (column 1)
and the Mathieu matching method (column 2) agreed reasonably well
for the uniform elliptical shell case. It is further noticed from Table 1
that the power ratio for the step profile case (calculated by the RCWA
method) was significantly different (about 20% smaller) than the power
ratio that resulted for the uniform elliptical shell case (calculated by
RCWA or Mathieu matching). This is an interesting result considering
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Figure 8. A display of the power ratio in db (using the db
power formula 10 log(Pm, /PJS)) of the different Mathieu orders (m =
0, 2, 4, . . . , 22) for the uniform elliptical shell case (using the Mathieu
matching and RCWA methods) and the step profile case (RCWA)
calculated in Reg. 3 at u = u+

b is shown. When Reg. 1 is infinite
and ε1 = 1., µ1 = 1., it turns out that the total power radiated form
�JS(us, v) of Eq. (35) is PJS = 6.816674× 10−2 (Watts/m).

that uniform and step profile cases both had the same average or bulk
dielectric value. The fact that the step and uniform profile cases had
significantly different power ratios is not surprising, however, when one
views the EM fields of Figs 7a–h. and one notices how different the
EM fields of the two cases were.

Fig. 8 displays the power ratio in db (using the db power formula
10 log(Pm, /PJS)) of the different Mathieu orders (m = 0, 2, 4, . . . , 22)
for the uniform elliptical shell case (using the Mathieu matching and
RCWA methods) and the step profile case (RCWA) calculated in Reg.
3 at u = u+

b . As can be seen from this figure for uniform shell case,
the RCWA and Mathieu matching method give very close agreement
to each other for the all the Mathieu orders. Also as can be seen from
Fig. 8, the power ratio of most of the Mathieu orders for the step
profile is much greater (from 6 to 20 db greater) than the Mathieu
orders that result from the uniform elliptical shell. This indicates that
the presence of the step profile causes a much higher rate of diffraction
of the incident wave (EM radiation form the elliptical current source)
into higher orders than is caused when only a uniform elliptical shells
make up the system. This is a very reasonable result as one would
expect the sharp discontinuities of the step profile to diffract EM field
power into higher orders as it transits the elliptical shell region.
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5. SUMMARY AND CONCLUSIONS

The RCWA method has been applied for the first time to study
the problem of EM scattering and diffraction that occurs in an
inhomogeneous dielectric elliptical, cylindrical system. Sec. 2 presented
the RCWA algorithm, including the state variable formulation in the
inhomogeneous dielectric region and the boundary-matching algorithm
used. Sec. 3 presented a Mathieu function expansion method which
was useful for determining the EM scattering and diffraction that
occurs in a three region elliptical system when each of the regions
was made up of a homogeneous dielectric material. The Mathieu
function expansion method (applicable only to EM scattering problems
involving uniform elliptical shells) provided an independent method
with which to validate the RCWA numerical results (RCWA applies
to homogeneous and inhomogeneous dielectric profiles). In Sec. 4 the
RCWA and Mathieu matching algorithms were both used to determine
the EM fields that result when a uniform elliptical shell was illuminated
by an interior surface current, and the RCWA algorithm alone was
used to determine the EM fields that result when a step profile was
illuminated by an interior current. The permittivity of the uniform
shell example was chosen to equal the bulk value step profile example in
order that a useful comparison of the uniform and step profile examples
could be made.

Several comments and conclusions can be reached about the
numerical results of Sec. 4. First, as can be seen from inspection of
Figs. 3, 4,and 5 the RCWA and Mathieu methods gave close agreement
to each in the calculation of the angular and radial Mathieu functions
for argument values which were displayed. Second, as can be seen
from an inspection of Fig. 6, Fig. 7 (dashed curves), Fig. 8 and
Table I (first two columns), the RCWA and Mathieu methods gave
close agreement to each other in the calculation of the EM fields and
power of the uniform profile example. Third, as can be seen from an
inspection of Figs. 7 and 8 and Table 1 (columns 1 and 2 compared to
column 3), the EM fields of the step profile example and uniform profile
examples turned out to be different from one another, despite the fact
that the same bulk permittivity values were used. An inspection of
the Mathieu power orders in Fig. 8 shows that that more EM power is
being diffracted into higher orders for the step profile example than as
occurs for uniform example. Fourth as be seen from an inspection of
Table 1, one observes that for both the RCWA and Mathieu methods
that the conservation of power law holds to a fairly high degree.

In conclusion it seems that the RCWA algorithm is an effective
way to solve EM elliptical scattering problems. Important future
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research work that still remains is to apply the RCWA algorithm to
more severe inhomogeneity problems and to study the case of scattering
when a plane wave is incidence on an elliptical, inhomogeneous,
scattering object.
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