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Abstract—To characterize electromagnetic waves in complex media
has been an important topic because of its useful applications and
scientific significance of its physical mechanism. Dyadic Green’s
functions, as a mathematical kernel or a dielectric medium response,
relate directly the radiated electromagnetic fields and the source
distribution. In terms of the vector wave functions in cylindrical
coordinates, dyadic Green’s functions in a unbounded and a planar,
multilayered gyroelectric chiral media are formulated. By use of the
scattering superposition principle and taking the multiple reflections
into account, a general representation of the Green’s dyadics is
obtained. Furthermore, the scattering coefficients of the Green’s
dyadics are determined from the boundary conditions at each interface
and are expressed in a greatly compact form of recurrence matrices. In
the formulation of the Green’s dyadics and their scattering coefficients,
three cases are considered, i.e., the current source is impressed in (1)
the first, (2) the intermediate, and (3) the last regions, respectively.
Although the dyadic Green’s functions for a unbounded gyroelectric
chiral medium has been reported in the literature, some of the results
are incorrect. As compared to the existing results, the current work
basically contributes (1) a correct form of dyadic Green’s function for a
unbounded gyroelectric chiral medium, (2) the general representation
of the dyadic Green’s functions for a multi-layered gyroelectric chiral
medium, and (3) a convincible and direct derivation of the irrotational
Green’s dyadic.
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1. INTRODUCTION

Dyadic Green’s functions (DGFs) [1], as a mathematical kernel
or a dielectric medium response, relate directly the radiated
electromagnetic fields and the source distribution. Nowadays, the
dyadic Green’s function technique has been an important method
employed [2] elsewhere for boundary value problems, such as in
Method of Moments and Boundary Element Method. In formulating
the DGFs, there are usually two approaches, one is the Fourier
transform technique and the other is the vector wave function
expansion technique. The former looks simpler and is efficient for
the Cartesian coordinates [3]; but it may not be applicable in all
the nine fundamental coordinate systems. The latter provides a
systematic approach in electromagnetic theory for interpreting various
electromagnetic representations [4]; most importantly, it is applicable
in almost all the nine fundamental coordinate systems. Even in
the planar structure to be considered in detail in this paper, the
eigenfunction expansion technique can provide an explicit form of
the dyadic Green’s functions in cylindrical Bessel functions, so that
it becomes easy and convenient when the source distribution is
independent from the azimuth directions or when the far-zone fields
are computed.
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Looking backwards, we can easily find that the dyadic Green’s
functions in isotropic media have been well-documented by Tai [1],
Collin [2], Chew [5], Cavalcante [6], Pathak [7], Pearson [8], Li et
al. [9–16] using the vector wave functions. For anisotropic media,
Kong [17, 18], Ali and Mahmoud [19], Lee and Kong [20–22], Krowne
[23, 24], Monzon [25], Oldano [26], Habashy et al. [27], Kaklamani
and Uzunogla [28], Ren [29], Weiglhofer and Lindell [30], Lindell [31],
and Cheng and Ren [32] have derived various formulas of dyadic
Green’s functions using (1) the Fourier transform technique, (2) the
method of angular spectrum expansion, and (3) the transmission
matrix method. As for gyroelectric media, the DGFs and fields
have also been formulated by Uzunoglu et al. [33], Barkeshli [34, 35],
Weiglhofer [36], and Cheng [37, 38]. This paper will consider a more
general case where (1) each layer can be a gyroelectric chiral medium,
(2) an arbitrarily-multiple stratified medium is considered, and (3)
either the transmitter or the receiver can be located in any region of
the layered structure. Although some results for bianisotropic media
are available nowadays, but are basically limited to unbounded media
only. So they cannot be directly employed here.

As the eigenfunction expansion technique will be used in the
formulation of dyadic Green’s functions for a unbounded and a multi-
layered gyroelectric chiral media, some ideas introduced in [14, 39]
will be used in this paper and will be generalized in most cases.
Although the result for a unbounded gyroelectric chiral medium has
been published by Cheng [38], it is realized [40] that both the idea
introduced there and the result obtained inside in [38] are not correct.
Although Cheng [32, 41–45] developed the dyadic Green’s functions for
a bit more general class of media, some of the results published there
are, however, in certain senses that (1) the irrotational DGF was not
obtained, (2) there was a very obvious mistake of wrong eigenvalues
obtained at the beginning in [41] so that subsequent problem may raise,
and (3) all the work in [32, 41–45] started with the Fourier transform;
and the Green’s dyadics in vector wave function forms are indirectly
obtained from the transformation in terms of the plane-wave expression
to cylindrical-wave expansion or spherical-wave expansion. In this
paper, we propose a direct formulation of the vector wave functions.
Therefore, we intend to derive a completely new set of formulas for
the representations of the dyadic Green’s functions. Furthermore, a
more generalized case, i.e., the planar-multilayered structure, will be
considered in the formulation as well.

This paper is organized as follows. In Section 2, the eigenfunction
expansion of the dyadic Greens’ functions in cylindrical coordinates
is proposed for the unbounded gyroelectric chiral medium. New
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formulas of the DGFs including the irrotational part are found using
the direct expansion of vector wave functions and, at the mean time
some mistakes occurring in the publications are pointed out. To
include the effects of the multiple interfaces, the principle of scattering
superposition is use in Section 3 to obtain the scattering dyadic Greens’
functions. As expected, various wave modes, such as direct waves and
multiple reflected waves (associated with the planar interfaces) that
propagate in different wave numbers, are included in the formulation.
In Section 4, By evaluating the scattering dyadics with , the scattering
coefficients of the dyadic Green’s functions are obtained using the
boundary conditions on each planar interfaces and represented by a
set of recurrence matrices. In the derivation of these coefficients, three
cases, that is, sources located in the first, the intermediate and the last
layers, are considered. The results for the multilayered gyroelectric
chiral medium can be proved to be reducible to, but do not resemble,
those of the multilayered isotropic medium. Throughout the paper, a
time dependence e−iωt is always suppressed.

2. GENERAL FORMULATION FOR UNBOUNDED
GYROELECTRIC CHIRAL MEDIUM

A homogeneous gyroelectric chiral medium can be characterized by a
set of constitutive relations [38] for the time harmonic excitation,

D = ε ·E+ iξcB, (1a)
H = iξcE+B/µ, (1b)

where

ε =

 ε −ig 0
ig ε 0
0 0 εz

 . (2)

This relation has been widely used in the previously published work
such as those in [33], [34, 35], [36], and [37, 38]. Experimentally, there
might be a problem of fabricating some materials of the constitutive
relations for generalized bianisotropy. However, it does not mean it
may not be produced for ever. Also, theoretical physics sometimes
goes ahead, relative to the experimental physics. In this work, we just
concentrate on the previously used material for our discussion.

Substituting (1a) and (1b) into the source incorporated Maxwell’s
equations leads to

∇×∇×E− 2ωµξc∇×E− ω2µε ·E = iωµJ. (3)
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2.1. General Formulation of DGFs

The electric field can thus be expressed in terms of the DGF and electric
source distribution as follows:

E(r) = iωµ
∫
V ′
Ge(r, r′) · J(r′) dV ′, (4)

where V ′ denotes the volume occupied by the exciting current source.
Again, substituting (4) into (3) leads to

∇×∇×Ge(r, r′)−2ωµξc∇×Ge(r, r′)−ω2µε ·Ge(r, r′)=Iδ(r−r′),
(5)

where I and δ(r − r′) denotes the unit dyadic and Dirac δ function,
respectively.

To formulate the dyadic Green’s functions, we basically use the
Ohm-Rayleigh method and the vector wave function expansion. For
completeness and self-contained content of the discussion, we still
follow the standard procedure given by Tai [1] in the first a few steps.
However, the latter part of the discussion in this section can never be
found in the existing work elsewhere.

According to the well-known Ohm-Rayleigh method, the source
term in (5) can be expanded in terms of the solenoidal and non-
solenoidal cylindrical vector wave functions in cylindrical coordinate
system. Thus, we have

Iδ(r− r′) =
∫ ∞
0
dλ

∫ ∞
−∞

dh
∞∑

n=−∞
[Mnλ(h)Anλ(h)

+ Nnλ(h)Bn(h, λ) +Ln(h, λ)Cn(h, λ)] , (6)

where Mn(h, λ) & Nn(h, λ) are the solenoidal, and Lnλ(h) is the
irrotational, cylindrical vector wave functions while λ and h are the
spectral longitudinal and radial wave numbers, respectively. The
solenoidal and non-solenoidal cylindrical vector wave functions are
defined as [38]

Mn(h, λ) = ∇× [Ψn(h, λ)ẑ] , (7a)

Nn(h, λ) =
1
kλ

∇×Mn(h, λ), (7b)

Ln(h, λ) = ∇ [Ψn(h, λ)] , (7c)

where kλ =
√
λ2 + h2, and the generating function is given by

Ψn(h, λ) = Jn(λρ)ei(nφ+hz). (8)
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The vector expansion coefficients An(h, λ), Bn(h, λ), and Cn(h, λ) in
(6) are to be determined from the orthogonality relationships among
the cylindrical vector wave functions given by:∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzMn(h, λ) ·M−n′(−h′,−λ′)

=
∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzNn(h, λ) ·N−n′(−h′,−λ′)

= 4π2λδ(λ− λ′)δ(h− h′)δnn′ , (9a)

∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzLn(h, λ) ·L−n′(−h′,−λ′)

= 4π2 (λ2 + h2)
λ

δ(λ− λ′)δ(h− h′)δnn′ , (9b)

and ∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzMn(h, λ) ·N−n′(−h′,−λ′)

=
∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzNn(h, λ) ·L−n′(−h′,−λ′)

=
∫ 2π

0
dφ

∫ ∞
0
ρdρ

∫ ∞
−∞

dzLn(h, λ) ·M−n′(−h′,−λ′)

= 0. (9c)

Therefore, by taking the scalar product of (6) with M−n′(−h′,−λ′),
N−n′(−h′,−λ′) and L−n′(−h′,−λ′) each at a time, the vector
expansion coefficients are given by:

An(h, λ) =
1

4π2λ
M ′
−n(−h,−λ), (10a)

Bn(h, λ) =
1

4π2λ
N ′−n(−h,−λ), (10b)

Cn(h, λ) =
λ

4π2(λ2 + h2)
L′−n(−h,−λ), (10c)

where the prime notation of the cylindrical vector wave functions
denotes the evaluation at the source r′.

So far, we have provided the fundamental formulation. From now
on, we will discuss the formulation of the dyadic Green’s functions in
a different way from those in the literature such as in [38].
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In a similar fashion to the dyadic form of the identity matrix, the
dyadic Green’s function can thus be expanded as follows:

G0(r, r′) =
∫ ∞
0
dλ

∫ ∞
−∞

dh
∞∑

n=−∞
[Mn(h, λ)an(h, λ)

+ Nn(h, λ) bn(h, λ) +Ln(h, λ) cn(h, λ)] , (11)

where the vector expansion coefficients an(h, λ), bn(h, λ) and cn(h, λ)
are unknown vectors to be determined from the orthogonality and
permittivity tensor properties.

To obtain these unknown vectors, we substitute (11) and (6) into
(5) which the dyadic Green’s function must satisfy. Noting the instinct
properties of the vector wave functions,

∇×Nn(h, λ) = kλMn(h, λ), (12a)
∇×Mn(h, λ) = kλNn(h, λ), (12b)
∇×Ln(h, λ) = 0, (12c)

we can then end up with∫ ∞
0
dλ

∫ ∞
−∞

dh
∞∑

n=−∞

{[
k2
λI− ω2µε

]
· [Mn(h, λ)an(h, λ) +Nn(h, λ)bn(h, λ)]
−2kωµξc [Nn(h, λ)an(h, λ) +Mn(h, λ)bn(h, λ)]

−ω2µε ·Ln(h, λ)cn(h, λ)
}

=
∫ ∞
0
dλ

∫ ∞
−∞

dh
∞∑

n=−∞
[Mn(h, λ)An(h, λ)

+ Nn(h, λ)Bn(h, λ) +Ln(h, λ)Cn(h, λ)] . (13)

By taking respectively the anterior scalar product of (13) with the
vector wave equations and performing the integration over the entire
space, we can formulate the equations obtained in a matrix form as
given below:

[Ω][X] = [Θ], (14)

where [Ω] is a 3×3 coefficient matrix given by

[Ω] =


k2
λ − ω2µε −ωµ

(
2ξckλ + ωg hkλ

)
−ωµ

(
2ξckλ + ωg hkλ

)
k2
λ − ω2µ

k2
λ

(h2ε+ λ2εz)

−iω2µg λ
2

k2
λ

− ihλ2
k3
λ
ω2µ(ε− εz)
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iω2µg
ih
kλ
ω2µ(ε− εz)

−ω2µ
kλ

(
λ2ε+ h2εz

)
 , (15a)

and [X] and [Θ] are known and parameter column vectors given,
respectively, by

[X] =

 an(h, λ)
bn(h, λ)
cn(h, λ)

 , and [Θ] =

 An(h, λ)
Bn(h, λ)
Cn(h, λ)

 . (15b)

Solving (14), we have the solutions for an(h, λ), bn(h, λ) and cn(h, λ)
as

an(h, λ) =
1
Γ

[α1An(h, λ) + β1Bn(h, λ) + γ1Cn(h, λ)] , (16a)

bn(h, λ) =
1
Γ

[α2An(h, λ) + β2Bn(h, λ) + γ2Cn(h, λ)] , (16b)

cn(h, λ) =
1
Γ

[α3An(h, λ) + β3Bn(h, λ) + γ3Cn(h, λ)] , (16c)

where

Γ = k2
λ(h

2εz + ελ2)− µω2
[
2h2εεz − λ2(g2 − ε2 − εεz)

+ 4µξ2(h2εz + ελ2)
]
− 4ghεzµ2ξcω

3 + εzµ2ω4(ε2 − g2) (17)

and the coupling coefficients are

α1 = h2εz + λ2ε− ω2µεεz, (18a)

β1 = α2 =
ωµ

kλ

[
ghεzω + 2ξc(h2εz + ελ2)

]
, (18b)

γ1 = −k
2
λ

λ2
α3 = i

[
2ωµhξc(ε− εz) + g(k2

λ − ω2µεz)
]
, (18c)

β2 =
1
k2
λ

[
(k2
λ − ω2µε)(h2εz + λ2ε) + ω2µg2λ2

]
, (18d)

γ2 = −k
2
λ

λ2
β3 = i

1
kλ

[
h(k2

λ − µω2ε)(ε− εz) + ωµg(2k2
λξc + ghω

]
, (18e)

γ3 =
1
ω2µ

{
−k4
λ + ω2µ

[
2h2ε+ λ2(ε+ εz) + 4k2

λµξ
2
c

]
+4ghξcµ2ω3 +

ω4µ2

k2
λ

[
h2(g2 − ε2)− εεzλ2

]}
, (18f)
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Now, it is clear that physically, both the coupling of the TE and
TM waves and the coupling of the non-solenoidal and solenoidal wave
functions are present. Mathematically, the presence of these couplings
are actually due to the lack of orthogonalities when a permittivity
tensor ε is inserted into the middle of the vector wave functions M and
N in a form of scalar-product. In [38], this lack of the orthogonalities
is ignored so that the solutions obtained are actually incorrect.

It should be noted that substituting (11) and (6) into (5) gives
(16) after complicated mathematical manipulations. This substitution
is based upon the condition that one can interchange the summation on
n and the integrals on h and λ. This condition can be justified because
the terms in the square brackets of (6) and (11) are continuous with
respect to h and λ, simultaneously.

Hence, the unbounded dyadic Green’s function can be written as

G0(r, r′) =
∫ ∞
−∞

dh

∫ ∞
0
dλ

∞∑
n=−∞

1
4π2λΓ

{
Mn(h, λ)

[
α1M

′
−n(−h,−λ)

+ β1N
′
−n(−h,−λ)+

λ2

k2
λ

γ1L
′
−n(−h,−λ)

]

+Nn(h, λ)

[
β1M−n(−h,−λ)

+ β2N−n(−h,−λ) +
λ2

k2
λ

γ2L−n(−h,−λ)
]

+
λ2

k2
λ

Ln(h, λ) [−γ1M−n(−h,−λ)

− γ2N−n(−h,−λ) + γ3L−n(−h,−λ)]
}
. (19)

In this way, the dyadic Green’s function in a unbounded
gyroelectric chiral medium has been explicitly represented so far in the
form of the eigenfunction expansion in terms of the cylindrical vector
wave functions, as given in (19). Comparing this form with that in
[38], we immediately realize that the mutual coupling of the vector
wave functions are, although exists, not included in the formulation of
the unbounded DGF in [38]. This is a serious mistake and the further
consideration in [38] will no longer meaningful.

The comparison can also be made between the results here and
the formulas of DGFs published in [32, 41–45]. It is found that the
form of DGF here is quite similar to those of DGFs in [32, 41–45].
However, they are quite different because the form of DGFs given in
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[32, 41–45] is the one after the integration with respect to h, but the
current form here is not.

Certainly, the expression of the DGF, as shown above, is a form
in a pre-integration domain. To actually make use of it for practical
problems, we need to integrate the DGF in the pre-integration domain
using the contour integration. In order to apply the residue theorem
to (19), however, we must first extract the part in (19) which does not
satisfy the Jordan lemma [1]. To do so, we write

Ln(h, λ) = Lnt(h, λ) +Lnz(h, λ), (20a)
L′−n(−h,−λ) = L′−nt(−h,−λ) +L′−nz(−h,−λ), (20b)

Nn(h, λ) = Nnt(h, λ) +Nnz(h, λ), (20c)
N ′−n(−h,−λ) = N ′−nt(−h,−λ) +N ′−nz(−h,−λ), (20d)

where the subscript t and z denote respectively the transverse vector
components and the z-vector components of the two functions Ln(h, λ)
and Nn(h, λ).

In terms of these functions, (19) can be rewritten in the form

G0(r, r′) =
∫ ∞
−∞

dh

∫ ∞
0
dλ

∞∑
n=−∞

1
4π2λΓ

×
{

(h2εz + λ2ε− ω2µεεz)Mn(h, λ)M ′
−n(−h,−λ)

+
kλ
h

[
g(ω2µεz − λ2) + 2hεzωµξc

]
[Mn(h, λ)

N ′−nt(−h,−λ) +Nnt(h, λ)M ′
−n(−h,−λ)

]
+kλ(gh+ 2εωµξc)

[
Mn(h, λ)N ′−nz(−h,−λ)

+ Nnz(h, λ)M ′
−n(−h,−λ)

]
+

k2
λ

h2ω2µ

×
[
λ2(ω2µε+ 4ω2µ2ξ2c − k2

λ) + ω2µεz(k2
λ − εω2µ)

]
×Nnt(h, λ)N ′−nt(−h,−λ) +

k2
λ

hω2µ

×
[
h(k2

λ − ω2µε)− 2ω2µ2ξc(2hξc + gω)
]
[Nnt(h, λ)

N ′−nz(−h,−λ) +Nnz(h, λ)N ′−nt(−h,−λ)
]

+
k2
λ

ω2µλ2

[
−h2k2

λ + ω2µε(2h2 + λ2)

+4hω2µ2ξc(hξc + gω) + ω4µ2(g2 − ε2)
]
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×Nnz(h, λ)N ′−nz(−h,−λ)
}
, (21)

where we have expressed Lnt(h, λ), Lnz(h, λ), and their primed
functions in terms of Nnt(h, λ), Nnz(h, λ), and their corresponding
primed functions, namely

Lnt(h, λ) =
−ikλ
h
Nnt(h, λ), (22a)

L′−nt(−h,−λ) =
ikλ
h
N ′−nt(−h,−λ); (22b)

and

Lnz(h, λ) =
ihkλ
λ2

Nnz(h, λ), (22c)

L′−nz(−h,−λ) =
−ihkλ
λ2

N ′−nz(−h,−λ). (22d)

2.2. Analytical Evaluation Of The h Integral

In this section, we will analytically evaluate the h integrals for
the dyadic Green’s function arisen in (11). This effort is intended
to make the results applicable in solving the source-incorporated
boundary value problems of planar, multilayered structures consisting
of gyroelectric chiral media.

By applying the idea given by Tai [1] to obtain an exact expression
of the irrotational dyadic Green’s function, we have from (6)

ẑẑδ(r− r′) =
∫ ∞
0
dλ

∫ ∞
−∞

dh
∞∑

n=−∞

1
4π2λ

k2
λ

λ2
Nnz(h, λ)N ′−nz(−h,−λ).

(23)
Thus the singular term of the unbounded DGF in (21) is contained in
the dyadic of Nnz(h, λ)N ′−nz(−h,−λ).

To simplify the expression in (17), we rewrite Γ into the following
form in order to perform the h integration,

Γ = ph4 + qh2 + sh+ t, (24)

where

p = εz,

q = λ2(ε+ εz)− 2εzω2µ(2µξ2c + ε),
s = −4gεzω3µ2ξc,

t = ελ4 + λ2ω2µ
[
g2 − ε(ε+ εz + 4µξ2c )

]
+ ω4µ2εz(ε2 − g2).
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With appropriate algebraic manipulation, we can split (21) into

G0(r, r′) = −
∫ ∞
0
dλ

∫ ∞
−∞

dh
∞∑

n=−∞

1
4π2λ

k2
λ

ω2µεzλ2

×Nnz(h, λ)N ′−nz(−h,−λ) +
∫ ∞
0
dλ

∫ ∞
−∞

dh
∞∑

n=−∞

1
4π2λ

× 1
εz(h− h1)(h− h2)(h− h3)(h− h4)

×
{

(h2εz + λ2ε− ω2µεεz)Mn(h, λ)M ′
−n(−h,−λ) +

kλ
h

×
[
g(ω2µεz − λ2) + 2hεzωµξc

] (
Mn(h, λ)N ′−nt(−h,−λ)

+ Nnt(h, λ)M ′
−n(−h,−λ)

)
+ kλ(gh+ 2εωµξc)

×
(
Mn(h, λ)N ′−nz(−h,−λ) +Nnz(h, λ)M ′

−n(−h,−λ)
)

+
k2
λ

h2ω2µ

[
λ2(ω2µε+ 4ω2µ2ξ2c − k2

λ) + ω2µεz(k2
λ − εω2µ)

]
×Nnt(h, λ)N ′−nt(−h,−λ) +

k2
λ

hω2µ

[
h(k2

λ − ω2µε)

− 2ω2µ2ξc(2hξc + gω)
]
[Nnt(h, λ)N ′−nz(−h,−λ)

+Nnz(h, λ)N ′−nt(−h,−λ)] +
k2
λ

εzω2µ

[
ε(k2
λ − ω2µξc)

+ ω2µ(g2 − 4εµξ2c )
]
Nnz(h, λ)N ′−nz(−h,−λ)

}
, (25)

where hj (j = 1, 2, 3, and 4) is found by solving the fourth-order
polynomial equation Γ = εz(h − h1)(h − h2)(h − h3)(h − h4) = 0.
The general solution of the equation can be obtained using the syntax,
Solve[p hˆ4 + q hˆ2 + s h + t == 0, h], in Mathematica package,
however, is too tedious to be shown here. An important point is that
Γ = 0 gives four sets of solutions corresponding to four different waves
of wave numbers hi (i = 1, 2, 3, and 4).

In view of (23), the first integration term in (25) is equal to

− 1
ω2µεz

ẑẑ δ(r− r′). (26)

which is the contribution from the non-solenoidal vector wave
functions. This term of the DGF expressions was never been obtained
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in the existing publications such as [32, 41–45] where the irrotational
part of the DGF were all missing.

The second integration term can be evaluated by making
use of the residue theorem in h-plane (appendix). This term
contributes from the solenoidal vector wave functions. After some
mathematical manipulations for simplicity, hence, we arrived at the
final representation of the dyadic Green’s function for a unbounded
gyroelectric chiral medium. Since the integration has already been
carried out, it is thus suitable for further direct analysis of wave
characteristics in a planar, multilayered structure. For z > z′, the
DGF is given by

G0(R,R′) = − 1
ω2µεz

ẑẑ δ(r− r′)

+
i

2π

∫ ∞
0
dλ

∞∑
n=−∞

1
λ(h1 − h2)

2∑
j=1

(−1)j+1

(hj − h3)(hj − h4)

×
{
Mn,λ(hj)P ′−n,−λ(−hj) +

kλj
εz
Qn,λ(hj)M

′
−n,−λ(−hj) +

k2
λj

h2
jω

2µεz

×Un,λ(hj)N ′−nt,−λ(−hj) +
k2
λj

ω2µεz
Vn,λ(hj)N ′−nz,−λ(−hj)

}
. (27)

For z < z′, only the portion of

1
λ(h1 − h2)

2∑
j=1

(−1)j+1

(hj − h3)(hj − h4)

is replaced by

1
λ(h3 − h4)

4∑
j=3

(−1)j+1

(h1 − hj)(h2 − hj)
.

The vector wave functions P ′−n,−λ(−hj), Qn,λ(hj), Un,λ(hj) and
Vn,λ(hj), as defined above, are given respectively by

P ′−n,−λ(−hj) = (h2
j +

ε

εz
λ2 − ε ω2µ)M ′

−n,−λ(−hj)

+
kλj
εz

[
g

hj
(εzω2µ− λ2) + 2εzωµξc

]
N ′−nt,−λ(−hj)

+
kλj
εz

(ghj + 2ε ωµξc)N ′−nz,−λ(−hj), (28a)
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Qn,λ(hj) =

[
g

hj
(εzω2µ− λ2) + 2εzωµξc

]
Nnt,λ(hj)

+(ghj + 2ε ωµξc)Nnz,λ(hj), (28b)

Un,λ(hj) =
[
(k2
λj − ε ω2µ)(εzω2µ− λ2) + 4λ2ω2µ2ξ2c

]
Nnt,λ(hj)

+hj
[
hj(k2

j−ε ω2µ)−2ω2µ2ξc(2hjξc+gω)
]
Nnz,λ(hj), (28c)

Vn,λ(hj) =

[
(k2
λj − ε ω2µ)− 2ω2µ2ξc

hj
(2hjξc + gω)

]
Nnt,λ(hj)

+
1
εz

[
ε(k2
λj − ε ω2µ) + ω2µ(g2 − 4εµξ2c )

]
Nnz,λ(hj). (28d)

So far, we have obtained a complete representation of the dyadic
Green’s function for a unbounded gyroelectric chiral medium. It is
observed that (1) the dyadic Green’s function contains a singularity
term which is contributed by the solenoidal vector wave function and
is reducible to those of anisotropic media and isotropic media, (2)
regardless of source and field positions, the Green’s function consists
of two different wave modes denoted respectively by two wave numbers,
and (3) there exist no pure TE or TM modes in the unbounded
gyroelectric chiral medium and the coupling between each other is
present.

It is claimed that the form of dyadic Green’s functions in terms
of vector wave eigenfunctions are obtained for the first time, and have
never been given elsewhere in the publications. Although the results
for the same problem were published in the aforementioned literature
[38], they have been proved in [40] to be incorrect. It is believed that
the current formulation gives the correct answer. After the integration
with respect to h, the current form is also found to be quite different
from the results given in [32, 41–45]. The current form is believed to
be more reasonable since firstly we have extracted the singular term
(of the representation of the dyadic Green’s functions) which does not
satisfy the Jordan lemma [1] and secondly we have considered all the
possible modes and possible couplings in the formulation.

3. GENERAL FORMULATION FOR PLANAR,
LAYERED GYROELECTRIC CHIRAL MEDIA

The motivation of this paper is not just restricted to the above
discussion. Furthermore, we would extend our theoretical analysis
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Figure 1. Geometry of a multilayered stratified gyroelectric chiral
medium.

to the multilayered planar structure where the number of multiple
layers is arbitrary, the location of either the source or the field is also
arbitrary, and each layer can be a gyroelectric chiral, an anisotropic
(ξc = 0), a chiral (g = 0 and ε = εz), or just simply an isotropic
medium (ξc = 0, g = 0, and ε = εz), as shown in Fig. 1.

To take the dielectric parameters into account, we consider the
permittivity tensor given by

εf =

 εf igf 0
−igf εf 0

0 0 εfz

 ,
and correspondingly the chiral parameter ξf for the layer f . Thus, the
relation governing the wavenumber and eigenvalues is now re-written
as

kfλ =
√
λ2 + (hf )2.

3.1. Scattering Dyadic Green’s Functions

Based on the principle of scattering superposition, we have

G
(fs)
e (r, r′) = G0(r, r′)δsf +G(fs)

s (r, r′), (29)
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where the representation of the scattered dyadic Green’s function is
given by

G
(fs)
s (r, r′) =

4∑
j=1

Gj. (30)

Considering the representations of each term, we realized that it is
better to combine two terms as follows:

G1 +G2 =
i

2π

∫ ∞
0
dλ

∞∑
n=−∞

1
λ(h1s − h2s)

×
2∑
j=1

1
(hjs − h3s)(hjs − h4s)

{
(1− δNf )Mn,λ(h

f
j )

×
[
(1− δ1s)AfsMjP ′−n,−λ(−hsj) + (1− δNs )BfsMj

× P ′−n,−λ(−hsj+2)
]
+ (1− δNf )

kλjs
εzs

Qn,λ(h
f
j )[

(1− δ1s)AfsQjM ′
−n,−λ(−hsj) + (1− δNs )BfsQj

×M ′
−n,−λ(−hsj+2)

]
+ (1− δNf )

k2
λjs

εzsω2µosh2
js

Un,λ(h
f
j )

×
[
(1− δ1s)AfsUjN ′−nt,−λ(−hsj) + (1− δNs )BfsUj

×N ′−nt,−λ(−hsj+2)
]
+ (1− δNf )

k2
λjs

εzsω2µos
Vn,λ(h

f
j )[

(1− δ1s)AfsV jN ′−nz,−λ(−hsj) + (1− δNs )BfsV j

× N ′−nz,−λ(−hsj+2)
]}
, (31)

and

G3 +G4 = − i

2π

∫ ∞
0
dλ

∞∑
n=−∞

1
λ(h3s − h4s)

×
4∑
j=3

1
(h1s − hjs)(h2s − hjs)

{
(1− δNf )Mn,λ(h

f
j )

×
[
(1− δ1s)AfsMjP ′−n,−λ(−hsj−2) + (1− δNs )BfsMj

× P ′−n,−λ(−hsj)
]
+ (1− δNf )

kλjs
εzs

Qn,λ(h
f
j )

×
[
(1− δ1s)AfsQjM ′

−n,−λ(−hsj−2) + (1− δNs )BfsQj
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×M ′
−n,−λ(−hsj)

]
+ (1− δNf )

k2
λjs

εzsω2µosh2
js

Un,λ(h
f
j )

×
[
(1− δ1s)AfsUjN ′−nt,−λ(−hsj−2) + (1− δNs )BfsUj

×N ′−nt,−λ(−hsj)
]
+ (1− δNf )

k2
λjs

εzsω2µos
Vn,λ(h

f
j )

×
[
(1− δ1s)AfsV jN ′−nz,−λ(−hsj−2) + (1− δNs )BfsV j

× N ′−nz,−λ(−hsj)
]}
. (32)

The combination of the two terms for the above two equations is due
to the fact that each term has a static contribution to the dyadic
Green’s function because of the integration associated with the pole
point λ = 0. It is also due to the fact that the two terms have the
same wave modes (please refer to the derived wave numbers in the
expressions). It is actually realized that the combination of the two
terms leads to a cancellation of the static waves. To avoid introducing
more intermediates, therefore, we did no write each termGj (j = 1, 2, 3
and 4) out separately.

It should be pointed out that the multiple reflection and
transmission effects have been included in the formulation of the
scattering dyadic Green’s functions. Also, the Sommerfeld radiation
condition has been taken into account in the construction of DGFs.
The contributions from various wave modes to the DGFs have been
considered as well.

4. DETERMINATION OF THE DGFS’ SCATTERING
COEFFICIENTS

To formulate the scattering coefficients of the DGFs, the boundary
conditions have to be utilized. From the field expression with Green’s
dyadic, the boundary conditions satisfied by the dyadic Greens’
function at the interface z = zj , (j = 1, 2, ..., N − 1) are shown as
follow:

ẑ×G(fs)
e (r, r′) = ẑ×G[(f+1)s]

e (r, r′), (33a)

ẑ×
[

1
µf

∇×G(fs)
e (r, r′)− ωξcfG(fs)

e (r, r′)

]

= ẑ×
[

1
µf+1

∇×G[(f+1)s]
e (r, r′)− ωξc(f+1)G

[(f+1)s]
e (r, r′)

]
. (33b)
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To simplify the derivation of the general solution of the coefficients,
we rewrite the boundary conditions (33a) and (33b) into the following
matrix form. Now, it is clear that the equations obtained here for
the layered gyroelectric chiral medium is different from those for both
the layered chiral media [46] and the layered isotropic media [11].
Similar to those for the anisotropic medium, the weighting factors of
the transverse and perpendicular components for the TM waves in the
layered gyroelectric chiral medium have to be considered here in the
formulation of the scattering coefficients of DGFs.

4.1. Recurrence Formulae Of DGFs’ Scattering Coefficients

By using the boundary conditions, a set of linear equations of the
coefficients which can be replaced by a series of compact matrices [14]
is given. The following compact recurrent equations:[
Flj′(f+1)

]
·
{[

Υlj′(f+1)s

]
+δsf+1

[
U(f+1)

]}
=

[
Flj′f

]
·
{[

Υlj′fs
]
+δsf [Df ]

}
,

(34)
where j′ = 1, 2 and l =M,Q,U and V . These matrices are given by

[FM1f ] =

 e
ih1f zf

(h1s−h2s)(h1s−h4s)
e
ih3f zf

(h3s−h4s)(h2s−h3s)
(h1f−ωµof ξcf )e

ih1f zf

µof (h1s−h2s)(h1s−h4s)
(h3f−ωµof ξcf )e

ih3f zf

µof (h3s−h4s)(h2s−h3s)

 , (35a)

[FQ1f ] =

 kλ1sh1f e
ih1f zf

kλ1f (h1s−h2s)(h1s−h4s)
kλ3sh3f e

ih3f zf

kλ3f (h3s−h4s)(h2s−h3s)

kλ1s

[
(wqt1−wqz1)h21f+wqz1k2λ1f−wqt1ωµof ξcfh1f

]
e
ih1f zf

µofkλ1f (h1s−h2s)(h1s−h4s)
kλ3s

[
(wqt3−wqz3)h23f+wqz3k2λ3f−wqt3ωµof ξcfh3f

]
e
ih3f zf

µofkλ3f (h3s−h4s)(h2s−h3s)


T

(35b)

[FU1f ] =

 k2λ1sh1f e
ih1f zf

h21skλ1f (h1s−h2s)(h1s−h4s)
k2λ3sh3f e

ih3f zf

h23skλ3f (h3s−h4s)(h2s−h3s)

k2λ1s

[
(wut1−wuz1)h21f+wuz1k2λ1f−wut1ωµof ξcfh1f

]
e
ih1f zf

µofh
2
1skλ1f (h1s−h2s)(h1s−h4s)

k2λ3s

[
(wut3−wuz3)h23f+wuz3k2λ3f−wut3ωµof ξcfh3f

]
e
ih3f zf

µofh
2
3f
kλ3f (h3s−h4s)(h2s−h3s)


T

(35c)
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[FV 1f ] =

 k2λ1sh1f e
ih1f zf

kλ1f (h1s−h2s)(h1s−h4s)
k2λ3sh3f e

ih3f zf

kλ3f (h3s−h4s)(h2s−h3s)

k2λ1s

[
(wvt1−wvz1)h21f+wvz1k2λ1f−wvt1ωµof ξcfh1f

]
e
ih1f zf

µofkλ1f (h1s−h2s)(h1s−h4s)
k2λ3s

[
(wvt3−wvz3)h23f+wvz3k2λ3f−wvt3ωµof ξcfh3f

]
e
ih3f zf

µofkλ3f (h3s−h4s)(h2s−h3s)


T

(35d)

where the superscript T denotes the transpose of the matrices. The
matrices

[
Flj′f

]
remains the same form for j′ = 2 or 4 except the

subscript 1 is changed to 2 and the subscript 3 is changed to 4.
Furthermore, the denominator which contains the term (h1s − h4s)
is changed to (h2s − h3s) and vice versa. The terms wltj and wlzj are
the weighting factors associated with the scattering coefficients Afslj
and Bfslj . They are expressed as

wqtj =
gs
hjs

(εzsω2µos − λ2) + 2εzsωµosξcs, (36a)

wqzj = gshjs + 2εsωµosξcs, (36b)

wutj = (k2
λjs − εsω2µos)(εzsω2µos − λ2) + 4λ2ω2µ2

osξ
2
cs, (36c)

wuzj = hjs
[
hjs(k2

λ − εsω2µos)− 2ω2µ2
osξcs(2hjsξcs + gsω)

]
, (36d)

wvtj = k2
λjs − εsω2µos −

2ω2µ2
osξcs

hjs
(2hjsξcs + gsω), (36e)

wvzj =
1
εzs

[
εs(k2

λjs − εsω2µos) + ω2µos(g2s − 4εsµosξ2cs)
]
. (36f)

The following matrices are also used in the formulation:

[
Υlj′fs

]
=

 Afslj′ Bfslj′

Afsl,j′+2 Bfsl,j′+2

 , (37a)

[Uf ] =
[

1 0
0 0

]
, (37b)

[Df ] =
[

0 0
0 1

]
. (37c)

Defining the following transmission T-matrix:

[
Tlj′f

]
=

[
Flj′(f+1)f

]−1
·
[
Flj′ff

]
, (38)
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where
[
Flj′(f+1)f

]−1
is the inverse matrix of

[
Flj′(f+1)f

]
. We rewrite

the linear equation into the following form:[
Υlj′(f+1)s

]
=

[
Tlj′f

]
·
{[

Υlj′fs
]
+ δsf [Df ]

}
− δsf+1

[
U(f+1)

]
. (39)

To shorten the expression, we also introduce:[
TKlj′

]
2×2

=
[
Tlj′,N−1

] [
Tlj′,N−2

]
· · ·

[
Tlj′,K+1

] [
Tlj′,K

]
=

[
TKlj′,11 TKlj′,12
TKlj′,21 TKlj′,22

]
. (40)

It should be noted that the coefficients matrices of the first and the
last layers have the following relations:

[
Υlj′1s

]
=

[
A1s
lj′ B1s

lj′

0 0

]
, (41a)

[
Υlj′Ns

]
=

[
0 0

ANsl,j′+2 BNsl,j′+2

]
. (41b)

4.2. Specific Applications: Three Cases

The above discussion is based on the general formulation of the
scattering coefficients of DGFs. Actually, it is realized from our current
exercise of symbolic computation of the dyadic Green’s functions for
layered media using Mathematica that (1) without the aforementioned
general formulation in the matrix form for the scattering coefficients,
the Mathematica does not give the direct and compact solution, (2)
the Mathematica can quite often run out of memory as the number of
layers becomes larger so that a large number of symbolic derivations
need to be involved, and (3) the direct implementation of the general
formulation does not give the desired solutions in terms of the compact
transmission matrices as expected for various source locations, even
the above general formulas are implemented. Therefore, to gain
insight into the specific mathematical expressions of the physical
quantities such as the transmission and reflections coefficient matrices,
the following three cases are specifically considered subsequently.

4.2.1. Source in the First Layer

When the current source is located in the first layer (i.e., s = 1), the
first term containing (1−δ1s) in (31) vanishes. These will further reduce
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the coefficient matrices in (37a) and (4.1) to:[
Υlj′,11

]
=

[
0 B11

lj′

0 0

]
, (42a)

[
Υlj′,m1

]
=

[
0 Bm1

lj′

0 Bm1
l,j′+2

]
, (42b)

[
Υlj′,N1

]
=

[
0 0
0 BN1

l,j′+2

]
, (42c)

where m = 2, 3, · · · , N − 1. It can be seen that only four coefficients
for the first layer and the last layer, but 8 coefficients for each of
the remaining layers, need to be solved for. By following (39), the
recurrence relations in the f th layer become:[

Υlj′,f1
]
=

[
Tlj′,f−1

]
· · ·

[
Tlj′,1

] {[
Υlj′,11

]
+ [D1]

}
. (43)

With f = N in (43), a matrix equation satisfied by the coefficient
matrices in (42) can be obtained. The coefficients for the first layer
where the source is (i.e. s = 1) is given by:

B11
lj′ = −

T
(1)
lj′,12

T
(1)
lj′,11

. (44)

The coefficients for the last layer can be derived in terms of the
coefficients for the first layer given by:

BN1
l,j′+2 = T (1)

lj′,21B
11
lj′ + T (1)

lj′,22. (45)

The coefficients for the intermediate layers can be then obtained by
substituting the coefficients for the first layer in (44) to (43). Thus, all
the coefficients can be obtained by these procedures.

4.2.2. Source in the Intermediate Layers

When the current source is located in an intermediate layer, (i.e.,
s �= 1, N), only the terms containing (1 − δ1f ) for the first layer and
(1− δNf ) for the last layer vanishes in (31). We thus have:

[
Υlj′,1s

]
=

[
A1s
lj′ B1s

lj′

0 0

]
, (46a)

[
Υlj′,ms

]
=

[
Amslj′ Bmslj′
Amsl,j′+2 Bmsl,j′+2

]
, (46b)

[
Υlj′,Ns

]
=

[
0 0

ANsl,j′+2 BNsl,j′+2

]
. (46c)
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From (39), the recurrence equation becomes:[
Υlj′,fs

]
=

[
Tlj′,f−1

]
· · ·

[
Tlj′,s

]
·
{[
Tlj′,s−1

]
· · ·

[
Tlj′,1

] [
Υlj′,1s

]
+u(f − s− 1) [Ds]− u(f − s) [Us]} , (47)

where u(x− x0) is the unit step function. For f = N , the coefficients
for the first layer are given by:

A1s
lj′ =

T
(s)
lj′,11

T
(1)
lj′,11

, (48a)

B1s
lj′ = −

T
(s)
lj′,12

T
(1)
lj′,11

. (48b)

For the last layer,

ANsl,j′+2 = T
(1)
lj′,21A

1s
lj′ − T

(s)
lj′,21, (49a)

BNsl,j′+2 = T
(1)
lj′,21B

(s)
lj′ + T (s)

lj′,22. (49b)

Substituting (48) into (47), the rest of the coefficients can be obtained
for the dyadic Green’s function.

4.2.3. Source in the Last Layer

For the source to be located in the last layer (i.e., S = N), the
coefficients are: [

Υlj′,1N
]

=
[
A1N
lj′ 0
0 0

]
, (50a)

[
Υlj′,mN

]
=

[
AmNlj′ 0
AmNl,j′+2 0

]
, (50b)

[
Υlj′,NN

]
=

[
0 0

ANNl,j′+2 0

]
. (50c)

From the recurrence equation (39), similarly we have,[
Υlj′,fN

]
=

[
Tlj′,f−1

]
· · ·

[
Tlj′,1

] [
Υlj′,1N

]
− u(f −N) [UN ] . (51)

By letting f = N , the coefficient for the first region is

A1N
lj′ =

1

T
(1)
lj′,11

. (52)
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And for the last layer, it is found that

ANNl,j′+2 = T (1)
lj′,21A

1N
lj′ . (53)

Similarly, we can obtain the rest of the coefficients by substituting (53)
into (50) and (51).

We have now obtained a complete set of the dyadic Green’s
function in terms of the cylindrical vector wave functions for a
gyroelectric chiral medium and their scattering coefficients in terms
of compact matrices. Reduction can be made for formulating the
dyadic Green’s function in a less complex medium of specific planar
geometries, e.g., an anisotropic medium where ξc = 0, a chiral medium
where g = 0 and εz = ε, and an isotropic medium where ξc = 0, g = 0,
and εz = ε.

5. CONCLUSION

In the present work, a correct form of dyadic Green’s function in a
unbounded gyroelectric chiral medium has been given in terms of the
eigenfunction expansion of planar vector wave functions. The new
form, which is not available elsewhere in the literature to the authors’
knowledge, corrects the wrong ideas implemented inside the previous
publication [38] which obviously employed an incorrect orthogonality
and, therefore, ignored the coupling of the TE and TM modes as well as
the coupling of solenoidal and non-solenoidal vector wave functions. As
compared with those obtained using the Fourier transform technique
for the same problem developed by Ali and Mahmoud [19], Lee and
Kong [20–22], Krowne [23, 24], Monzon [25], and Habashy et al.
[27], the dyadic Greens’ function representation using the current
expansion technique is easier and more direct to use for a source of
isotropic independent azimuth direction and for obtaining far-zone
field patterns. It is worth pointing out that the current form of
dyadic Green’s function for the unbounded gyroelectric chiral medium
includes the irrotational dyadic which is contributed by the non-
solenoidal vector wave functions, but were all missing in [32, 41–45].
This irrotational part has to be extracted out from the dyadic Green’s
function expression because the integrand function involved does not
satisfy the Jordan lemma.

Moreover, the current work further develops a generalized dyadic
Green’s functions for a multilayered stratified gyroelectric chiral
medium. The principle of scattering superposition is also utilized
here for simplicity of the formulation. The formulation is carefully
carried out by (1) decomposing the two cylindrical vector wave
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functions, namely Nn(h, λ) and Ln,λ(h), into the transverse and
perpendicular directions, respectively; and (2) separating various
modes corresponding to different wave numbers h1, h2, h3, and h4.
The full eigenfunction expansion of the dyadic Green’s functions in
a multilayered stratified gyroelectric chiral medium is then proposed
according to the multiple transmissions and reflections associated with
these stratified interfaces. Applying the boundary conditions at each
interface, the scattering coefficients of the dyadic Green’s functions
are obtained and represented in the form of compact recurrence
matrices. As symbolic manipulations using Mathematica package can
fail (basically run out of memory) due to the large number of layers
involved, three specific cases are considered in the formulation of the
scattering coefficients of DGFs, i.e., the source excitation located in
the first, the intermediate and the last layer respectively.

As expected and mentioned before, the general representation of
the dyadic Green’s functions in the gyroelectric chiral medium can be
reduced directly to those in a less complex medium of specific planar
geometries, e.g., an anisotropic medium where ξc = 0, a chiral medium
where g = 0 and εz = ε, and an isotropic medium where ξc = 0, g = 0,
and εz = ε.
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APPENDIX A. INTEGRATION OF H

By performing the dh integral first,

I1 =
∫ ∞
−∞

dh
f(h)eih(z−z

′)

(h− h1)(h− h2)(h− h3)(h− h4)
. (A1)

At this point, the integral in (A1) is undefined because of the existence
of poles at h = h1, h2, h3, and h4. By introducing some loss, the
integral is then well-defined. Consequently, if z > z′ and f(h) → 0
when h → ∞, the contour of the integration can be deformed from
the real axis to the upper-half plane, thereby picking up a residue
contribution of the poles located at h = h1, and h2.

Note that the integral on the deformed path (Figure A1) vanishes
by virtue of Jordan’s lemma. Therefore, by residue theorem calculus,
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Im[h]

Deformed
Integration Path

Re[h]

Pole

Pole

Original
Integration Path

h1, h2

h3, h4

Figure A1. The original path of integration and the deformed path
of integration on the complex h plane.

(A1) becomes:

I1 = 2πi
2∑
j=1

(−1)j+1 f(hj)
(h1 − h2)(hj − h3)(hj−h4)

eihj(z−z
′), z > z′ (A2)

where h2
j = k2

λj − λ2. By the same token, a similar operation can be
performed when z < z′. Therefore, (A1) is then given by

I1 = 2πi
4∑
j=3

(−1)j+1 f(hj)
(h3−h4)(h1−hj)(h2−hj)

e−ihj(z−z
′), z < z′ (A3)
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