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Abstract—In this paper, radiation patterns of a thin circular
conducting loop embedded in a two-layered spherical chiral medium
but illuminated by a plane wave are obtained. The method of moments
is employed in this work to formulate the current distribution along the
circular loop enclosed by the spherical chiral radome shell. The dyadic
Green’s functions defining electromagnetic fields due to sources in both
the outer and inner regions are applied. In the Galerkin’s procedure
for the method of moments, basis functions used in the work are sine
and cosine functions which form a Fourier series. The formulation
itself here is quite compact, straightforward, and easy-to-use. Effects
of various geometrical and dielectric parameters of the chiral radome
shell are discussed. As expected, the role of the spherical chiral radome
is again realized as a polarization transformer. Associated with these
parameters, waves and fields in such an electromagnetic system are
characterized. It should pointed that there existed some mistakes in
the literature which did not use the correct Green’s functions in the
method of moments procedure. This paper aims at correcting the
mistake and establish a correct concept in the method of moments
analysis.
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1. INTRODUCTION

Chirality [1, 2] which means handedness is a property that is often
encountered in the organic and biological nature. Its behavior and
properties have been the researchers’ subject of interest for some
time. The considerable attention it receives is due to its versatility
in microwave and millimeter wave applications such as waveguides,
antennas, radomes, shielding, scatterers and so on and so forth.
Electromagnetism in chiral and bi-isotropic media [3, 4] differs from
the behavior of simpler isotropic materials in several ways. One of
the aspects characterizing chiral media is the phenomenon of optical
activity [5, 6].

A chiral medium is characterized by its intrinsic handedness. Its
cross-coupling characteristics also makes it an interesting subject and
one of the objective of this paper is to investigate how the far field
pattern of the circular conducting loop [7] is affected in its presence.
The constitutive relations of chiral media can be described by

D = εE + jξH, (1a)

H = iξE +
B

µ
(1b)

where ε, µ and ξ are respectively, the permittivity, permeability and
chirality admittance of such media.
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Figure 1. Geometry of a thin circular conducting loop in a two layered
medium whose intermediate shell is a chiral radome.

The approach taken to find the field pattern is to obtain the
current distribution flowing on it. However in the formulations of
current distributions, papers [8–10] used the incident wave instead of
its transmitted field. This paper attempts to investigate the effects on
current distribution if the incident wave is being employed. The model
used here is an electrically large conducting loop [11–18] placed in the
inner most region of a two layered spherical chiral media.

2. GENERAL FORMULATIONS FOR
ELECTROMAGNETIC RADIATED FIELDS

Consider the geometry in Fig. 1 where the origin of the spherical
coordinates is located at the center of a two layered spherical medium
with the conducting loop lying in the inner most region. The
intermediate shell is considered to be a chiral radome.

The volumetric electric current of the loop is assumed to be flowing
on the circumference of the wire uniformly, therefore for a delta point
on its circumference, it can be expressed as

δJ1(r′) =
δI(φ′)δ(r′ − ri)δ(θ′ − θi)

2πr2i sin θi
φ̂ (2)
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where I(φ′) identifies the current distribution that is an arbitrary
function of φ′ given by

δI(φ′) =
I(φ′)δs
2πb1

=
I(φ′)
2πb1

b1∂ψ =
I(φ′)
2π

∂ψ, (3)

with δs = b1∂ψ, b1 representing the cross section radius of wire, and
a1 being the radius of the loop antenna. In the method of moments,
we expand the current distribution into

I(φ′) =
∞∑

�=0

[
α� cos(�φ′) + iβ� sin(�φ′)

]
,

where α� and β� denote the unknown expansion current coefficients to
be determined later on from the Galerkin’s procedure.

The electromagnetic waves in the first/inner region (homogeneous
medium) due to current distribution in the third/outer region (free
space) are given [19]. These wave functions are

V e
omn(k) =

M e
omn(k) + N e

omn(k)
√

2

=
1√
2

[
∓ m

sin θ
Pm

n (cos θ) sin
cos mφ

(
zn(kr)θ̂ +

∂[rzn(kr)]
kr∂r

φ̂

)
+
dPm

n (cos θ)
dθ

cos
sin mφφ̂

(
∂[rzn(kr)]
kr∂r

θ̂ − zn(kr)φ̂
)

+
n(n+ 1)
kr

zn(kr)Pm
n (cos θ) cos

sin mφr̂

]
, (4a)

W e
omn(k) =

M e
omn(k) − N e

omn(k)
√

2

=
1√
2

[
± m

sin θ
Pm

n (cos θ) sin
cos mφ

(
zn(kr)θ̂ − ∂[rzn(kr)]

kr∂r
φ̂

)
− dPm

n (cos θ)
dθ

cos
sin mφφ̂

(
∂[rzn(kr)]
kr∂r

θ̂ + zn(kr)φ̂
)

− n(n+ 1)
kr

zn(kr)Pm
n (cos θ) cos

sin mφr̂

]
, (4b)

where zn(kr) denotes the spherical Bessel functions of the order n
and Pm

n (cos θ) identifies the associated Legendre functions of the first
kind with the order (n,m). In the region where r can be zero, we
replace zn(kr) by jn(kr). And in the region where r can be infinity,
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we choose h(1)
n (kr) instead of zn(kr). And in this case, there is usually

a superscript (1) for this notation.
With the vector wave functions, the unbounded dyadic Green’s

function defining the fields of direct waves in region 1 (the inner region)
due to the source excitation in region 1, G

11
e0(r, r′), can be found. It

is given for r >< r′ as follows:

G
11
e0(r, r′) = − r̂r̂

k2
1

δ(r−r′)+
i

2π(k1+ +k1−)

∞∑
n=1

n∑
m=0

Dmn

·


k2

1+
V

(1)
e
omn

(k1+)V ′
e
omn

(k1+)+k2
1−W

(1)
e
omn

(k1−)W ′
e
omn

(k1−);

k2
1+

V e
omn(k1+)V ′(1)

e
omn

(k1+)+k2
1−W e

omn(k1−)W ′(1)
e
omn

(k1−);

(5)

where k1, k1+ and k1− are defined in Appendix, δmn (= 1 for m = n;
and 0 form �= n) denotes the Kronecker symbol, and the normalization
coefficient Dmm is given by

Dmn = (2 − δm0)
(2n+ 1)
n(n+ 1)

(n−m)!
(n+m)!

. (6)

In a similar fashion, the unbounded dyadic Green’s function defining
the fields of direct waves in region 3 (the outer region) due to the source
excitation in region 3, G

33
e0(r, r′), is given for r >< r′ as follows:

G
33
e0(r, r′) = − r̂r̂

k2
3

δ(r−r′)+
i

2π(k3+ +k3−)

∞∑
n=1

n∑
m=0

Dmn

·


k2

3+
V

(1)
e
omn

(k3+)V ′
e
omn

(k3+)+k2
3−W

(1)
e
omn

(k3−)W ′
e
omn

(k3−);

k2
3+

V e
omn(k3+)V ′(1)

e
omn

(k3+)+k2
3−W e

omn(k3−)W ′(1)
e
omn

(k3−);

(7)

where k3, k3+ and k3− are defined in Appendix. It should be pointed
out that since both region 1 and region 3 are filled with air, so, we
have

k1 = k1+ = k1− ; k3 = k3+ = k3− = k0. (8)

As a result, the unbounded dyadic Green’s functions in regions 1 and
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3 (where s = 1, 3) are thus reduced for r >< r′ to

G
ss
e0(r, r′) = − r̂r̂

k2
s

δ(r−r′)+
iks

4π

∞∑
n=1

n∑
m=0

Dmn

·


V

(1)
e
omn

(ks)V ′
e
omn

(ks)+W
(1)
e
omn

(ks)W ′
e
omn

(ks);

V e
omn(ks)V

′(1)
e
omn

(ks)+W e
omn(ks)W

′(1)
e
omn

(ks).
(9)

2.1. DGFs for Source in Region 1

When an electric source is located in region 1, dyadic Green’s functions
for a three-layered spherical chiral medium can be obtained using the
method of scattering superposition and may be written as follows:

G
11
e (r, r′) = G

11
e0(r, r′) + G

11
es(r, r′), (10a)

G
21
e (r, r′) = G

21
es(r, r′), (10b)

G
31
e (r, r′) = G

31
es(r, r′). (10c)

Apparently, the direct wave represented by G
11
e0(r, r′) exists only in

region 1 while the term G
11
es(r, r′) in region 1 denotes the scattered

waves. The other two terms, G
21
es(r, r′) in region 2 and G

31
es(r, r′) in

region 3, represent transmitted wave contributions, respectively. In
the formulation of the dyadic Green’s functions, the multiple reflection
and transmission effects have already been included in the scattering
coefficients. They can be obtained from the general case found in [20]
and are given as follows:

for region 1,

G
11
es(r, r′) =

i

4πk1

∞∑
n=1

n∑
m=0

Dmn

·
{[
B1

1V e
omn(k1)+B1

2W e
omn(k1)

]
V

′(1)
e
omn

(k1)

+
[
B1

3V e
omn(k1)+B1

4W e
omn(k1)

]
W

′(1)
e
omn

(k1)
}

; (11a)
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for region 2,

G
21
es(r, r′) =

i

4πk1

∞∑
n=1

n∑
m=0

Dmn

·
{[
B2

1V e
omn(k2+)+B2

2W e
omn(k2−)

]
V

′(1)
e
omn

(k1)

+
[
B2

3V e
omn(k2+)+B2

4W e
omn(k2−)

]
W

′(1)
e
omn

(k1)

+
[
B2

5V
(1)
e
omn

(k2+)+B2
6W

(1)
e
omn

(k2−)
]
V

′(1)
e
omn

(k1)

+
[
B2

7V
(1)
e
omn

(k2+)+B2
8W

(1)
e
omn

(k2−)
]
W

′(1)
e
omn

(k1)
}

; (11b)

and for region 3,

G
31
es(r, r′) =

i

4πk1

∞∑
n=1

n∑
m=0

Dmn

·
{[
B3

1V
(1)
e
omn

(k0)+B3
2W

(1)
e
omn

(k0)
]
V

′(1)
e
omn

(k1)

+
[
B3

3V
(1)
e
omn

(k0)+B3
4W

(1)
e
omn

(k0)
]
W

′(1)
e
omn

(k1)
}
. (11c)

2.2. DGFs for Source in Region 3

The above-given formulae of dyadic Green’s functions are used to
calculate the transmitted fields in region 1 due to the incident plane
wave in region 3. Again using the scattering superposition method,
we can obtain the total dyadic Green’s functions in regions 1 to 3 as
follows:

G
13
e (r, r′) = G

13
es(r, r′), (12a)

G
23
e (r, r′) = G

23
es(r, r′), (12b)

G
33
e (r, r′) = G

33
e0(r, r′) + G

33
es(r, r′). (12c)

Obviously, the direct wave represented by G
33
e0(r, r′) exists only in

region 3 where both source and field points are located. Certainly, there
are reflected or scattered waves as well that are denoted by G

33
es(r, r′).

Out of region 3, there are only transmitted waves described by
G

13
es(r, r′) and G

23
es(r, r′). These scattering dyadic Green’s functions

are given by:
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for region 1,

G
13
es(r, r′) =

i

4πk0

∞∑
n=1

n∑
m=0

Dmn

·
{[
A1

1V e
omn(k1)+A1

2W e
omn(k1)

]
V

′(1)
e
omn

(k0)

+
[
A1

3V e
omn(k1)+A1

4W e
omn(k1)

]
W

′(1)
e
omn

(k0)
}

; (13)

for region 2,

G
23
es(r, r′) =

i

4πk0

∞∑
n=1

n∑
m=0

Dmn

·
{[
A2

1V e
omn(k2+)+A2

2W e
omn(k2−)

]
V

′(1)
e
omn

(k0)

+
[
A2

3V e
omn(k2+)+A2

4W e
omn(k2−)

]
W

′(1)
e
omn

(k0)

+
[
A2

5V
(1)
e
omn

(k2+)+A2
6W

(1)
e
omn

(k2−)
]
W

′(1)
e
omn

(k0)

+
[
A2

7V
(1)
e
omn

(k2+)+A2
8W

(1)
e
omn

(k2−)
]
W

′(1)
e
omn

(k0)
}

; (14)

and for region 3,

G
33
es(r, r′) =

i

4πk0

∞∑
n=1

n∑
m=0

Dmn

·
{[
A3

1V
(1)
e
omn

(k0)+A3
2W

(1)
e
omn

(k0)
]
V

′(1)
e
omn

(k0)

+
[
A3

3V
(1)
e
omn

(k0)+A3
4W

(1)
e
omn

(k0)
]
W

′(1)
e
omn

(k0)
}

; (15)

where the unknown coefficients Ai
j (where i = 1, 2, 3 and j = 1, 2, · · ·,

8) can be solved for by manipulating matrices in Appendix. These
matrix equations are obtained by applying the boundary conditions
that the total tangential components of E and H must be continuous
on loop’s conducting surface.

3. DETERMINATION OF UNKNOWN CURRENT
COEFFICIENTS

Now we determine unknown expansion coefficients of the current
distribution. Before we set up the equations to be solved, we need
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to analyze the total contributions of the sources to the field points.
The total electric fields at an arbitrary point are given, in general, by
the following relation:

Etotal = Erad +
{

Etrans in region 1 or 2,
Eref + Einc in region 3.

(16)

Obviously, the radiated field in various regions, Erad, are due to the
re-radiation of the conducting loop after excited by the plane wave. In
the outer region 3, the total field consists of the incident plane wave,
the reflected wave of the incident wave by the spherical chiral shell, and
the radiated field by the loop. In region 1 or 2, the total field consists of
the transmitted wave of the incident wave through the spherical chiral
shell and the radiated field by the loop.

It is emphasized that in some of the previous research work, an
incorrect form of the total field was sometimes used to find the current
distribution in the Galerkin’s procedure of method of moments. The
total field was sometimes considered to consist of the incident field
and the radiated field in the analysis. That approach is theoretically
shown here to be incorrect although the boundary conditions were still
matched later on. In this work, it is shown that the total field for
matching boundary conditions on the loop’s conducting surface is a
superposition of the transmitted field and the radiated field.

By assuming the wire to be thin, unknown current coefficients, α�

and β�, can be solved for by matching boundary condition at its center.
Therefore, Eq. (16) becomes

Etrans
φ = −Erad

φ . (17)

To find the transmitted field Etrans, the incident field Einc obtained
in [21] is expressed in an expansion form of

Einc =
∞∑

n=1

n∑
m=0

[
P i

o
emn

M o
emn(k0)+Qi

e
omn

N e
omn(k0)

]
, (18)

where

P i
e
omn

= inDmn


mPm

n (cosα)
sinα

EI

−∂P
m
n (cosα)
∂α

EII

 , (19a)

Qi
e
omn

= inDmn


∂Pm

n (cosα)
∂α

EI

−mP
m
n (cosα)
sinα

EII

 , (19b)
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with EI and EII representing, respectively, the amplitudes of the
incident electric fields of parallel and perpendicular polarizations, and
α denoting the angle of incidence with respect to the ẑ-axis.

To find the transmitted field Etrans, there are two methodologies:
one using the modal matching technique to obtain the transmitted field
and the other utilizing the dyadic Green’s function G

13
es . The former is

direct while the latter is indirect. However, the latter is simpler than
the former if the dyadic Green’s functions for the medium and the
geometry have already been obtained. And in fact, the dyadic Green’s
functions for the geometry have been obtained previously, therefore
we adopt the latter approach. In this approach, it is assumed that
an electric point source J∞(r′) is located at infinity and this source
actually generates the plane wave. An alternative form of Einc is shown
below where J(r′) is a point source placed at infinity:

Einc = iωµ0

∫∫∫
V

Ge0(r, r′) · J∞(r′)dV ′

= − ωµ0k0

4π

∞∑
n=1

n∑
m=0

Dmn

[
M e

omn(k0)

·
∫∫∫

V
M

′(1)
e
omn

(k0) · J∞(r′)dv′+N e
omn(k0)

·
∫∫∫

V
N

′(1)
e
omn

(k0) · J∞(r′)dv′
]
. (20)

The dyadic Green’s function here is actually the free-space unbounded
medium function. The incident wave can be considered as the radiated
wave due to this electric source at infinity, in the absence of the chiral
medium boundaries.

Obviously, (18) and (20) represent the same field, i.e., the incident
field. By equating (18) to (20), the following relationships can be
obtained:

P i
e
omn

= − ωµ0k0Dmn

4π

∫∫∫
V

M
′(1)
e
omn

(k0) · J∞(r′)dV ′, (21a)

Qi
e
omn

= − ωµ0k0Dmn

4π

∫∫∫
V

N
′(1)
e
omn

(k0) · J∞(r′)dV ′. (21b)

These relations can thus be employed to shorten our procedure of
determining the transmitted fields inside the empty region 1 enclosed
by the chiral shell. By employing the coefficients in (21), Etrans can
be found as follows:

Etrans = iωµ0

∫∫∫
V

G
13
e (r, r′) · J∞(r′)dV ′
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= − ωµ1

4πk3
1

∞∑
n=1

n∑
m=0

Dmn

{[(
A1

1 +A1
2

)
P i

e
omn

+
(
A1

3 +A1
4

)
Qi

e
omn

]
M e

omn(k1) +
[(
A1

1 −A1
2

)
P i

e
omn

+
(
A1

3 −A1
4

)
Qi

e
omn

]
N e

omn(k1)
}
, (22)

where the coefficients, A1
1 to A1

4, are obtainable from matrix
manipulations in Appendix.

Physically, Erad in (17) arises from superposition of δErad which
is due to the contribution of line filament currents flowing along the
circumference of the wire. Theoretically, δErad can be expressed as

δErad = iωµ0

∫∫∫
V

G
11
e (r, r′) · J1(r′)dV ′

= iωµ0

∫∫∫
V

{
G

11
e0(r, r′) + G

11
es(r, r′)

}
· J1(r′)dV ′

= δErad
0i + δErad

0ii + δErad
s , (23)

where δErad
0i accounts for the contribution due to G

11
e0(r, r′) for r < r′,

while δErad
0ii due to G

11
e0(r, r′) for r > r′ and δErad

s due to G
11
es(r, r′)

for both r > r′ and r < r′. As Eq. (23) is a function of ψ, the total
radiated field Erad can thus be found by integrating the elementary
contribution with respect to ψ, that is,

Erad = iωµ0

∫∫∫
V

[
Ge0(r, r′) + G

11
es(r, r′)

]
· J1(r′)dV ′dψ. (24)

Using the Galerkin’s method together with (17), (20), (22), and (23),
the unknown coefficients, α� and β�, are found.

4. ELECTROMAGNETIC FIELDS IN THE FAR ZONES

The electric far-zone field can be obtained using the dyadic Green’s
function as expressed in (11c). For far field, the following
approximation on J(r′) can be made:

J(r′) =
δI(φ′)δ(r′ − ri)δ(θ′ − θi)

2πr2i sin θi
φ̂

≈ δI(φ′)δ(r′ − a1)δ(θ′ − π/2)
2πa2

1

φ̂, (25)



152 Li and Zhang

where a1 is the radius of the loop antenna. The radiated field, Erad,
is therefore given by

Erad = iωµ0

∫∫∫
V

G
31
e (r, r′) · φ̂dψ

2π
I(φ′)δ(r′ − a1)δ(θ′ − π/2)

2πa2
1

dV ′ (26)

where
dV ′ = r2i sin θidridθidφ. (27)

5. NUMERICAL RESULTS

After we establish the theory shown as above, numerical computations
are made to gain insight into physical significance of the problem.
Discussion is divided into two parts, one on the correct application
of moment method and the other one on effects of chiral parameter.
Two quantities are actually considered in the numerical computations,
namely, the current distribution on the circular conducting loop and
the radiation patterns of the loop.

5.1. Use of Incident Field

As mentioned earlier, the total field used in the method of moments
procedure is assumed in some of the existing work to be the
superposition of the incident field (from infinity) and the radiated field
(from the conducting loop). It is shown in the present work that the
total field should be the sum of the transmitted field (from infinity
to the region where the loop is located) and the radiated field (from
the loop). People may argue about that the solution generated in
the scattering system should be the same according to the uniqueness
theorem regardless of if the incident wave or its generated transmitted
wave is used. Subsequently, it is shown that the two sets of the results
are not the same and so the use of the direct incident wave is incorrect.

Figs. 2–4 show the variations to current distributions when Etrans

and Einc are used. The parameters used here to obtain the results
are as follows: µ2 = µ0, µ1 = 1.1µ0, ε1 = 2.1ε0, ε2 = 2.5ε0,
ξ2 = ξ = 2 × 10−3, f = 10 GHz, EI = 1, EII = 1 and α = π

4 .
The radius of the inner most sphere, a, is λ while the radius of the
outer sphere, b, has a value of 1.5λ. The relationship between the
loop and wire cross section radii is 2 ln(2πa/b) = 10. Convergence is
checked and the infinity sign in (24) is replaced by 300 which varies
with dimension of the scattering system and may be reduced if the
chiral shell is electrically smaller.

It is seen from Figs. 2–4 that when the loop dimension is small, the
current flowing along the conducting loop does not vary so dramatically
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Figure 2. Current distributions for k1+a1 = k1−a1 = k0a1 = 1. Solid
and dash curves represent the results from utilizations of Etrans and
Einc, respectively.

(as in Fig. 2). However, the current becomes dramatically oscillating
when the loop dimension is large (as in Fig. 4). So more cosine
terms are needed to model the current distributions when the loop
size increases.

Also, it is seen from Figs. 2–4 that the use of Etrans and Einc in the
method of moments procedure gives quite different results of current
distributions. The real parts of the current are always large regardless
of the loop dimension while the imaginary part differs considerably as
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Figure 3. Current distributions for k1+a1 = k1−a1 = k0a1 = 3. Solid
and dash curves represent the results from utilizations of Etrans and
Einc, respectively.

the size is small and becomes closer as the size is large. Therefore, a
proper fields should be used in the analysis. This is very important
especially when you need to calculate the input impedance which
requires the information of the near-field and current distribution.

For some problems, even the current distribution or input
impedance of the system is different but the far-zone field does not
vary much, when different methods are employed. For the current
problem here, it is found that field patterns due to the above current
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Figure 4. Current distributions for k1+a1 = k1−a1 = k0a1 = 5. Solid
and dash curves represent the results from utilizations of Etrans and
Einc, respectively.

distributions vary a lot when the expressions Etrans and Einc in the
method of moments procedure are used, shown in Figs. 5–7.

Three planes here are considered, namely, x-z plane, y-z plane
and x-y plane. It is seen from the comparison among these figures that
more changes are observed in the y-z plane when the loop dimension is
small and changes become dramatical in all the planes when the loop
dimension is large.
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Figure 5. Field patterns for k0a1 = 1. Solid and dash curves represent
the results from utilizations of Etrans and Einc, respectively.
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Figure 6. Field patterns for k0a1 = 3. Solid and dash curves represent
the results from utilizations of Etrans and Einc, respectively.
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Figure 7. Field patterns for k0a1 = 5. Solid and dash curves represent
the results from utilizations of Etrans and Einc, respectively.

5.2. Effects of Chiral Parameters

In order to investigate effects of ξ on the current distributions and their
resultant field patterns, we varied the value of chiral parameter ξ and
assumed the inner region to be free space. The dielectric parameters
used are as follows: µ1 = µ0, ε1 = ε0, f = 10 GHz, EI = 1, EII = 1
and α = π

4 with ξ (actually ξ2) as the variable. Other dielectric and
geometrical parameters are the same as those in Figs. 2–4. Fig. 8 plots
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Figure 8. Current distributions against ξ.

the real and imaginary parts of the current distributions against ξ as
the varying parameter, demonstrating the diverse property of chiral
material.

The real and imaginary parts of current distributions do not vary
proportionally with changes in the parameter, ξ. It is known from
[14, 7] that as the loop size increases, more terms of the cosine and
sine series are needed so as to achieve the accuracy and/or convergence.
For the case when the conducting loop is placed in a one-layered chiral
medium, Fig. 8 shows that the chiral parameter can, to a certain extent,
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Figure 9. Field patterns for ξ = 10−3 and k0a1 = 3.
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Figure 10. Field patterns for ξ = 3 × 10−3 and k0a1 = 3.
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Figure 11. Field patterns for ξ = 5 × 10−3 and k0a1 = 3.

affect the number of terms needed to model the current distributions.
The fact that chiral media has provided us with an additional freedom
to vary the electromagnetic fields is indisputable.

The field patterns for various value of ξ are shown subsequently in
Figs. 9–11. It is shown that the field patterns change dramatically with
the chiral parameter ξ. This provides another way of achieving desired
antenna patterns in the antenna designs and antenna applications.
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6. CONCLUSION

This paper presents an approach of analyzing far-field radiation
patterns of a conducting loop embedded in chiral media that is
illuminated by a plane wave. The dyadic Green’s functions for
the layered chiral media and the Galerkin’s procedure of method of
moments are both employed in the characterization. In the Galerkin’s
procedure, the basis functions used are the Fourier series. The analysis
illustrates the cross-polarization properties of chiral materials. For a
conducting loop radiating in free space, the number of cosine and sine
functions needed for the current distributions are determined by the
loop size. For the same loop embedded in chiral media, however, the
number of terms required can be controlled by both the loop dimension
and the chiral parameter ξ. So, the convergence number may not
very large provided that an appropriate chiral parameter is chosen.
Another point made in this work is that for correctly characterizing
an antenna embedded in a (chiral or achrial) material, the excitation
field should be the transmitted wave due to the multiple interactions
of the layered structure instead of the incident field itself at infinity. It
is demonstrated in this paper that the misuse of an incident wave at
infinity in the media for the transmitted wave can result in a large error
in the antenna current distribution (or its associated input impedance)
as well as in the far-field patterns. Finally, it is realized in the paper
that the use of chiral material for the radiating system provides another
way of achieving desired antenna patterns in the antenna designs and
antenna applications.
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APPENDIX A. DETERMINATION OF PARAMETERS
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