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Abstract—In this paper, a spatial-domain Galerkin’s procedure in
Method of Moments is applied to analyse a cylindrical-rectangular
chirostrop antenna. It is assumed that a single-layer chiral substrate is
wrap-fabricated around a conducting core-cylinder and that a perfectly
conducting and electrically thin rectangular-cylindrical microstrip
patch antenna is mounted on the surface of the chiral substrate.
By imposing the boundary conditions on the multiple interfaces and
applying the scattering superposition method, a complete expression
of dyadic Green’s functions (DGFs) has been obtained and the current
distribution over the cylindrical rectangular chirostrip antenna has
been determined. Various radiation patterns due to such a microstrip
antenna in the presence of a chiral substrate are obtained and compared
with those in the presence of an achiral substrate, so as to gain physical
insight into effects of the chirostrip.
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1. INTRODUCTION

The analysis of printed microstrip antenna has attracted considerable
interests of many scientists and engineers in the last several decades,
due to its low cost, good reliability, and wide applications. Cylindrical-
rectangular microstrip antennas have also found many potential
applications because they can be flush-mounted on curved (such as
conical) surfaces. Krowne [1] calculated the resonant frequencies while
Wu and Kaufman [2] computed the radiation patterns. Wong and
Chen [3] and Ke and Wong [4] calculated the resonant frequency of
a slot-coupled cylindrical rectangular microstrip antenna and input
impedance of a probe-fed superstrate-loaded cylindrical rectangular
microstrip antenna. Wong et al. [5] also analysed the resonance
problem of the cylindrical rectangular microstrip structure with an
airgap between the substrate layer and the ground cylinder. Mutual
coupling [6], superstrate loading effects [7], and broadband effects of
antennas designed using gap-coupled parasitic patches [4] were also
reported.

The dyadic Green’s function (DGF) technique has been widely
used to characterise electromagnetic waves [8–12] for more than two
decades. The DGFs in multilayered structures are of particular interest
to many engineers and scientists because of their good accuracy,
compact form, and flexibility of current distribution expressions in
modeling practical problems. The DGF technique is also a powerful
tool for solving various boundary-value problems of electromagnetic
chiralities. Some research works have been carried out in formulating
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the DGFs in unbounded chiral media, planar-stratified chiral media,
spherically multilayered chiral media, and cylindrically multilayered
chiral media. The formulation of dyadic Green’s functions for the
cylindrical multilayered chiral media, which can be used to analyze the
radiation properties of electric and magnetic sources (such as chirostrip
antenna) embedded in multilayered chiral media has been recently
documented [13, 14]. However, the DGF for the present structure
under consideration in this paper is not available yet.

Earlier in 1991 [15, 16], a new type of microstrip using chiral
material was introduced and its characteristics have been discussed.
For instance, effects of chirality on the surface-wave power excited
by a two-dimensional chirostrip antenna have been studied by Pelet
and Engheta [17]. Toscano and Vegni have analyzed the radiated
characteristics of an electric point source located vertically at the
interface-plane of a grounded chiral slab using the spectral dyadic
Green’s function formulation [18]. Kluskens and Newman [19] have
also presented a spectral-domain Galerkin’s procedure in the moment
method solution for a microstrip transmission line on a chiral substrate.
In 1993, Yin and Wang [20] investigated effects of a chiral superstrate
on radiation characteristics of a horizontal dipole antenna printed on
a grounded chiral slab. Zhao et al. [21] have recently investigated
the radiation characteristics of a rectangular chirostrip antenna, and
derived the spectral-domain dyadic Green’s function expression for
such an antenna structure using the Spectral-Domain Immittance
Approach.

From previous works, it is seen that previous analyses assumed
simple antennas, e.g., an infinitesmal dipole and a transmission line
antenna. A more practical configuration of this kind of problems is
planar and cylindrical multilayered geometries where one (or more) of
the multiple regions is (or are) filled with chiral materials. To date,
nothing has been reported, to the best of the authors’ knowledge, on
the cylindrical-rectangular chirostrip antenna radiation.

In the paper, a cylindrical-rectangular chirostrip antenna fed by a
microstrip line mounted on a circular cylindrical chiral substrate with
a conducting core-cylinder is analysed. The spatial-domain Galerkin’s
procedure in method of moments is employed in the present analysis.
To solve the problem for the solution, the dyadic Green’s functions of
the electric type in a concentric cylindrical chiral-medium geometry
of three layers (where the outer region is air, the inner region is
a conducting core-cylinder, and the intermediate layer is the chiral-
material-coated substrate) are obtained. In addition, the current
distribution over the microstrip antenna is then determined. The
numerical results are obtained and plotted to show effects of chirality
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admittance of the chiral substrate. Various radiation patterns of the
microstrip antenna in the presence of a chiral substrate are obtained
and compared among themselves and with those in the presence of an
isotropic substrate.

2. FORMULATION OF THE PROBLEM

The microstrip cylindrical structure is shown in Figure 1(a). A very
thin and perfectly conducting patch is printed on a cylindrical dielectric
chiral substrate of thickness h = b − a. The patch is a cylindrical-
rectangular element with dimensions of 2d0 × w0 at ρ = b. The
substrate is coated on a perfectly conducting ground cylinder of radius
ρ = a. The outer medium is assumed to be filled with air and has a
free-space permitivity of ε0. Both the ground cylinder and the coated
cylindrical substrate layer are assumed to be infinite along ẑ-direction.

2.1. The Chiral Substrate

Throughout the paper, a time-dependence of e−iωt is assumed
and supressed. Thus, homogeneous, lossless, chiral materials are
characterised by the following constitutive relationships

D = εcE + iξcH, (1a)

B = µH − iξcE, (1b)

where εc is the permittivity of the medium, µ denotes its permeability,
and ξc stands for its chiral admittance, respectively. The chiral
parameter, ξc, is a measure of chirality of the medium. The eigenmodes
of propagation in such a medium are those of right- and left-handed
circularly polarized (RCP and LCP) waves of wavenumbers given by

k(r) = + ωµcξc +
√

ω2µcεc + (ωµcξc)2, (2a)

k(l) = − ωµcξc +
√

ω2µcεc + (ωµcξc)2 (2b)

where the plus (‘+’) sign corresponds to RCP waves (k(r)) while the

minus sign (‘−’) to LCP waves (k(l)).

2.2. Dyadic Green’s Functions

Making use of the method of scattering superposition, we may

decompose the dyadic Green’s function G
(fs)
e (r,r′) into two parts, i.e.,
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(a) Geometry of the radiating system.

(b) A cylindrical-rectangular microstrip antenna and

its microstrip line feeding element.

Figure 1. Geometry of a rectangular-cylindrical microstrip antenna
printed on a chiral substrate coated on the surface of a metallic core-
cylinder.
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the unbounded dyadic Green’s function Ge0(r,r′) and the scattering

dyadic Green’s function G
(fs)
es (r,r′), as follows:

G
(fs)
e (r,r′) = Ge0(r,r′)δs

f + G
(fs)
es (r,r′) (3)

where δs
f (= 0 if f 6= s and 1 if f = s) stands for the Kronecker

delta, the superscript (fs) denotes the layers where the field point
and the source point are located, respectively, while the subscript s
identifies the scattering dyadic Green’s function and the subscript e
stands for the electric type of dyadic Green’s function. Also, the prime
denotes the cylindrical coordinates (r′, φ′, z′) of the current source
Js. The unbounded dyadic Green’s function, Ge0(r,r′), represents the
contribution of the direct waves from radiation sources in a unbounded
medium, and the scattering dyadic Green’s function, G(fs)

es (r,r′),
describes an additional contribution of the multiply reflected and
transmitted waves due to the cylindrical interfaces of the layered media.

The unbounded dyadic Green’s function for the chiral medium,
consisting of an irrotational term and a principal value, can be
represented in terms of the normalized cylindrical vector wave
functions. Using the method for deriving the dyadic Green’s function
by Tai [8], the unbounded dyadic Green’s function under the cylindrical

coordinate system can be expressed [13, 14] for r >
< r′ as follows:

Ge0(r,r′) = −
ẑẑδ(r − r′)

k2
s

+
i

4π(k
(r)
s + k

(l)
s )

∫ ∞

−∞
dh

∞∑

n=0

(
2 − δ0

n

)

×





k
(r)
s[

η
(r)
s

]2 V
(1)
e
onη

(r)
s

(h)V ′
e
onη

(r)
s

(−h)

+
k

(l)
s[

η
(l)
s

]2 W
(1)
e
onη

(l)
s

(h)W ′
e
onη

(l)
s

(−h),

k
(r)
s[

η
(r)
s

]2 V e
onη

(r)
s

(h)V
′(1)
e
onη

(r)
s

(−h)

+
k

(l)
s[

η
(l)
s

]2 W e
onη

(l)
s

(h)W
′(1)
e
onη

(l)
s

(−h);

(4)

where the modified cylindrical vector wave eigenfunctions, V and W ,
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are given in [13]:

V e
onη

(r)
s

(h) =
1√
2

[
M e

onη
(r)
s

(h) + Ne
onη

(r)
s

(h)

]

=
eihz

√
2

{
∓nJn(η

(r)
s r)

r
· sin

cos
(nφ)

(
r̂ +

ih

k
(r)
s

φ̂

)

+
∂Jn(η

(r)
s r)

∂r
· cos

sin
(nφ)

(
ih

k
(r)
s

r̂ − φ̂

)

+
(η

(r)
s )2

k
(r)
s

Jn(η(r)
s r)

cos
sin

(nφ)ẑ

}
, (5a)

W e
onη

(l)
s

(h) =
1√
2

[
M e

onη
(l)
s

(h)− Ne
onη

(l)
s

(h)

]

=
eihz

√
2

{
±

nJn(η
(l)
s r)

r
· sin

cos
(nφ)

(
r̂ −

ih

k
(l)
s

φ̂

)

−
∂Jn(η

(l)
s r)

∂r
· cos

sin
(nφ)

(
ih

k
(l)
s

r̂ + φ̂

)

−(η
(l)
s )2

k
(l)
s

Jn(η(l)
s r)

cos
sin

(nφ)ẑ

}
, (5b)

where Jn(•) represents the first-kind cylindrical Bessel function of
order n. In the above and subsequent expressions, the superscript
(1) of vector wave functions indictes that all the first-kind cylindrical
Bessel functions Jn(•) are changed into the first-kind cylindrical Hankel

functions H
(1)
n (•).

The cylindrical vector wave eigenfunctions M e
onηf

(h) and

Ne
onηf

(h) as used in (5a) and (5b) and subsequent expressions are

defined as follows:

M e
onη

(r,l)
f

(h) = ∇ ×
[
Jn(η(r,l)

s r)
cos
sin

(nφ)eihzẑ

]
, (6a)

Ne
onη

(r,l)
f

(h) =
1√

h2 + η2
f

∇× ∇×
[
Jn(η(r,l)

s r)
cos
sin

(nφ)eihzẑ

]
. (6b)

The eigenvalues, η
(r,l)
f , satisfy the relations of h2 = (k

(r,l)
f )2 − (η

(r,l)
f )2,

and the superscript (1) of the vector wave functions denotes the third-
type cylindrical Bessel function or the first-type cylindrical Hankel
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function H
(1)
n (η

(r,l)
f r) used in the expression of the cylindrical wave

vector functions for the out-going waves.
The electric type of DGF satisfies the following boundary

conditions at the cylindrical interfaces ρ = a and ρ = b in the three-
layer structure.

ρ̂ × G
(21)
e = 0, at ρ = a; (7a)

ρ̂ × G
(11)
e = ρ̂ × G

(21)
e , at ρ = b; (7b)

1

µ1
ρ̂ ×

[
∇ ×G
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e − ξ1G

(11)
e

]
=

1

µ2
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[
∇ ×G
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e

]
,

at ρ = b; (7c)

where G
(21)
e is given as follows:

G
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(8)
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while G(11)
e is given by:

G
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(9)

The scattering coefficients can be determined from the boundary
conditions at the interfaces between the regions. Due to their
complexity, the complete expressions of these coefficients are omitted
here.

2.3. Galerkin’s Method of Moments Procedure

The cylindrical-rectangular microstrip antenna is shown in Fig. 1(b).
The rectangular patch is positioned symmetrically with respect to φ
and z at the interface of air and substrate. It is fed by a microstrip line
parallel to the cylinder axis and connected to the center from its lower
side. The feed line is inset a distance S from the edge of the patch.
The feed line thus overlaps the patch surface by the inset distance S,
and provides the continuity of current flow on the patch from the feed
line to the patch.

2.3.1. Currents on the Feed Line

Due to the small width of the feeding line as compared to the guided
wavelength, the φ component of the incident current may be neglected
[23].

J inc
z (φ, z) = ẑ × [Jc(φ, z) − iJs(φ, z)] , (10a)

J ref
z (φ, z) = ẑ × [Jc(φ, z) + iJs(φ, z)] , (10b)

where for Lf − λ/4 < z − z0 < −λ/4 and |φ| < φf/2

Jc(φ, z) =
1

Wf
cos ke(z − z0); (11a)
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and for Lf < z − z0 < 0 and |φ| < φf/2

Js(φ, z) =
1

Wf
sin ke(z − z0). (11b)

In (11a) and (11b), z0 = S − L/2 represents the z-coordinate of the
feed line end (provided that the patch is centered at the origin), and Lf
stands for the length of the feed line. The currents in (10a) and (10b)
represent quasi-TEM incident and reflected waves on the feed line. As
discussed in [23], J inc

z and Jref
z are expressed in terms of Jc and Js,

and truncated so that there is no discontinuity at the end of the line.
The length Lf is chosen as a multiple of λ/2, to avoid nonphysical
current discontinuities at the end [23].

The solution for the open-circuited line requires the propagation
constant of an infinitely long microstrip line. The electrical thickness
of the substrate is such assumed that only the fundamental microstrip
mode propagates. A quasi-static value [24] could be used to obtain
reasonably good results. The more rigorous full-wave solution was
obtained and also reported in [23, 25].

2.3.2. Microstrip Patch Currents

Over the microstrip antenna patch, the currents are expanded in terms
of entire-domain sinusoidal functions, in both φ- and z-directions [25],
as follows:

for |z| < d0, |φ| < φ0, and p = 1, 2, · · · , P

Jpatch
z (φ, z) =

1

w0
sin

[
pπ(z + d0)

2d0

]
; (12a)

and for |z| < d0, |φ| < φ0, and q = 1, 2, · · · ,Q

Jpatch
φ (φ, z) =

1

2d0
sin

[
qπ(φ + φ0)

2φ0

]
; (12b)

where φ0 = w0/2b with w0 equal to the patch length along the φ-
direction. To minimize complexity in the solution, the edge effect is
not included.

2.3.3. Junction Overlap Currents

To provide continuity of current flow from the feed line to the patch,
we introduce piecewise sinusoidal (PWS) basis functions to model the
currents in the junction region. This current density is expanded
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into sinusoidal functions by parts and is superimposed on the feeding
stripline and microstrip antenna, as follows:

J jun
z (φ, z) =

∑
ImJj(φ, z), m = 1, 2, · · · ,M (13a)

where for |z − zm| < l and |φ| < φf , the basis functions are defined as

Jj(φ, z) =
1

wf

sink(l − |z − zm|)
sin kl

, (13b)

with zm being the center coordinate of the piecewise mode which is
chosen as zm = −ml (where m = 1, 2, 3, · · ·, and l is equal to half of
the mode length). The current is assumed to be uniform across the
strip width. Typically convergence is achieved fast by including three
to four PWS modes. The constant k is theoretically arbitrary, but it
is practically chosen as ke for convenience.

With the expansion current modes introduced above, the integral
equation, after the Galerkin’s procedure in method of moments is used,
is reduced to the matrix equation, which is written in a compact form
as follows [25, 26]:




Tz/Gzz/Jr Tz/Gzz/Jj Tz/Gzz/Pz Tz/Gzφ/Pφ

Jj/Gzz/Jr Jj/Gzz/Jj Jj/Gzz/Pz Jj/Gzφ/Pφ

Pz/Gzz/Jr Pz/Gzz/Jj Pz/Gzz/Pz Pz/Gzφ/Pφ

Pφ/Gzz/Jr Pφ/Gzz/Jj Pφ/Gzz/Pz Pφ/Gzφ/Pφ




·




−R
Im

Kp

Lg


 =




Tz/Gzz/Ji

Jj/Gzz/Ji

Pz/Gzz/Ji

Pφ/Gφz/Ji


 (14)

where the following notations are implied:

• Tz , a single sinusoidal test/weighting function on the feed line,

• Jj , a series of M sinusoidal functions by parts in the junction,

• Pz, a series of P functions in the entire domain for the patch
current along the z-direction,

• Pφ, a series of Q functions in the entire domain for the patch
current along the φ-direction,

• Ji, the incident traveling wave current mode,

• Jr, the reflected traveling wave current mode,

• −R, wave amplitude of the reflected current in the line to be
determined, and
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• Im, Kp, and Lq, expansion coefficients to be determined.

Obviously, there are N = 1+M +P +Q unknown coefficients. The test
and weighting functions Tz are employed herein in order to enforce the
number of equations to be the number of unknowns [26]. In (14), the
elements of the impedance matrix represent the impedance between
various test functions and expansion (basis) functions.

The expansion coefficients of the current and the reflection
coefficients are obtained from the standard matrix equation, i.e.,

[I] = [Z]−1 [V ] , (15)

where the superscript −1 denotes the inverse of a matrix. Once the
coefficients are solved for from the linear equation system, the currents
are known. Furthermore, we can calculate the far-fields and analyse
the far-zone radiation patterns.

2.4. Far-Field Radiation Patterns

To obtain far-field radiation patterns of the antenna, however,
calculations can be considerably simplified by using asymptotic
techniques such as the steepest-descent method. Application of this
method to the Sommerfeld integral in the analysis of microstrip patch
antennas is presented in details in [27].

When integrating the integrand function with respect to h in the
range from −∞ to ∞, we would change the cylindrical variables into
spherical variables by letting

η = k sin β, (16a)

h = k cosβ, (16b)

r = R sin θ, (16c)

z = R cos θ; (16d)

so that

ηr + hz = kR cos(θ − β), (17a)

−hr̂ + ηẑ = k(−r̂ cos β + ẑ sin β), (17b)

dh = −k sin βdβ. (17c)

As given in [8], we thus have

F (r, z) =

∫ ∞

−∞

G(h)√
2πλr

ei(hz+λr)dh, (18a)

F (R, θ) =
G(k cos θ)

R
ei(kR−π/4); (18b)
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where

λ =
√

k2 − h2.

3. NUMERICAL RESULTS AND DISCUSSION

A computer program in its compact syntax form was developed
using Mathematica software package to compute the required
dyadic Green’s function components and various radiation patterns.
Numerical results of antenna-radiated power patterns have been
obtained in this paper for various chirality admittances. For the three-
layered model, it is assumed that the relative permittivity εr of the
substrate is 2.57; the radius, a, of the conducting core-cylinder is 2.5
cm; the thickness h of the chiral coating cylindrical layer is 0.012λ cm
where λ is the free-space wavelength; and the cylindrical-rectangular
microstrip antenna has a dimension of 2d0 = w0 = 4.02 cm. The length
Lf is chosen as a multiple of λl/2, where λl is the guided wavelength
along the line. For the sake of comparison, the chirality admittance ξc

is assumed to be 0, 0.001, 0.002 and 0.005, respectively.
The results of the integrals in h have been obtained by computing

the integrands from h ∼= −4000 to h ∼= 4000. The convergence and
accuracy of the problem are also considered. The summation in n
was truncated at 20 because the higher-order terms are shown to be
negligible. The dielectric is assumed to have a low loss, and the value
of tan δ = 0.001 was introduced to shift the poles away from the real
axis [25, 28].

Pozar and Voda [26] found, in the study of the rectangular
microstrip antenna fed by a microstrip line on a stratified substrate,
that the obtained analytical results are not too sensitive for values of
0.5 < S/(2d0) < 0.65 and that there is a good agreement between
these results and experimental data in the case of radiating edge-fed
antenna. This allows us to use a value of inset for which we can be
confident that the results obtained will be reliable. We thus chose
S/(2d0) = 0.55 in the paper. Convergence is also tested and observed
using eight sinusoidal functions in the region near the junction at
x = S − L, for a length of l = 0.05λe. The feed point is centered
along the radiating edge. The present method of moments solution
uses three entire-domain even modes (m = 1, 3, and 5) along the ẑ-

direction and three odd modes (m = 2, 4, and 6) along the φ̂-direction,
and the convergence and accuracy have been achieved.

From the obtained current distribution, we can easily get the feed
line characteristic impedance. In the achiral case, the normalized
resistance is a bit less than the result obtained in [26], due to the
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Figure 2. Normalized power versus a polar angle θ at a fixed azimuth
angle φ = 0 degree for different chirality admittances ξc.

Figure 3. Normalized power versus a polar angle of θ at a fixed
azimuth angle of φ = 90 degrees for different chirality admittances.

effects of curvature. The resonance frequency doesn’t change much
with the variation of curvature, in comparison with the results in
[26]. Therefore, we will not show the input impedance and resonance
frequency here. Instead Figs. 2, 3, 4, and 5 show far-zone radiation
patterns of the chirostrip patch under spherical coordinates, where
different admittances around the resonance frequency (f = 2.3GHz)
are considered, respectively. The normalized radiated power patterns
described by (|Eθ|2 + |Eφ|2)/(2η0) are plotted against the polar angle
θ for different azimuth angles of φ. It can be seen that the features of
the power pattern depend upon the chirality parameters, as shown in
these figures. For given geometric sizes and dielectric parameters (such
as the working frequency and the substrate thickness), the influence of
the chirality admittance will change accordingly. By carefully choosing
these parameters such as substrate thickness and material permittivity
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Figure 4. Normalized power versus a polar angle of φ at a fixed
azimuth angle of θ = 90 degrees for different chirality admittances.

Figure 5. Normalized power versus a polar angle of φ at a fixed
azimuth angle of θ = 45 degrees for different chirality admittances.

at a given operating frequency, we can obtain the desired radiation
pattern, the required 3-dB beamwidth, and minimised sidelobe levels.
From these computations, it is realised that the chirality not only
changes the amplitude, but also shifts the mainlobe, which is observed
as well in [16, 18]. Such features can have potential applications to
beam steering devices.

4. CONCLUSIONS

In this paper, radiation patterns of a three-layered cylindrical-
rectangular chirostrip antenna system are investigated. The structure
discussed here consists of a conducting core-cylinder, a single-layer
chiral substrate coated on the core-cylinder, and a perfectly conducting
and electrically thin cylindrical-rectangular microstrip patch antenna
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mounted on the surface of the chiral substrate. The Galerkin’s method
of moments procedure and the dyadic Green’s function technique are
used to formulate the current distributions over the chirostrip and
its feeding stripline. The dyadic Green’s function in a three-layered
cylindrical chiral structure is formulated and its scattering coefficients
are obtained by imposing the boundary conditions on the multi-
interfaces and applying the scattering superposition method. To find
the far-zone fields, we obtain an asymptotic expression of DGF. This
expression can be found by the method of saddle-point integration.
After the Hankel functions are approximated by their asymptotic
expressions, we can change the cylindrical variables into spherical
variables. Then after some manipulations, the radiation patterns
of such a chirostrip are obtained. A computer code is developed
under Mathematica software package to compute the required DGF
coefficients, all the elements of the matrix in the method of moments,
and the far-field radiation patterns. It is found that from the present
analysis that the resonance frequency doesn’t change much with the
variation of curvature, but the chirality parameters and geometrical
parameters can change dramatically the pattern amplitude and also
shift the pattern main lobe. So, from the modelling, we can obtain the
desired radiation pattern, the required 3-dB beamwidth, and minised
side lobe levels.
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