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Abstract—The inverse scattering of buried dielectric cylinders by
transverse electric (TE) wave illumination is investigated. Dielectric
cylinders of unknown permittivities are buried in one half space and
scatter a group of unrelated TE waves incident from another half space
where the scattered field is recorded. By proper arrangement of the
various unrelated incident fields, the difficulties of ill-posedness and
nonlinearity are circumvented, and the permittivity distribution can
be reconstructed through simple matrix operations. The algorithm is
based on the moment method and the unrelated illumination method.
Numerical results are given to demonstrate the capability of the inverse
algorithm. Good reconstruction is obtained even in the presence of
additive random noise in measured data. In addition, the effect of
noise on the reconstruction result is also investigated.
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1. INTRODUCTION

In the last few years, electromagnetic inverse scattering problems
of underground objects have been of growing importance in many
different fields of applied science, with a large potential impact
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on geosciences and remote sensing applications. Typical examples
are the detection of buried water pipes, power and communication
cables, archaeological remains and so on. However, the solutions
are considerably more difficult than those involving objects in free
space. This is due to the interaction between the air-earth interface
and the object, which leads to the complicated Green’s function for
this half-space problem. Most microwave inverse scattering algorithms
developed are for TM wave illuminations in which the vectorial problem
can be simplified to a scalar one [1–10]. On the other hand, much fewer
works have been reported on the more complicated TE case [11–15]. In
the TE wave excitation case, the presence of polarization charges makes
the inverse problem more nonlinear. As a result, the reconstruction
becomes more difficult. However, the TE polarization case is useful
because it provides additional information about the object.

In this paper, the inverse scattering of buried dielectric cylinders
by TE wave illumination is investigated. An efficient algorithm is
proposed to reconstruct the permittivity distribution of the objects
by using only the scattered field measured outside. The algorithm
is based on the unrelated illumination method [9, 13]. In Section
2, the theoretical formulation for electromagnetic inverse scattering
is presented. Numerical results for objects of different permittivity
distributions are given in Section 3. Finally, conclusions are drawn in
Section 4.

2. THEORETICAL FORMULATION

Let us consider a dielectric cylinder buried in a lossless homogeneous
half-space as shown in Fig. 1. Media in regions 1 and 2
are characterized by permittivities ε1 and ε2, respectively. The
permeability is µ0 for all material including the scatterers. The axis of
the buried cylinder is the z-axis; that is, the properties of the scatterer
may vary with the transverse coordinates only. A group of unrelated
incident wave with magnetic field parallel to the z-axis (i.e., transverse
electric, or TE, polarization) is illuminated upon the scatterers. Owing
to the interface between region 1 and 2, the incident waves generate
two waves that would exist in the absence of the scatterer: reflected
waves (for y ≤ −a) and transmitted waves (for y > −a). Let the
unperturbed field be represented by

E
i(x, y) =




(
Ei
x

)
1 (x, y)x̂+

(
Ei
y

)
1
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2
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(1)



Image reconstruction of buried dielectric cylinders 273

Figure 1. Geometry of problem in the (x, y) plane.

By using the vector potential techniques, the internal total electric
field E(x, y) = Ex(x, y)x̂ + Ey(x, y)ŷ and the external scattered field,
E
s(x, y) = Es

x(x, y)x̂ + Es
y(x, y)ŷ can be expressed by the following

equations:
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with

G(x, y;x′, y′)=



G1(x, y;x′, y′), y ≤ −a
G2(x, y;x′, y′) = Gf (x, y;x′, y′)+Gs(x, y;x′, y′),

y > −a
(6a)
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γ2
i = k2

i − α2, i = 1, 2, Im(γi) ≤ 0, y′ > −a
Here ki denotes the wave number in region i and εr is the relative
permittivity of the dielectric objects. G(x, y;x′, y′) is the Green’s
function, which can be obtained by the Fourier transform [2]. In (6c),
H

(2)
0 is the Hankel function of the second kind of order 0. For numerical

implementation of Green’s function, we might face some difficulties in
calculating this function. This Green’s function is in the form of an
improper integral, which must be evaluated numerically. However,
the integral converges very slowly when (x, y) and (x′, y′) approach
the interface y = −a. Fortunately we find that the integral in G1 or
G2 may be rewritten as a closed-form term plus a rapidly converging
integral [2]. Thus the whole integral in the Green’s function can be
calculated efficiently.

The direct scattering problem is to calculate the scattered field
Es in region l,while the permittivity distribution of the buried objects
is given. This can be achieved by first solving the total field E in
(2) and (3) as well as calculating E

s in (4) and (5). For numerical
implementation of the direct problem, the dielectric objects are divided
into N sufficient small cells. Thus the permittivity and the total field
within each cell can be taken as constants. Then the moment method
is used to solve (2)–(5) with a pulse basis function for expansion and
point matching for testing [16]. Then (2)–(5) can be transformed into
matrix equations(
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where (Ei
x) and (Ei

y) represent the N -element incident field column
vectors and, (Ex) and (Ey) are the N -element total field column
vectors. (Es

x) and (Es
y) denote the M -element scattered field column

vectors. Here M is the number of measurement points. The matrices
[G3], [G4], and [G5] are N ×N square matrices. [G6], [G7], and [G8]
are M ×N matrices. The element in matrices [Gi], i = 3, 4, 5 . . . 8 can
be obtained by tedious mathematic manipulation (see Appendix). [τ ]
is a N × N diagonal matrix whose diagonal element are formed from
the permittivities of each cell minus one. [I] is the identity N × N
matrix.

For the inverse scattering problem, the permittivity distribution
of the dielectric objects is to be computed by the knowledge of the
scattered field measured in region 1. In the inversion procedure, 2N
different incident column vectors are used to illuminate the object, the
follow equations are obtained:

[Ei
t ] = [[Gt1][τt] + [It]] [Et] (9)

[Es
t ] = −[Gt2][τt][Et] (10)

where
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Here [Ei
t ] and [Et] are both 2N × 2N matrices. [Es

t ] is a M × 2N
matrix. It is worth mentioning that other than matrix [Gt2], the matrix
[Gt1][τt] + [It] is a well-posed one in most cases, therefore we can first
solve [Ei

t ] in (9) and substitute into (10), then [τt] can be found by the
following equation

[Ψt][τt] = [Φt] (11)

where
[Φt] = −[Es

t ][E
i
t ]
−1

[Ψt] = [Es
t ][E

i
t ]
−1[Gt1] + [Gt2]
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From (11), all the diagonal elements in the matrix [τ ] can be
determined by comparing the element with the same subscripts which
may be any row of both [Ψt] and [Φt]:

(τ)nn =
(Φt)mn
(Ψt)mn

, n ≤ N (12a)

or
(τ)(n−N)(n−N) =

(Φt)mn
(Ψt)mn

, n ≥ N + 1 (12b)

Then the permittivities of each cell can be obtained as follows:

εn = (τ)nn + 1 (13)

Note that there are a total of 2M possible values for each element of τ .
Therefore, the average value of these 2M data is computed and chosen
as final reconstruction result in the simulation.

In the above derivation, the key problem is that the incident
matrices [Ei

t ] must not be a singular matrix, i.e., all the incident column
vectors that form the [Ei

t ] matrices, must be linearly unrelated. Thus,
if the object is illuminated by a group of unrelated incident waves, it
is possible to reconstruct the permittivity distribution of the objects.
Note that when the number of cells becomes very large; it is difficult
to make such a great number of independent measurements. In such
a case, some regularization methods must be used to overcome the
ill-posedness.

3. NUMERICAL RESULTS

In this section, we report some numerical results obtained by computer
simulations using the method described in the Section 2. Let us
consider a dielectric cylinder buried at a depth of a = 4 m in a lossless
half space, as shown in Fig. 1. The permittivities in region l and 2 are
characterized by ε1 = ε0 and ε2 = 1.21ε0. The frequency of the incident
waves is chosen to be 30 MHz and the number of illuminations is the
same as that of cells. The incident waves are generated by numerous
groups of radiators operated simultaneously.

Each group of radiators is restricted to transmit a narrow-
bandwidth pattern that can be implemented by antenna array
techniques. By changing the beam direction and tuning the phase
of each group of radiators, one can focus all the incident beams in turn
at each cell of the object. This procedure is named “beam focusing”
[9]. Note that this focusing should be set when the scatterer is absent.
Clearly, an incident matrix formed in this way is diagonally dominant
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Figure 2. Original relative permittivity distribution for example 1.

and its inverse matrix exists. The measurement is taken on a half
circle of radius 3 m about (0,−a) at equal spacing. The number of
measurement point is set to be 9 for each illumination. For avoiding
trivial inversion of finite dimensional problems, the discretization
number for the direct problem is four times that for the inverse problem
in our numerical simulation.

In the first example, the buried cylinder with a 6.5625 × 1.05 m
rectangular cross section is discretized into 25 × 4 cells, and the
corresponding dielectric permittivities are plotted in Fig. 2. The model
is characterized by simple step distribution of permittivity. Each cell
has 0.2625 × 0.2625 m cross-sections. The reconstructed permittivity
distributions of the object are plotted in Fig. 3. The root-mean-square
(RMS) error is about 1.1%. It is apparent that the reconstruction is
good.

In the second example, the buried cylinder with a 3.15 ×
3.15 m square cross section is discretized into 12 × 12 cells, and the
corresponding dielectric permittivities are plotted in Fig. 4. The model
is characterized by a four-layer contrast of permittivity. Each cell
has 0.2625 × 0.2625 m cross-sections. The reconstructed permittivity
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Figure 3. Reconstructed relative permittivity distribution for
example 1.

distributions of the object are plotted in Fig. 5. The root-mean-square
(RMS) error is about 0.8%. We can see the reconstruction is also good.

For investigating the effect of noise, we add to each complex
scattered field a quantity b+cj, where b and c are independent random
numbers having a uniform distribution over 0 to the noise level times
the rms value of the scattered field. The noise levels applied include
10−5, 10−4, 10−3, 10−2, and 10−1 in the simulations. The numerical
results for example l and 2 are plotted in Fig. 6 and Fig. 7, respectively.
They show the effect of noise is tolerable for noise levels below 1%.

Our method depends on the condition number of [Ei
t ]; that is, on

having 2N unrelated measurements. The procedure will generally not
work when the number of unknowns gets very large. This is due to the
fact that it is difficult to make such a great number of measurements
and make them all unrelated. As a result, the condition number of [Ei

t ]
will become large while the number of unknowns is very large. In such
a case, the regularization method should be employed to overcome the
ill-posedness. For instance, the pseudoinverse transform techniques [7]
can be applied for the inversion of the [Ei

t ] matrix.
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Figure 4. Original relative permittivity distribution for example 2.

Figure 5. Reconstructed relative permittivity distribution for
example 2.



280 Chiu and Lin

Figure 6. Reconstructed error as a function of noise level for example
1.

Figure 7. Reconstructed error as a function of noise level for example
2.
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4. CONCLUSION

Imaging algorithm for TE case is more complicated than that for the
TM case, due to the added difficulties in the polarization charges.
Nevertheless, the polarization charges cannot be ignored for this
two-dimensional problem and all three-dimensional problems. In
this paper, an efficient algorithm for reconstructing the permittivity
distribution of buried dielectric cylinders, illuminated by TE waves,
has been proposed. By properly arranging the direction of various
unrelated waves, the difficulty of ill-posedness and nonlinearity is
avoided. Thus, the permittivity distribution can be obtained by simple
matrix operations. The moment method has been used to transform a
set of integral equations into matrix form. Then these matrix equations
are solved by the unrelated illumination method. Numerical simulation
for imaging the permittivity distribution of a buried dielectric object
has been carried out and good reconstruction has been obtained even
in the presence of random noise in measured data. This algorithm is
very effective and efficient, since no iteration is required.

APPENDIX A.

The element in the matrix [G3] can be written as

(G3)mn =

[(
∂2

∂x2
+ k2

2

)
·
∫∫

cell n
G2(x, y;x′y′)dx′dy′

]∣∣∣∣∣x=xm
y=ym

where (xm, ym) is the observation point located in the center of the mth
cell. For a sufficient small cell, we can replace the cell by a circular cell
with the same cross section [17]. Let the equivalent radius of the nth
circular cell be an. The (G3)mn can be expressed in the following form

(G3)mn =




∂2Gs(x, y;xn, yn)
∂x2
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·∆Sn+Gs(xm, ym;xn, yn) ·k2
2 ·∆Sn

+
jπanJ1(k2an)
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+
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1 (k2ρmn)
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πk2anH
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1 (k2an)− 4j

]
, m = n
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with ρmn =
√

(xm − xn)2 + (ym − yn)2, where J1 is Bessel function of
the first order and (xn, yn) is the center of the cell n. ∆Sn denotes the
area of the nth cell.

Similarly,
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