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Abstract—We discuss the problem of the reconstruction of the profile
of an inhomogeneous object from scattered field data. Our starting
point is the contrast source inversion method, where the unknown
contrast sources and the unknown contrast are updated by an iterative
minimization of a cost functional. We discuss the possibility of
the presence of local minima of the nonlinear cost functional and
under which conditions they can exist. Inspired by the successful
implementation of the minimization of total variation and other edge-
preserving algorithms in image restoration and inverse scattering,
we have explored the use of these image-enhancement techniques as
an extra regularization. The drawback of adding a regularization
term to the cost functional is the presence of an artificial weighting
parameter in the cost functional, which can only be determined
through considerable numerical experimentation. Therefore, we first
discuss the regularization as a multiplicative constraint and show
that the weighting parameter is now completely prescribed by the
error norm of the data equation and the object equation. Secondly,
inspired by the edge-preserving algorithms, we introduce a new type
of regularization, based on a weighted L2 total variation norm. The
advantage is that the updating parameters in the contrast source
inversion method can be determined explicitly, without the usual line
minimization. In addition this new regularization shows excellent
edge-preserving properties. Numerical experiments illustrate that the
present multiplicative regularized inversion scheme is very robust,
handling noisy as well as limited data very well, without the necessity
of artificial regularization parameters.
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1. INTRODUCTION

A central problem in target identification, non-destructive testing,
medical imaging and numerous other areas of application concerns the
determination of the shape, location and constitutive parameters, such
as complex index of refraction or local sound speed, of a object or
local inhomogeneity from measurements of the scattered field, when
the object is illuminated successively by a number of known incident
electromagnetic or acoustic waves. This problem is nonlinear and ill-
posed, but during the years useful reconstruction algorithms have been
developed. Comprehensive overviews of several results are given by
Chew [7], Lesselier and Duchêne [21], Colton et al. [8], and Sabatier
[26] and Van den Berg [29]. Most of these algorithms make use of
the domain integral equation for the field inside the scattering object
as well as the related integral representation for the field outside the
object. In many cases, the methods are iterative of nature and each
iteration requires the solution of a forward or direct problem.

Inspired by the success of iterative solutions of the forward
scattering problem, the modified gradient method was introduced by
Kleinman and Van den Berg [17], where both the unknown field and
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the unknown material contrast are updated simultaneously in each
iteration. The method recasts the inverse problem as an optimization
problem in which a cost functional is minimized. The cost functional
consists of the superposition of the mismatch of the measured field
data with the field scattered by an object with a particular contrast
function and the error in satisfying the object equation, i.e., a system
of integral equations for the field due to each excitation. The necessity
of a full solution of a forward problem in each iteration is avoided by
the simultaneous updates of the fields and the contrast. The modified
gradient method was refined by Kleinman and Van den Berg [18, 19]
and extended with a minimization of total variation [31] to become an
efficient way of reconstructing a complex refraction of index.

The modified gradient method has opened the doors for further
research and together with the source-type integral equation method
introduced by Habashy et al. [14], it formed the base of the contrast
source inversion (CSI) method [32]. The CSI algorithm is what
Kohn and McKenney [20] call an alternating direction implicit (ADI)
method, wherein two sequences of variables, in the CSI method the
contrast sources and the contrast itself, are iteratively reconstructed
by alternately updating the sources and the contrast. This is contrary
to the modified gradient method, where the fields and the contrast are
updated simultaneously. Similar to the modified gradient method, in
each iteration there is no full inversion of the object equations involved.
The CSI method outperforms the modified gradient method, because it
is computationally faster, has less memory as well as data requirements
and accommodates easily a priori information, see e.g., [1].

Although the addition of the total variation to the cost functional
has a very positive effect on the quality of the reconstructions for
both ‘blocky’ and smooth profiles, a drawback is the presence of an
artificial weighting parameter in the cost functional, which can only
be determined through considerable numerical experimentation and
a priori information of the desired reconstruction. In [30], it was
suggested to include the total variation as a multiplicative constraint,
with the result that the original cost functional is the weighting
parameter of the regularizer, so that this parameter is determined
by the inversion procedure itself. This eliminates the choice of the
artificial regularization parameters completely. The multiplicative type
of regularization seems to handle noisy as well as limited data in a
robust way without the usually necessary a priori information.

In the present paper, we investigate the occurrence of local minima
in the CSI method. It is demonstrated that a sufficient number of
illuminations may guarantee the convergence to the desired global
minimum. In addition we introduce a simplified regularization factor,
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viz., a weighted total-variation factor, as multiplicative constraint.
Although it is an L2-norm of the contrast gradient, it exhibits excellent
edge-preserving properties. Since we use conjugate gradient directions
for the contrast sources and the contrast, a second advantage is that
the usual line minimization to determine the update parameters is
avoided. This new multiplicative regularized CSI method is denoted
as MR-CSI method.

From our numerical experiments we observe that the multiplica-
tive regularized MR-CSI method seems to be a robust optimization
method, both for noisy and limited data, avoiding the choice of the
regularization parameters and hence avoiding the need of the neces-
sary a priori information about which kind of reconstruction image is
acceptable.

2. NOTATION AND PROBLEM STATEMENT

To illustrate the inversion method, we consider the theoretical model
of the two-dimensional inverse scattering problem, with a bounded,
simply connected, inhomogeneous object domain D in an unbounded
homogeneous background medium. The object domain D embeds
a scattering object (or objects) B, of which location and index of
refraction (or contrast) are unknown. The vectors p and q denote
the vectorial position in IR2. To reconstruct the contrast function of
the unknown objects, we assume that the scatterers are illuminated
successively by a number of incident waves of one single frequency,
uinc
j (p) = uinc(p, qj), j = 1, . . . , J , and source points qj (qj is replaced

by the unit vector q̂j for plane waves). The sources are located in
a domain (or on a curve) S outside of and surrounding D, where the
measurement of the scattered field is made as well. We use the complex
time factor exp(−iωt), where ω is the radial frequency.

It has been shown that for a large class of scattering problems the
total field in D satisfies the domain integral equation, see e.g., Colton
and Kress [9],

uj(p) = uinc
j (p) + k2

b

∫
D

G(p, q)χ(q)uj(q) dv(q) , p ∈ D , (1)

where G(p, q) denotes the Green function of the background medium,

G(p, q) = (i/4)H(1)
0 (kb|p− q|) , (2)

with H
(1)
0 the zero-order Hankel function of the first kind and the

contrast
χ(q) = k2(q)/k2

b − 1 , (3)
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where kb is the wavenumber of the homogeneous embedding and k(q)
the wavenumber of the scattering object. Note that if q is not in B, the
contrast function χ vanishes outside B. Now, with (1) the scattered
field is defined as

usctj (p) = uj(p)− uinc
j (p) = k2

b

∫
D

G(p, q)χ(q)uj(q) dv(q) . (4)

If the total field uj is known, the scattered field usctj can be calculated
with the help of (4). We are then able to calculate the scattered field in
the domain S. Because we measure the scattered field in the domain
S, which is outside D where the contrast function χ vanishes, the
right-hand side of (4) is equal to fj(p), i.e.,

fj(p) = k2
b

∫
D

G(p, q)χ(q)uj(q) dv(q) , p ∈ S , (5)

if the measurements are noise- and error-free. This last assumption
is unlikely and therefore the so-called data equations (5) do not hold
exactly. Equations (1) and (5) are two equations from which the fields
uj and contrast χ have to be determined. This problem is nonlinear and
has to be solved iteratively. In the modified gradient methods [17–19],
the necessity of a full solution of the forward problem of equation (1) in
each iteration is avoided by treating equations (1) and (5) as a system of
equations and a functional combining these equations is minimized by
updating the fields and contrast simultaneously in conjugate directions.

However, in the CSI method it is observed that the data equations
contain the unknown field inside the scattering object and the contrast
in the form of a product; it can be written as a single quantity, viz.
the contrast source

wj(p) = χ(p)uj(p) , (6)

which can be considered as an equivalent source that produces the
measured scattered field, since the field uj satisfies the equation

(∇2 + k2
b )uj(p) = −k2

bwj(p), p ∈ B. (7)

Multiplying both sides of (1) with χ, and using (6), we define in
symbolic form the object or state equations as

wj = χuinc
j + χGDwj , p ∈ D , (8)

and the data equations (5) as

fj = GSwj , p ∈ S , (9)
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where the subscripts D and S on the operators, defined implicitly in
(1) and (5), are added to accentuate the location of the point p, since
the operators are identical in all other respects, viz.

GD,Swj = k2
b

∫
D

G(p, q)wj(q) dv(q) , p ∈ D or p ∈ S . (10)

We consider equations (8) and (9) as two equations from which we want
to determine the unknown contrast sources wj(p) and the unknown
contrast χ(p) in D.

3. CONTRAST SOURCE INVERSION METHOD

The CSI method recasts the inversion problem as a minimization of
a cost functional, being a linear combination of errors in the data
equation and the object equation. Assuming that wj and χ represent
an approximate solution of our inverse problem, the cost functional is
defined as

F (wj , χ) = ηS
∑
j‖fj−GSwj‖2S +ηD

∑
j‖χuinc

j −wj +χGDwj‖2D , (11)

where ‖ · ‖2S and ‖ · ‖2D denote the norms on L2(S) and L2(D),
respectively. the positive normalization factors ηS and ηD has to be
chosen appropriately. This will be discussed later. The first term
measures the error in the data equation given in (9) and the second
term measures the error in the object equation given in (8). This
is a quadratic functional both in wj and in χ, but the term χGDwj
is responsible for the nonlinearity of the inverse problem. Before we
discuss the algorithm to solve for the contrast sources, wj , and the
contrast, χ, we first concentrate on the nonlinearity of the functional.
We carry out an analysis similar to the one given by Isernia et al. [16]
for the cost functional introduced in the modified gradient method.

3.1. The Local Minima

As the functional of (11) is a non-quadratic functional of the unknowns
wj and χ, the problem arises how to find its global minimum, assuming
that there exists an unique one. In view of the large number of
unknowns, globally effective minimization schemes are not feasible,
while a gradient-based minimization scheme could be trapped into local
minima, which are false solutions of our inverse problem. However, our
cost functional at hand is a polynomial of fourth degree in terms of
the unknowns. Let we assume that the contrast sources wexact

j and
the contrast χexact represent the exact solution of our inverse problem.
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The contrast sources and the contrast can be written as a linear
combination of the exact solution and some generic direction, viz.,



w1(p)
w2(p)
·
·
·

χ(p)




=




wexact
1 (p)

wexact
2 (p)
·
·
·

χexact(p)




+ β




∆w1(p)
∆w2(p)
·
·
·

∆χ(p)




. (12)

Without loss of generality, we can take β to be real valued. Substituting
(12) into the cost functional (11) and using the fact that the individual
terms of the right-hand side of (11) vanish for the exact solution, we
end up with the polynomial of fourth degree,

F (wj , χ) = β2(ADβ2 + 2BDβ + CS + CD) , (13)

where

AD = ηD
∑
j‖∆χGD∆wj‖2D , (14)

BD = ηDRe
∑
j〈∆χGD∆wj , ∆χuexact

j −∆wj+χexactGD∆wj〉D , (15)

CD = ηD
∑
j‖∆χuexact

j −∆wj+χexactGD∆wj‖2D , (16)

CS = ηS
∑
j‖GS∆wj‖2S , (17)

and
uexact
j = uinc

j + GDwexactj . (18)

Since the derivative of (13) with respect to β is a cubic equation, we
observe that, for a given generic direction {∆wj (j = 1, 2, . . .), ∆χ},
there are only two minima, viz., the global one and a local one. Now,
a sufficient condition for (13) to have no local minimum other than the
global one (β = 0) is that

B2
D

AD(CS + CD)
<

8
9
. (19)

In view of Schwarz equality we note that B2
D ≤ ADCD, and as a

consequence we certainly know that

B2
D

AD(CS + CD)
≤ 1 . (20)

In view of (20) the condition for absence of local minima can be satisfied
when

CD
CS + CD

<
8
9
. (21)
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When ∆wj are non-radiating contrast sources, i.e.,
∑
j‖GS∆wj‖2S = 0,

this condition cannot be met. Further, when we take the normalization
factor in CD too large with respect to the normalization factor in
CS , there is major chance that we violate this condition as well.
Therefore we return to condition (19) and our strategy to avoid
local minima is to reduce the value of the left-hand side of (19) by
taking enough excitations. As long as the quantities ∆χGD∆wj and
∆χuexact

j −∆wj +χexactGD∆wj have different phase distributions, the
terms of the summation over the excitations (j) in BD can cancel
destructively each other, while the terms in CD are positive and add
constructively. Hence, increasing the number of excitations may reduce
the chance of being trapped in a local minimum. Later, for some
representative examples, we shall investigate this phenomenon.

We first discuss an algorithm to solve for the contrast sources
and the contrast. The CSI method constructs alternatively sequences
of contrast sources wj,n by a conjugate gradient iterative method such
that the contrast sources minimize the cost functional, and the contrast
χn is then determined to minimize the error in the object equation. In
each iteration, we search for an improved update of the contrast sources
wj = wj,n and the contrast χ = χn by some minimization of the cost
functional

Fn(wj , χ) = FS(wj) + FD,n(wj , χ) , (22)

with

FS(wj) = ηS
∑
j‖fj −GSwj‖2S , (23)

FD,n(wj , χ) = ηD,n
∑
j‖χuinc

j − wj + χGDwj‖2D , (24)

where the normalization factors are chosen as

ηS =
(∑

j‖fj‖2S
)−1

and ηD,n =
(∑

j‖χn−1u
inc
j ‖2D

)−1
. (25)

3.2. Updating of the Contrast Sources

The CSI method starts with the updating of the contrast sources wj
in the following manner. Define the data error to be

ρj,n = fj,n −GSwj,n , (26)

and the object error to be

rj,n = χnu
inc
j − wj,n + χnGDwj,n , (27)

Now suppose wj,n−1 and χn−1 are known. We update wj by

wj,n = wj,n−1 + αwn vj,n , (28)
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where αwn is a real constant parameter and the update directions vj,n
are functions of position.

The update directions are chosen to be the Polak-Ribière
conjugate gradient directions, which search for improved directions
when a change with respect to the directions of the last iteration occurs
and restart the optimization when practically no changes are made in
the subsequent gradients. These update directions are obtained by

vj,0 = 0 , vj,n = gwj,n +
Re

∑
k〈gwk,n, gwk,n−gwk,n−1〉D∑
k〈gwk,n−1, g

w
k,n−1〉D

vj,n−1 , n ≥ 1 ,

(29)
where gwj,n is the gradient of the cost functional with respect to wj
evaluated at wj,n−1 and χn−1. Explicitly, the gradient for the updating
of the contrast source is found to be

gwj,n = −ηSG�
Sρj,n−1 − ηD,n

[
rj,n−1 −G�

D(χn−1rj,n−1)
]
. (30)

In (30), G�
S and G�

D are the adjoints of GS and GD mapping L2(S)
into L2(D) and L2(D) into L2(D), respectively. They are given by

G�
Sρj,n−1 = k2

b

∫
S

G(p, q) ρj,n−1(q) dv(q), p ∈ D , (31)

and

G�
D(χn−1rj,n−1) = k2

b

∫
D

G(p, q) (χn−1rj,n−1)(q) dv(q), p ∈ D . (32)

Here, the overbar denotes complex conjugate.
With the update directions completely specified, the real

parameter αwn in (28) is determined as

αwn = arg min
real α

{FS(wj,n−1 + α vn) + FD,n(wj,n−1 + α vn, χn−1)} , (33)

and is found explicitly to be

αwn =
−Re

∑
j 〈gwj,n, vj,n〉D

ηS
∑
j ‖GSvj,n‖2S + ηD,n

∑
j‖vj,n−χn−1GDvj,n‖2D

. (34)

At this stage, all quantities to update the contrast sources, see (28),
are known and wj,n can be calculated.

The starting values for wj,0 must still be chosen. Observe that we
cannot start with wj,0 = 0 and χ0 = 0, since then the cost functional
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(11) is undefined for n = 1. Therefore we choose as starting values the
contrast sources that minimize the data error, which are the contrast
sources obtained by back propagation,

wbp

j,0 =
‖G�

Sfj‖2D
‖GSG�

Sfj‖2S
G�
Sfj . (35)

The choice of the initial estimate and the updating of the contrast is
discussed in the next subsection.

3.3. Updating of the Contrast

Before updating the contrast, we first define the updated field as

uj,n = uinc
j + GDwj,n . (36)

Since the contrast only occurs in the second term of our cost functional,
the contrast χ = χn is obtained as minimizer of the cost functional

FD,n(wj,n, χ) = ηD,n
∑
j‖χuj,n − wj,n‖2D , (37)

which is the normalized norm of the error in the object equation after
updating the contrast sources to wj,n, cf. (24). Without any a priori
information, this norm is minimized when

χn =
∑
j wj,nuj,n∑
j |uj,n|2

. (38)

Note that this result is identical to the result obtained by updating the
contrast as

χn = χn−1 + αχndn , (39)

where αχn = η−1
D,n and dn is the preconditioned gradient of

FD,n(wj,n, χn−1), viz.,

dn = ηD,n

∑
j(wj,n − χn−1uj,n)uj,n∑

j |uj,n|2
. (40)

In case we have a priori information that the real part and/or the
imaginary part of the contrast is positive, we remark that this positivity
constraint is easily implemented by enforcing a negative value to zero
after each update of the contrast. Numerical experiments have shown
that this simple adjustment leads to reconstruction results, which are
very similar to the ones of the original CSI method with positivity
constraint [32]. In all numerical examples presented later in this paper,
we have enforced positivity.
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As far as the starting value χ0 is concerned, we start with the
initial estimates wbp

j,0 of (35), compute the initial field uj,0 using (36),
to obtain, cf. (38),

χ0 =
∑
j w

bp

j,0uj,0∑
j |uj,0|2

, with uj,0 = uinc
j + GDwbp

j,0 . (41)

This completes the description of our non-regularized version of the
contrast source inversion algorithm, where, in each iteration, we update
the contrast sources followed by an update of the contrast. We
remark that in a similar way as in the modified gradient method where
the fields and the contrast are updated simultaneously, we have also
modified our present CSI method by using a simultaneous update of
the contrast sources and the contrast. After determination of the
Polak-Ribière conjugate gradient directions for the contrast sources
and contrast we minimize the cost functional for variation of the two
complex parameters αwn and αχn. This more complicated scheme yielded
no significant improvement.

3.4. Total Variation as a Multiplicative Constraint

Recent work with image enhancement has shown that minimization of
the total variation of the image can be a very useful approach, see e.g.,
[3, 5, 11, 12, 25, 33]. Van den Berg and Kleinman [31] incorporated the
total variation (TV) in an inverse scattering problem by enhancing the
modified gradient algorithm. In the latter approach a total variation
term was added to the cost functional resulting in a substantial
improvement of the performance of the reconstruction method, both
for ‘blocky’ and smooth contrast configurations. The addition of the
total variation to the cost functional has a very positive effect on the
quality of the reconstructions for both ‘blocky’ and smooth profiles,
but a drawback is the presence of an artificial weighting parameter in
the cost functional, which can only be determined through considerable
numerical experimentation [15] and a priori information of the desired
reconstruction.

Van den Berg et al. [30] have suggested to include the total
variation as a multiplicative constraint, with the result that the
original cost functional is the weighting parameter, i.e., determined
by the inversion problem itself. This eliminates the choice of the
artificial regularization parameters completely. In each iteration, a
multiplicative cost functional is introduced as

Fn(wj , χ) = [FS(wj) + FD,n(wj , χ)] FTV
n (χ) , (42)
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where the first factor is the original cost functional (22) of the CSI
method and where the second factor, the so-called TV-factor is given

FTV
n (χ) =

∫
D

(
|∇χ(q)|2 + δ2

n−1

) p
2 dv(q)∫

D

(
|∇χn−1(q)|2 + δ2

n−1

) p
2 dv(q)

, (43)

Here, δ2 is chosen as
δ2
n−1 = FD,n−1 ∆̃2 , (44)

where ∆̃ denotes the reciprocal mesh size of the discretized domain D
and FD,n−1 is the normalized norm of the object error of the previous
iteration, cf. (37). The new cost functional (42) is based on two things:
the objective of minimizing the error in the data and object equations
and the observation that the TV-factor, when minimized, converges to
1. The structure of the new cost functional is such that it will minimize
the total variation with a large weighting parameter in the beginning
of the optimization process, because the value of F (wj,n, χn) is still
large, and that it will gradually minimize more and more the error in
the data and object equations when the total variation has reached
a nearly constant value close to 1. The factor δ2

n−1 is introduced for
restoring differentiability. Its choice is inspired by the idea that in
the first few iterations, we do not need the minimization of the total
variation and as the iterations proceed we want to increase the effect
of the total variation.

If noise is present in the data, the data error term will remain
at a large value during the optimization and therefore, the weight of
the total variation factor will be more significant. Hence, the noise
will, at all times, be suppressed in the reconstruction process and we
automatically fulfill the need of a larger TV-regularization when the
data contains noise as suggested by Chan and Wong [6] and Rudin et
al. [25].

The value p is often chosen to be either one or two. If p = 1 the L1-
norm in the TV-factor will try to make the contrast piecewise constant
and therefore ’blocky’ contrast can be reconstructed. However, when
p = 2 (L2-norm in the TV-factor), a smooth profile is favored.

By introducing this cost functional Fn, the TV-factor does not
change the updating of the contrast sources wj,n and the fields uj,n,
because FTV

n (χn−1) = 1 at the beginning of each iteration.
The updating scheme for χn is given by

χn = χn−1 + αχndn , (45)
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where the update directions dn are taken as Polak-Ribière conjugate
gradient directions of the cost functional (42), viz.,

d0 = 0 , dn = gχn +
Re〈gχn , gχn−gχn−1〉D
〈gχn−1, g

χ
n−1〉D

dn−1 n ≥ 1 , (46)

while the preconditioned gradient is determined as, cf. (40),

gχn =
ηD,n[

∑
j(wj,n−χn−1uj,n)uj,n]+[FS(wj,n)+FD,n(wj,n, χn−1)] gTV

n∑
j |uj,n|2

,

(47)
where

gTV
n (q) =

p

2
∇ ·


 ∇χn−1(q)(
|∇χn−1(q)|2 + δ2

n−1

)1− p
2




∫
D

(
|∇χn−1(q)|2 + δ2

n−1

) p
2 dv(q)

. (48)

Note that the gradient tends to the direction dn of (40) of the original
CSI method as the gradient, gTV

n , tends to zero. The weighting of
the gradients clearly depends on the errors in the cost functional FS
and FD,n and the TV-factor FTV

n . Since we have a multiplicative
cost functional, one can expect a higher nonlinear functional, but the
gradient of this cost functional has the same form as the gradient
of an additive cost functional with a weighting parameter related
to FS + FD,n. Similar to an additive regularization, the present
multiplicative regularization decreases the chance that the gradient
has a zero direction, which reduces the possibility to arrive at in a
local minimum.

With the Polak-Ribière update directions completely specified, the
real-valued constant αχn in (45) is found as

αχn = arg min
real α

{[FS(wj,n)+FD,n(wj,n, χn−1+αdn)]FTV
n (χn−1+αdn)}.(49)

When p = 2, we end up with a polynomial of fourth degree in α and
its minimizer can be determined analytically. However, for p = 2 the
reconstructed contrast is too smooth. For p = 1, the reconstruction is
significantly improved, but the drawback is that the minimization can
not be carried out analytically and the minimizing value of αχn must be
determined by a numerical line minimization. In the next subsection
we therefore discuss a new TV-factor that has not only the advantages
of an improved reconstruction of ‘blocky’ and smooth profiles, but
in addition the advantage that the minimizer αχn can be determined
analytically.
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3.5. Weighted L2 Total-Variation Factor

Inspired by the edge-preserving algorithms in image restoration [4] and
inverse scattering [22, 13], we now consider the TV-factor as a weighted
norm on L2(D), in which the weighting favors flat parts and non-flat
parts of the contrast profile almost equally. In stead of (43) we choose
the TV-factor as

FTV
n (χ) =

1
V

∫
D

|∇χ(q)|2 + δ2
n−1

|∇χn−1(q)|2 + δ2
n−1

dv(q) , (50)

where V =
∫
D dv(q) denotes the area (two-dimensional volume) of the

test domain D. Similar as before FTV
n (χn−1) = 1 and the updating

scheme of the contrast sources wj,n and the fields uj,n is not changed.
We note that Zhdanov and Hursan [34] used an additive regularization
with a weighted norm similar to (50).

The gradient of the weighted TV-factor of (50) becomes

gTV
n (q) =

1
V
∇ ·

[
∇χn−1(q)

|∇χn−1(q)|2 + δ2
n−1

]
. (51)

Comparing this gradient with the one of (48), for p = 1, we
immediately observe that these gradients are similar. Hence this new
TV-factor may combine some properties of minimization of the total
variation in the L2-norm and in the L1-norm (through its gradient).

The minimization of the multiplicative cost functional (49) can
now be performed analytically. The cost functional is a fourth-degree
polynomial in α, viz.,

F = [FS(wj,n) + FD,n(wj,n, χn−1)
+ 2αηD,nRe

∑
j〈dnuj,n, χn−1uj,n−wj,n〉D+α2 ηD,n

∑
j ‖dnuj,n‖2D]

×[1 + 2αRe〈bn−1∇χn−1, bn−1∇dn〉D + α2 ‖bn−1∇dn‖2D] , (52)

where

bn−1 = V − 1
2

(
|∇χn−1|2 + δ2

n−1

)− 1
2 . (53)

Differentiation with respect to α yields a cubic equation with one real
root and two complex conjugate roots. The real root is the desired
minimizer αχn.

In our numerical examples we use this new TV-factor as the
multiplicative regularization of the CSI method and we denote this
method as the MR-CSI method.
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4. ROOT TEST

Before we discuss the reconstruction with the CSI and MR-CSI
methods we investigate whether the solution converges to a false
local minimum. To investigate this, in each iteration, we construct
a direction

∆wj,n = wexact
j − wj,n , j = 1, 2, . . . ,

∆χn = χexact − χn ,

where wexact
j,n is our numerical solution of the forward problem for given

χexact. We then consider a variation in this direction as

wj = wexact
j + β∆wj,n , j = 1, 2, . . . ,

χ = χexact + β∆χn .

Following the analysis of Section 3.1 we observe that, besides the
absolute minimum at β = 0, there exists a false minimum at

βn =
−3BD,n −

√
9B2

D,n − 8AD,n(CS,n + CD,n)

4AD,n
. (54)

The quantities AD,n, BD,n, CS,n and CD,n are obtained from (14)–(17)
by substituting the quantities obtained in the nth iteration. Hence,
along our particular direction, there is no false minimum, when the
following root test, cf. (19),

Rn =
9B2

Dn

8AD,n(CS,n + CD,n)
< 1 (55)

holds. Hence, as long as this root test remains satisfied, with
increasing iterations, the present scheme will never be trapped in a
local minimum. However, due to the ill-posed nature of our inverse
problem, it is still possible that the scheme converges to a numerical
result which is far from the exact solution. This phenomenon also
occurs in case of an ill-posed linear problem. When the root test (55)
is not satisfied, the scheme may converge to a false local minimum. In
that case βn should converge to −1. Finally, note that the left-hand
side of (55) is always less than or equal to 9/8.

5. NUMERICAL EXAMPLES

For our numerical examples, the test domain D consists of a square
with sides of length d, while the measurement curve S is a circle.
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Re (χ) (χ)Im

Figure 1. Original profile of concentric squares.

The homogeneous embedding is chosen to be lossless and therefore the
wavenumber kb = 2π/λ, where λ denotes the wavelength. The discrete
form of the algorithm is obtained by dividing the test domain into
subsquares, assuming the contrast, sources and fields to be piecewise
constant. The integrals over subsquares are approximated by integrals
over circles of equal area which are calculated analytically [24]. The
discrete spatial convolutions of the operators GD and G�

D are computed
using FFT routines [28]. The incident fields are chosen to be excited
by line sources parallel to the axis of the scatterer. These sources
are taken to be equally spaced on the measurement circle, and the
source locations are also chosen as discretization points on the circle.
All integrals on S are approximated by point collocation at the
discretization points, that is, the rectangular rule with the integrand
evaluated at the mid-points. The measured data are simulated by
solving the direct scattering problem with the help of a conjugate
gradient method [28]. The circle S is subdivided into J equally spaced
arcs, each mid-point serving as the location of a line source as well as
a receiver. The number of data is then equal to J×J . Some numerical
experiments have been carried out for the configuration, which was
used to test the CSI method [32, 30].

5.1. Concentric Squares

We first consider a scattering object that consists of concentric square
cylinders, an inner cylinder of dimension λ by λ, with complex contrast
χ = 0.6+0.2i, surrounded by an outer cylinder, 2λ by 2λ, with contrast
χ = 0.3 + 0.4i. The test domain D is a square of dimension d = 3λ
by d = 3λ and is discretized into 29 × 29 subsquares. The circle S,
where both the sources and receivers are located, has a radius of 3λ.
The discretized real and imaginary parts of the exact contrast profile
are shown in Figure 1.

Using the CSI method, the reconstructions after 512 iterations
are shown in Figure 2, for 10, 18 and 30 source/receiver stations,
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Re (χ) (χ)Im

J = 10

Re (χ) (χ)Im

J = 30

Figure 2. CSI reconstruction after 512 iterations, for various
source/receiver stations: J = 10, 18, and 30.

respectively. In Figure 3 we have plotted Rn as a function of the
number of iterations, n, for various numbers, J , of source/receiver
stations. Using the CSI method (top figure) we observe that, for
J = 5, 10 and 15, the value Rn of the root test converges to values
larger than 1 and a false minimum can be arrived at. Further for these
cases, we have observed that βn converges to −1, which means that
the scheme indeed ends up in a false minimum. For J > 16 we observe
that the scheme does not end up in a false minimum. Using only 10
stations, Figure 3 (top) shows that we end up in a local minimum,
and this is confirmed by the bad reconstruction in Figure 2 (top).
However, already with 18 stations a band-limited approximation of
our contrast profile is arrived at. Note that increasing the number of
sources yields no further improvement, the result is the same band-
limited approximation of the exact profile, and Figure 3 indicates that
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Figure 3. The quantity Rn for the CSI method (top), the MR-CSI
method (middle) and the MR-CSI method with 10% noise (bottom),
applied to the profile of concentric squares.
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Figure 4. MR-CSI reconstruction after 512 iterations, for various
source/receiver stations: J = 10, 18, and 30.

this is not a local minimum. Hence, if we are able to reduce the band-
limitation in some way, we will approach the exact global minimum.

Extending the CSI method with the weighted L2 total-variation
factor to the MR-CSI method, the reconstructions after 512 iterations
are shown in Figure 4, again for 10, 18 and 30 source/receiver stations,
respectively. Using the MR-CSI method the pictures has improved
and that is in agreement with the results shown in Figure 3 (middle).
Now, using only 10 stations, Figure 4 (top) shows that we obtain
a reasonable approximation of the contrast profile, but already with
18 stations we arrive at a good approximation to the exact contrast
profile, while Figure 3 (middle) shows that we seem to converge
to a global minimum. In fact, continuing the iterations leads to
further improvement. The present regularization has reduced the
band-limitation almost completely. Further, by comparing the middle
and bottom pictures of Figure 4, we again observe that increasing the
number of stations does not yield further improvement.
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Figure 5. MR-CSI reconstruction with 10% noise after 512 iterations,
for various source/receiver stations: J = 10, 18, and 30.

Finally, adding 10% white noise to the data leads to significant
improvement, see Figure 5. This feature of the MR-CSI method is due
to the term FS , which takes care of a higher weighting of the TV-factor,
when noise is present, while the TV-factor reduces the influence of the
noise on the reconstructed profile. In case of the presence of noise,
it is expected that more stations will reduce the disturbing influence
of the noise on the reconstructed profiles. Increasing the number of
sources from 18 to 20, leads indeed to improved reconstruction, this in
contrary to the noise-free results of Figure 4. In agreement with these
pictures, we also observe from Figure 3 (bottom) that the scheme with
noisy data does not end up in a local minimum when J > 10. This
established the fact that the MR-CSI method is very robust for noisy
data. With this knowledge we can judge the reconstruction of other
examples in more detail.
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Figure 6. Original ö profile.

5.2. ‘Austria’ Profile

In our second example, a number of single objects are contained in a
test domain of side d = 2 m. These objects consist of two disks and
one ring. The disks of radius 0.2 m are centered at (0.3, 0.6) m and
(−0.3, 0.6) m. The ring has an exterior radius of 0.6 m and an inner
radius of 0.3 m, and is centered at (0, 0.2) m. The electromagnetic
case is considered, where the objects have a relative permittivity of
2 (χ = 1). This ö profile is referred to as the ‘Österreich’ profile
by Belkebir and Tijhuis [27]. They used a distorted Born method
together with a ‘marching-on-in frequency’ technique from 100, 200,
300 to 400 MHz. For each frequency, the data were treated separately.
The initial guess corresponds to the result of the last iteration of the
previously treated frequency. The lower frequency gives a rough global
approximation of the contrast profile, while higher frequencies increase
the resolution. A similar frequency-hopping technique has been applied
by Litman et al. [23], but using a controlled evolution of a level set for
binary objects. They have used 64 sources and 65 receivers on a circle
of radius 3 m centered at (0,0), while the test domain was discretized
into 30 × 30 cells. To obtain more detail at higher frequencies, we
discretize the test domain into 64 × 64 cells, but we take only 48
source/receiver stations. Hence, it seems that we have under sampled
our problem, but the reconstructions will show that it does not reduce
the quality of reconstruction. The original ö profile is presented in
Figure 6, both as a surface plot and as a density plot.

In contrast to the multi-frequency inversion methods of [27] and
[23], we first consider the reconstruction results of our single-frequency
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Figure 7. The quantity Rn for the MR-CSI method, with 10% noise,
applied to the ö profile.

inversion method. Although we have the a priori information that the
profile is real, we did not use this information and we reconstruct for
complex contrast. However, in the figures we only present a density
plot of the real part of the contrast. Further, we have distorted our
data with 10% noise.

In Figure 7, the quantity Rn of the left-hand side of (55) has
been plotted as a function of the number of iterations, for various
frequencies. From this figure we may conclude that, for frequencies of
200, 400 and 500 MHz, the results converge to the global minimum,
while the results for frequencies of 600 and 700 MHz converge to a
false minimum. Indeed, for the latter cases, the value of βn converges
to -1. This phenomenon is confirmed by the actual reconstructions
in Figure 8 after 512 iterations. We observe that for 200 to 500
MHz good reconstructions are obtained, while the resolution increases
with increasing frequency. For these cases, the imaginary parts of
the contrast were very small. However, for the cases of 600 MHz
(d = 4λ) and 700 MHz (d = 42

3λ), there is no real reconstruction
and the imaginary parts of the contrast appear to be very large. This
confirms again that for the latter frequencies we are trapped in a false
local minimum.

On the other hand, when we use the results of 500 MHz as initial
guess for a single-frequency inversion at 700 MHz (frequency hopping
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200 MHz 300 MHz

400 MHz 500 MHz

600 MHz 700 MHz

Figure 8. MR-CSI reconstruction with 10% noise, f =
200, 300, 400, 500, 600, 700 MHz.
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→500 MHz 700 MHz 500 + 700 MHz300 + 

Figure 9. MR-CSI reconstruction with 10% noise using frequency-
hopping from 500 MHz to 700 MHz after 512 iterations (left) and
using the frequencies 300, 500 and 700 MHz simultaneously after 1024
iterations (right).

from 500 MHz to 700 MHz), we obtain the reconstruction results
presented in Figure 9 (left picture). Although this result is obtained
using only 32 × 32 source/receiver stations and 512 iterations, we
immediately observe that the resolution has been improved.

In stead of frequency hopping we also implement the present
multiplicative regularization in an algorithm dealing with a number
of frequencies, simultaneously. We then use the Maxwell model for
the representation of the contrast as a function of the frequency, as
it is described in [32]. We leave out further details, but we remark
that in this multi-frequency case, we have to operate with frequency
dependent update parameters for the updating of the contrast sources
[32]. In view of the larger complexity of the multi-frequency inversion
problem, the rate of convergence of the algorithm has been decreased
and therefore we carry out 1024 iterations. The reconstruction results
are shown in the right picture of Figure 9. Comparing the frequency
hopping method (left) and the multi-frequency method (right), we
again observe improved resolution and the differences with the exact
profile of Figure 6 are very small, notwithstanding the 10% noise added
to the data. Although it is computationally more expensive to perform
a simultaneous inversion for the frequencies at hand, the risk to end
up in a false minimum has been reduced.
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exact profile single-frequency reconstruction
n = 512

single-frequency reconstruction
n = 512

single-frequency reconstruction
n = 1024

Figure 10. Exact profile (left-top), and MR-CSI reconstructions
with 10% noise using a single frequency of 500 MHz, after 512
iterations (right-top) and using the frequencies 300, 500 and 700
MHz simultaneously, after 512 iterations (left-bottom) and after 1024
iterations (right-bottom).

5.3. Extended ‘Austria’ Profile

For a further test of our MR-CSI method, we again consider the ö
profile, but we take the relative permittivity of the two disks such
that the contrast is twice as large (χ = 2). The exact profile of
this extended ö is presented in the left-top picture of Figure 10. It
clearly shows that we are now dealing with a more complex contrast
profile. We take the scattered field data at 32 source/receiver stations.
Again we add 10% noise to these data. In the first instance we
consider a single frequency of 500 MHz. The reconstruction after 512
iterations is presented in the right-top picture of Figure 10. Although
the reconstruction is very good, we perform also a multi-frequency
inversion, using the data at 300, 500 and 700 MHz, simultaneously.
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exact profile single-frequency reconstruction
n = 512

multi-frequency reconstruction
n = 512

multi-frequency reconstruction
n = 1024

Figure 11. Exact profile (left-top), and MR-CSI reconstructions with
10% noise using a single wavenumber of 7, after 512 iterations (right-
top) and using the wavenumbers 5, 7 and 9, simultaneously, after 512
iterations (left-bottom) and after 1024 iterations (right-bottom).

The result after 512 iterations is shown in the left-bottom picture,
while the result after 1024 iterations is presented in the right-bottom
picture. We observe that the resolution improves using the multi-
frequency inversion, certainly after 1024 iterations. The difference with
the exact profile is almost invisible to the naked eye.

5.4. ‘Finger’ Profile

As last example we consider the ’finger’ profile, used by Colton and
Monk [10] in an acoustic inversion problem. In a test domain of d = 2 m
a circular cylinder with radius 0.6 m is centered. The index of refraction
is 2; this means that the contrast is equal to one. This cylinder is
perturbed: a small cylinder with contrast χ = 2 is present with origin
at (1

3 , 0) m. The radius of this circular perturbation is 0.1 m. Colton
and Monk [10] used scattered data at different wavenumbers, viz. data
at the four wavenumbers kb =1, 3, 5 and 7 m−1. The number of
incident waves for each value of kb was 51.
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In our inversion procedure, we take only 32 source/receiver
stations and we consider either the single-frequency inversion with
wavenumber kb = 7 m−1 (d = 2.2λ) or the multi-frequency inversion
with the three wavenumbers kb = 5, 7 and 9 m−1. Although Colton
and Monk used a circular test domain, we take a square test domain
with side length d = 2 m and discretized into 64 × 64 subsquares.
The left-top picture of Figure 11 shows the exact profile, while the
right-top picture represents the single-frequency reconstruction after
512 iterations. Note that for this single-frequency case we already
have a good reconstruction, although the ‘finger’ is a little too short
and too thick. The multi-frequency reconstruction yields after 512
iterations (left-bottom picture) a more slender ‘finger’, while increasing
the number of iterations up to 1024 (right-bottom picture) increases
its length.

6. CONCLUSIONS

We have discussed a new type of regularization that together with the
contrast source inversion method leads to a very effective inversion
technique for various applications. The multiplicative regularization
avoids the a priori knowledge about the material composition
and shape of the unknown object substantially. The artificial
tuning process, with a weighting parameter of the regularization
to obtain the ‘cosmetically best’ result, seems superfluous. A new
type of edge-preserving regularization has been introduced, being a
weighted L2-norm, so that the update parameters can be determined
explicitly, avoiding the usual line minimization for finding the optimum
parameter.

We have treated in detail the two-dimensional problem. The
extension to a full 3D electromagnetic problem is under development.
In this context we refer to [2], where the contrast source inversion
method for a full vectorial 3D electromagnetic problem has been
discussed, and where a multiplicative regularization has been employed
using the L1-norm, see (43) for p = 1. The introduction of the new
weighted L2-norm as regularization factor will simplify the updating
of the contrast significantly, while we expect improved reconstruction.
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