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Abstract—This paper presents an alternative analysis of obtaining
radiated electromagnetic (EM) fields in a dielectric prolate spheroid
using the perturbation technique. A circular loop antenna is used as
a radiator on the top of the spheroid. The spheroid is approximated
by the first a few terms of the Taylor series expansion (higher-order
approximation), and coefficients for transmission and scattered EM
fields are found using the perturbation method where the coefficients
are also expanded into Taylor series and determined by matching the
boundary conditions on the spheroidal dielectric surface. After the
approximated coefficients and EM fields are obtained, validity of the
approach is discussed and limitations are also addressed.
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1. INTRODUCTION

Electromagnetic (EM) radiation in the presence of a conducting or
dielectric object has been a hot area for many years and nowadays it
still attracts interests if many scientists and engineers because of it wide
applications [1-8]. Among those, the EM scattering by a spheroidal
object in the presence of a conducting loop has been comprehensively
covered in literature [9-11].

Instead of scattering problem, this paper is motivated to look into
the radiation and absorption issues of a circular loop antenna in the
presence of a prolate dielectric spheroid. Although analysis of a circular
loop antenna was well-documented in the past many years [12-21], the
radiation in the presence of a spheroidal object (regardless of prolate
or oblate) due to a circular loop antenna is not solved completely yet
[22]. About this, it is worth mentioning that in 1987, Uzunoglu and
Angelikas [22] analyzed a loop antenna radiating in the presence of a
human body. The human body is modeled by a spheroid of 3 layers
whose 2 outer thin layers represent skin and fat.

For accounting for radiation due to an electrically small loop
antenna, a constant current distribution along the loop is usually
employed [23]. In this paper, we also follow the same assumption.
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For analysis of the waves and fields that propagate through, or are
scattered by, a dielectric spheroid, the conventional approach used in
practice is to employ the spheroidal vector wave functions to expand
the fields in series. Then, these expansion coefficients are determined
by matching boundary conditions on spheroidal interface(s) of this
single-layered (or multilayered) spheroid [24-26]. However, computing
the spheroidal wave functions itself is a difficult task and matching
the boundary conditions to obtain the expansion coeflicients is
another computationally intensive task because of the lack of complete
orthogonality among the spheroidal wave functions [27-29].

Therefore, this paper will explore the feasibility of using the
perturbation technique to formulate the problem and employing an
analytical method to determine EM fields inside a prolate dielectric
spheroid. After the applicability of the method is confirmed, it will
also investigate the accuracy and limitation of the approach. As an
example, it will specifically study heating effects of an electrically
small circular loop antenna on a spheroidal human head that is
approximately modelled by a uniform dielectric spheroid (a much
better model than a spherical model in literature). In the subsequent
sections, the problem will be first formulated in a general form. Then,
the constant current distribution will be substituted into the integral.
The transmission and scattering coefficients will be solved for using the
perturbation technique. Numerical computations will be carried out
to quantify the coefficients and then the resultant electric fields and
specific absorption rates (SARs). Also, accuracies and limitations will
be discussed and addressed.

2. FORMULATION OF THE PROBLEM

Throughout the analysis, a time dependence of exp(—jwt) is assumed
for electromagnetic field quantities, but will be suppressed. In this
section, the general formula will be obtained, and subsequently the
constant current distribution model will be applied.

2.1. Current Source

Consider a geometry in Figure 1, where the origin is located in the
center of the spheroid. A thin circular loop antenna [17-19, 23] is
located right above a spheroid in the z-direction at a distance of
ro/tanéy from the origin, where ry is the radius of antenna, and 6y
is an angle made between the z-axis and the line from the coordinate
origin to the antenna.
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Figure 1. Radiation due to a small circular loop antenna carrying a
constant current in the presence of a prolate spheroid.

Assume that the current in the antenna is I(¢’), the volumetric
current density can be expressed as :

I(¢)o(r" — pp)o(6' — By) ~
1O o) "

J(r")

T0
sin@*

where pg = Note that pg is the distance from origin to the loop

antenna.

2.2. Spheroid

In spherical coordinates, the equation describing a spheroidal surface
can be written [30-32] as:

h
r= —— 2
1 —vsin?6 @)

where v = 1 — (h/w)?. In this paper, the factor h/w is always assume
to be greater than 1 because we consider the object to be a prolate
spheroid. For the case of h/w < 1, an oblate spheroid is thus assumed,
but will not be considered in the applications.

The unit normal vector, 7, of the spheroid surface is given by:

N
N (3)

n=
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where IN is a normal vector on the spheroid surface, and it is defined
as :
1 . .
N:V[r—f(e)]:?—cﬁd(:)ez?—F(ﬂ)O (4)
r
with 0 6 sin 6
v cos f sin
F(0) = = . 5
(6) f(6) do 1 —wvcos?f (5)

Thus, the unit normal vector can be written as:

n = ! r— F) 6 = n,7 — ngb
" TrFO? xﬂ+FwP0_r o6 ©)

where n, = 1/y/1+4 F(0)? and ng = F(0)//1 + F(6)2.

2.3. Electric Field

The current distribution J(r') along the loop antenna radiates
electromagnetic waves into the free space, and equations governing
the electromagnetic radiated fields are given as [33]:

E—ivp [[[ Geplr.r)- J@)av" (7)
\%4
where the prime ’ denotes the coordinates 7’ of the source and the

subscript 1 represents the volume occupied by the loop antenna. The
dyadic Green’s function of the electrical kind is given by [33]:

M%%W%Mmﬁw%

|
>3
ool 3
[«%Y
—
ﬁ

|
ﬁ
yn‘-
()
e 2 ||M8
dﬁz

+Ne(%m@;mmiw<w,

where 9y, denotes Kronecker symbol (§,,, = 1 if m = n, 9y, = 0 if
m # n), and the normalization coefficient D,,,, is given by:

(2n+1)(n —m)!
nln+ 1) (n+m) ()

In Eq. 8, the vector wave eigenfunctions are defined in the spherical
coordinates as:

Dmn =

MPZL”(COS 0) S meo

sin 0 cos

Me

o

k) =

mn(
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P ~
— (k) A CORO) 0% g (10)
do sin
_n(n+1)zg(kr) o, cos . O[rzp(kr)]
N(c;mn(k) = T P (cos ) “in mor + T
dP"(cos) cos ~  m Orz,(kr)]
do sin meb T sinf  kror
- P™(cos@) md)(Ab]. (10D)
cos

The function z,(kr) can be either the spherical Bessel or Hankel
function of the first kind, depending on the observation distance r
being smaller than the source distance 1’ (here in this paper, ' = pp).

In the case where a superscript () is used, the function z,(kr) takes
the form of h%l)(k:r); otherwise j, (kr).

To obtain the electric field due to the loop antenna, we substitute
Egs. 1 and 8 into Eq. 7, the electric field can be written as:

E~ —nok?
[E<]— 00222_”@ mn

n=1m=0

UML) (ko) | [ RS NG (o)
o o + o o (11)
oM Me, (ko) ®Y> Ne,. (ko)

where > and < attached to E refer to the electric fields when r > 7/
and r < 1/, respectively. The intrinsic impedance of free space is given
by nmo = 120mQ. The spherical Bessel function z,(kr) = j,(kr) of
the first kind is used in the vector wave eigenfunction M gmn(k) and

Ne,  (k), while the spherical Hankel function z,(kr) = hq(le)(k’]") s
used for M%)m(k) and Ng?)m(k:) The coefficients @é‘fnil(k% @é\/rfnil(k)’
q)évnfn(k:) and @évrsn(k:) are given by :

M< .
(I)gmn _ o Jn(kopo) dP!""(cos bp)
o> | sinbo | ALY (kopo) dé

(]

: /0 TS NI ), (12)

sin
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o< d[rjn(kor)]
gmn To k()’l”dT‘ Pm(ﬂ )
= F — m
N> T sinfy | d [rhg)(k‘or)} n 70
’ dr r=po
27 sin
T w16 (13)
0  CoS

where
dP]"(costy)  dP}*(cosf)
do B do 0=0o

2.4. Magnetic Field

Electric field can be obtained in terms of the derived magnetic field as
follows: )
H = -
JWHo
Using the following relations between Me,_ (k) and Ne,_ (k)
o o

V x E, (14)

1
Ne, (k)= EV x Me, (k) (15a)
1
Me, (k)= EV x Ne (k) (15b)
we have
H> ]
- Z Z 2 — o) D
[ H< n=1m=0
o< Ngjm(ko) o M (ko)

A N g - (16)
21" Ne,,, (ko) 0~ M, (ko)

Egs. (7) and (16) represent electromagnetic fields radiated by the
loop antenna in the free space. In the scattering problems, they are
commonly known as incident fields. Therefore, in the remaining of the
paper, they will be denoted by E; and H;, where subscript ¢ refers
to incident. Similarly, the transmitted fields in the spheroid can be
written as:

E; —nok?
g

nlmO
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QUML) (k) | [ @S NG (k) -
o o +<’ o o , 17a
@é\b - Me,, (k1) @éVT;nNgmn(kl)
H? ]
- 2_ mO
EaRx
oM< N (k) o< M (k)

mn mn mn

o o o

+¢ o ., (17b)
> Ne . (k1) o)~ Me, (k1)

where k1 = ko./€;, and ¢, is the relative permittivity of the spheroid.
The constants o and ¢ are unknowns to be determined. They are
known as transmission coeflicients.

The electromagnetic fields scattered by the spheroid can be
written as :

E; —T]k

n=1m= 0

, o< Mé”n(ko) o< N (k) -

o o _|_,Y o o , 18
@M> Memn(ko) (béVT;nNgmn(kO)
H?
Z > (2 bl
[ H< ] n=1m=0

%ZN%(%O) Ho Mot ||

B o] o _’_,Y o o , 19
@'~ Ne ., (ko) @ Me,, (ko)

where § and y are unknown scattering coefficients to be determined.

2.5. Boundary Conditions

To solve for the transmission and scattering coefficients, the boundary
conditions on the spheroid surface are applied. The continuity of
tangential £ and H fields are used. Inside the spheroid, only the
transmitted electromagnetic fields F; and H; exist. Outside the
spheroid in free space, the electromagnetic fields are the superposition
of the incident and scattered fields, E; + E; and H; + H,. In
mathematical form, the boundary conditions can be expressed as :

x (E; + Es) =n x Ey, (20a)
’?LX(Ht—i-HS):’ﬁ,XHt. (20b)
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2.6. Current Distribution

In general, the current distribution in Eq. (1), I(¢’), is expressed
as a Fourier series, as shown in [19]. However, the circular loop is
electrically small, so the current distribution along the loop can be
assumed to be constantly distributed in the following form:

I(¢') = Io (21)

where Ij is a constant. Typically, for a small antenna, kgrg < 0.05.

When the current distribution is constant or p = 0 in the cosine
series expression, it is shown in [19] that m = 0 in the wave mode and
there is no summation in Eq. (8). Simplifying Eqgs. (12) and (13), we
come up with the following results obtained:

<I>A§> 0
eun 6 n / /
M= -/ f<1> IV
eOn
In (kopo) dP,(cosby)
P 2n\OWY0) 922a
" [ hi (kopo) d0 222)

O (ko) | M, (ko) o To
e |- | e[ 4]
O (ko) | eon<ko> o M

— J(r))dV' = . (22b
| N e <[4 e

With the above current distribution, the boundary condition Eq. (20a)
can be written as:

= 2 + 1 dP,(cosf) ;.
ko Z - eOn (kO)M (]n(kOT) + Oénhg)(k‘oT))
do
s Zn —|— 1 dP,,(cosf
1 Z eOn (kl)ﬁn]n(klr)% (23&)

and boundary condition Eq. (20b) can be expressed as:

> 2n+1 dP,(cos0) Arjn(kor)]
konz_:l 1) e (o) | g ”( or

(1)
+anW) —ngn(n+1)P,(cosh) (jn(kor) —i—anhg) (kgr))l
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B 2n+1 dP,(cos @) O[rjn(kir)]
—ngn(n + 1)jn (k1) Py(cos 9)1 . (23b)

Note that the parameter r in Egs. (23a) and (23b) refers to the distance
from the origin to the surface of the spheroid, and it varies with 6.

3. DETERMINATION OF EXPANSION COEFFICIENTS

3.1. Perturbation Technique

As the scattering and transmission coefficients are coupled to each
other, we cannot simply obtain them from Egs. (23a) and (23b)
by equating the coefficients from both sides for each n term in the
summation. The perturbation approximation can be used to solve
for the coefficients, which is demonstrated in [30]. In the approach,
it is first assumed that the spheroid can be approximated by a basis
sphere whose the radius r is a constant. Under the zero-the order
approximation, the scattering and transmission coefficients can be
solved and in fact, the solution is just that of the Mie scattering theory.

Then, the first-order small perturbation term from Taylor series
is added to the variable r and the resultant functions in the boundary
condition equations. The higher order coefficients can thus be
obtained. These higher order coefficients contributing to the total
field will be added to the original transmitted and scattered fields.
Certainly, the parameter v must be less than 1 to ensure the
convergence of the perturbation technique to be achieved. The smaller
the v, the faster the convergence.

The parameters and functions are expanded using Taylor series as
shown below:

r~ h+v (g sin? 9) 41/ (% sin? 9) 413 (% sin® 9) (24a)
ny ~1—v° <% cos? @ sin’ 0) —? <cos2 0 sin’ 6?) (24b)

ng ~ v (cos fsin @) + 12 (cos 6 sin® 9)
+ 3 <cos 6 sin® 0 — % cos® @ sin® 9> (24c¢)

jn(kr) = CO (k) + v (P (k) sin?0) + v (CP (k) sin' 0)
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+ 17 (€57 (k) sin® 0) (24d)

hl (k) m O (k) + v (CP (k) sin?0) + v (CFP (k) sin' 0)
43 (C,(f’)(k) sin® 0) (24e)

Orin(kr)] o o)1y 4 v (C5) (k) sin 0) + 12 (€5 (k) sin' 0)

or T d
+v ( (3) ) sin 0) (24f)
1)
Ot ) oo )k + v (€45) () sin )
+ 12 (CG) (k) sin® 0) +v* (C3) (k) sin® 0) (24g)
where
C (k) = ju(kh) (252)
OO (k) = 2 kny (251)
k) = 24 ey + g, ey (250)
21,2 3513

(k) = 2 m) + 2 L)+ L GG (250)
(k) = bV (kh) (25¢)
(k) = %h [0 (k)] (250)
C ) = 2 ThD k)] + 0 [0 k] (25)

< / 272 " 373 n
¥ (k) = %[h%l)(kh)}Jr?)ﬁ 6h (8 (k)] + b 4’; [n50 (k)™ (25m)
C (k) = ju(kh) + khlja(kR)) (251)
o (k) = ";h( 2 (kR)] + KL (k)" (25)
CLP ) = 2 (6Lin kR + GRALin (B + B[ (OH™)  (25K)

(k) = S (300 (kn)Y + 42KAja (k1))

+ 13K2R2 o (k)] + KR [ (k)] ) (251)
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i) (k) = 10 (kh) + ki [BD (k)| (25m)
Dy = * (2h( (kR + khhg)(kh)”) (25n)
CD (k) = %(a[hg)(kh)}%kh[ (k)] "2 [P (k)] ") (250)
(k) = Zg (30[ g)(kh)] +42kh | “)(/-ch)}

+13822 1D (k)| + K303 (10 (k)| (4)) (25p)

where [, (#)]', [jn(9)]", [in(®)]" and [j, ()] refer to the first-, second-
, third- and fourth-order derivatives of spherical Bessel functions of the
first kind. The same argument or rule applies to the spherical Hankel
functions hgll)(o) of the first kind.

The scattering and transmission coefficients can be approximated

as :
o, ~ o +vall) 41202 + 1500, (26a)
o~ B +uB + 0750 + 780, (26b)

where the superscript () (n = 0,1,2,and 3) refers to the order
number. To obtain the solution, we consider approximations from
the zeroth order to the third oder subsequently. For each order
of the perturbations, we thus derive the expansion coefficients
correspondingly.

3.2. Zeroth Order Coefficients

Under the zeroth order approximation, it is assumed that contributions
due to orders of v and above are negligible. Therefore, the parameters,
functions and unknowns involved in the zeroth order solution are
defined or expressed as follows:

an ~al?, (27a)
By~ B, (27b)
rah, (27¢)
n, ~ 1, (27d)
ng ~ 0, (27e)
Ju(kr) = CO (), (27f)

hg J(kr) ~ C (k), (27g)
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w ~ O k), (27h)
0 rhg)(k:r)
% ~ CW (k). (27)

We now substitute these into boundary condition equations in
(23a) and (23b), and multiply both sides of the equations by
sin @dP;(cos0)/df. Integrating both sides of the equations from 0 to
7w with respect to 6, we then obtain the zeroth order coefficients as
follows:

(0) _ BoDo — AoFp

o B By 2
A0, s
A
where

Ay = koq)eOn(ko)C;(LO)(ko), (29a)
By = ko®eon (ko) C) (o), (29b)
Co = k1®eon (k1) C\" (K1), (29¢)
Do = — ko®eon(ko)C.” (ko). (29d)
Eo = k1 ®eon (k1)CY) (1), (29¢)
Fo=— ko‘PeOn(ko)Cég)(ko)- (29f)

3.3. First Order Coefficients

Under the first-order approximation, those terms with orders of v and
higher are assumed to be negligible. Substituting the approximate
formulas in Egs. (26a) and (26b) and the first-order approximate
solution obtained into Egs. (23a) and (23b), two equations are obtained
and can be solved by comparing the coefficients of the v. Again, by
multiplying sin dP;(cos #)/df and integrating from 0 to 7 with respect
to 0, the coefficients under the first-order approximation can be found
as follows:

1) _ BiD1— ARy

A ROy 30
(1)
o = At Dy (30b)

Ay
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where
Al = 2]60(1)]{300 (k?o), (31&)
By = 2kg®koC\Y) (ko). (31b)
Cl = leq)eon(kl)cj(o)(kﬁl) (31C)
2q+1 (1)
Dy = k BOC (k1)Q(q —
1 q=n—2z,n,n+2 { ' qg+1)"7 (k)@ )
2q+1 (0) (0) (1)
0ty 2eon (ko) (7 o)+ (ko) QUa—n) . (314)
E1 = 2k1®eon (k1)CY) (k). (31e)
2q+1 (1)
F = k 5(0)0 D(k1)Q(g — n
1 q:nZZ,n,nH { ' glg+1)71 Y (k)@ )
2q+1

+ k1 20+ 1) @eon (k1) BN (k1) S (4— 1) — ko= Peon (ko)

a(g+1)
- (C5) (ko) + a1 CY) (ko)) Q(a — 1) = ko(2q + 1)Beon (ko)

: (C’j(-o)(k'o) + aéo)C}(LO)(ko)) S(q— n)} (31f)

with Q(x) and S(x) obtained from the integration of # and shown in

Appendix. It is noted that the first-order coefficients, a( ) and ﬂr(Ll),
contain the zeroth-order coefficients.

3.4. Second Order Coefficients

Similarly, terms with orders of v and above are ignored in the second
order approximations. Using the same procedure as in the first order
approximation, the second order coefficients are found to be:

(2) _ BaDa — Ay By

=22 e 2
(2)
oy = Pt D (32b)
A

where
Ag = 2k®eon (ko) O (ko) (332)
By = 2ko®eon (ko) CY (ko). (33b)
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Cy =2k ® eon(kl)c( (K1), (33c)

&2 2q+1 (2)
Dy= Y {klméem(m)ﬂg‘”q (k)W (g —n)
q=n—4,--,n+4

2qg+1
q(g+1)

2g+1
+ Z {klh‘@eoﬂkl)ﬁél)cﬁ)(lﬁ)@(q —n)
q=n—2,n,n+2

~ ko Deon (ko) (€1 (ko) + o O (ko)) W (g - n)}

2qg+1
q(g+1)

By = 2k ®e0n(k1)CY) (K1), (33¢)

— RO

®eon (ko)alV CLY (ko) Q(q — n)}, (33d)

(+2) 9+ 1 o
2 k1 ———<Peon(k CD (N (0 —n
2 qn—4,--~,n+4{ lq(q+1) on( 1)6‘1 [ dj (k)W (q )

1
— 505 k)V (= )] + k1 (2 + 1) @eon (k1) 3"
2g+1

€300 4+ €57 0) | Xta = m) = Ko e =5 @eon(ho)
: {cg)(k:o) + a(O)CC(li)(kO)} Wi(g—n)+ kO%

Beon (ko) |Cyy (ko) +al i) (ko) |V (g =n) — ko (24 +1)Beon (ko)

€57 (ko) +af0 Y (ko) + C1” (ko) + ol €} (o) | X (g — n)}

2¢+1
b e A e o w0t - )
q=n—2,n,n+2

+ (24 + 1) ®eon (k1) BV CL (k1) S(q — n)

2 1
~ koot o) Of (ko) QL = m)
— ko(2q + 1)®eon (ko)aN C (ko) S (g — n)}. (33)

The intermediates defined here, W (e), X (o) and V(e), can be found
in the Appendix. The summation ¢ = n —4,---,n + 4 refers to terms
atg=n—4tog=n+4in a step of 2.
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3.5. Third Order Coefficients

Under the third-order approximation, the coefficients are written as:

(3) _ B3Ds — A3F}

571 - A3E3 _ 3303’ (34&)
(3)
o®) = B Cs + Ds (’jf;; Ds, (34b)
where
As = 2koCL (ko) Peon (ko) (35a)
Bs = 2koCY (ko) @ eon (ko). (35b)
Cs = 26,C") (k1) @eon (K1), (35¢)
(+2)
2q+1 (3)
D3 = 2 B0, (k1) BOC (k)Y (¢ — n
’ q—n—62,;~,n+6{ 1Q(q +1) on (k1) 3G (k)Y ( )
2+ 1
_ Oh@%(i@o) (€ (ko) + 0@ TP (ko)) ¥ (q — n)}

2g+1
+ Z {hq(gimqkm(h)ﬁél)cf)(lﬁ)W(q —n)
q=n—4,--n+4

2qg+1

g+ 1)

q)eOn(kO)a((]l)Ci(zQ)(kO)W(q - n)}

Py {klﬂ@e%wl)ﬂgmcf)(kl)cz(q—n)

g=n—2,n,n+2 q(¢+1)
2q +1
_ om%m(ko)afﬁ)c}gl)(ko)Q(q - n)}7 (35d)
ES = le(l)eon(kl)cé;]) (k1)7 (356)
2q+1 o) T (3)
Fy— 20t g 8O [0 (k)Y (g — n
’ q:n_;qn-iﬁ{ 1(]((] + 1) ) q [ dj ( ( )}
(1)
2q+1 Cy (k1) 0
_ 1m¢)eon(kl)ﬁéo) ]T + Céj)(kl) R(q _ n)

+ k1(2g + 1)@e0n (k1) A [C2 (k1) + CD (kr) + C0 (k)|
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- Z(g —n) — k1(2q + 1) @eon (k1) B

2¢g+1
g+ 1) DPeon (ko) [C )(k0)+04z(10)cc(zh)(k0)]
CPky) o)
Y(g—n) + ko qu eonko[ o | C;"(k)

+ Cé?)(ko) + 090 (ko) | R(q — n) — ko(2q + 1)@eon (ko)

2q+1

' {0(2)(%) +al0CP (ko) + Cg(l)(ko) + ac(zo)cf(Ll)(kO)
+

a 0>c,§°>(k0): Z(q —n) + ko Do (ko)

(+2)

. [CJ(-O)(k?o) + ago)kzocf(bo)(ko)} P(q— n)} + Z
q=n—4,--n+4

aq+1)
| V(q_m]““(2”1)‘1)80"(’“1)%” e )+ ()] X (g )
(0)
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— RO

The expressions for Y (e), Z(e), P(e) and R(e) are defined in Appendix.
The summation over ¢ = n—6, - - -, n+6 refers to the one from ¢ = n—6
to g =n+ 6 in a step of 2.
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4. NUMERICAL COMPUTATIONS

In this section, numerical values of the coefficients and electric
fields obtained theoretically are computed numerically. First, the
convergence and validity of calculating the transmission and scattering
coefficients and electric fields will be investigated. Then, the specific
absorption rate (SAR) within a spheroidal head will be computed.

The numerical parameters used in computations are shown in
Table 1. At different parts of this section, the parameters will be
varied and in that case, specifications are given. At f = 5 MHz, the
wavelength in free space is A = 3x 108/(5x10%) = 60 m. It is seen that
koro = 2w /X x 0.25 = 0.0262 and this means that the loop antenna is
electrically small.

Table 1. Parameters used in computations.

Relative Permittivity | €, 42
Frequency f | 5 MHz
Antenna radius ro | 0.25 m
Antenna position 0o | /3 rad

4.1. Transmission and Scattering Coefficients with Varying v

To accurately obtain expansion coefficients, the coefficient terms should
converge as the order increases. The convergence in the increasing
n direction also affects electric fields to be calculated. By setting
different confocal ratios for the spheroid, different sets of scattering
and transmission coefficients are obtained.

By setting h = 0.1 m and w = 0.08 m, v can be calculated form

2
v=1-— (%) and is found to be = 0.56. Tables 2 and 3 show the

numerical coefficients computed. Only the first 10n terms of each
order are computed. Note that the tables show the magnitude of each
coefficient term. Since we are interested in magnitudes of E-fields, it is,
therefore, important that the magnitudes of coefficients, |ay,| and |3,|

converge. The coefficients consist of several terms of different orders,

such as o, = a%o) + 1/04%1) + 1/204512) + V3a§’). If the magnitude of each
term converges, then the summation of the terms with different orders

will definitely converge.
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Table 2 shows the values of ﬂr(f) (where ¢ = 0,1,2, and 3 while
n =1 ~ 10), and it shows that as the order increases, the magnitude
decreases. The contribution from the third order approximation to the
coefficient terms is negligible as compared to that from the 0''¢ order
one.

Table 2. The first 10 ﬁr(f) values (n = 1 ~ 10) for different orders of ¢
(¢ =0,1,2, and 3) as v = 0.56.

Orders

n (the ‘ 1st ‘ ond ‘ grd

1 | 0.512 | 0.017 | 0.0090 | 0.0053
2 1 0.536 | 0.008 | 0.0031 | 0.0016
3 | 0.670 | 0.222 | 0.0890 | 0.0308
4 | 0.769 | 0.056 | 0.0184 | 0.0090
5 10.822 | 0.011 | 0.0034 | 0.0292
6 | 0.854 | 0.075 | 0.0232 | 0.0099
7 10.876 | 0.031 | 0.0096 | 0.0945
8 | 0.893 | 0.007 | 0.0025 | 0.0273
9 | 0.905 | 0.044 | 0.0128 | 0.0747
10 | 0.915 | 0.021 | 0.0065 | 0.0154

(

The same observation as in Table 2 is made for the ang) terms in
Table 3. In the subsequent subsection, it can be proven that the
FE-fields converge as n increases. The convergence number is about
n = 10. Beyond n = 10, contributions of those terms are negligible.
We now further change the aspect ratio of spheroid. For instance,

it can be calculated that |v| = 0.23 as w = 0.09 m. At this ratio, the

4 0) . . . . . .
convergence of ag) and 67(1) in the increasing order direction is even

faster.
It is noted that numerical values of scattering coefficients, ag ),

are much smaller than the transmission coefficients, ﬁq(f). However, the
scattered and transmitted E-fields do not have the same factor, mainly
due to the nature of Bessel and Hankel functions in the expressions of
scattered and transmitted E-fields. The number of orders to be used
for computing FE-fields depends on the aspect ratio of the spheroid.
For a large ratio, more higher order terms are needed to achieve a
reasonable accuracy. If the ratio is too large, where |v| is larger than
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Table 3. The first 10 ag) values (n = 1 ~ 10) for different orders of
¢ (¢=0,1,2, and 3) as v = 0.56.

Orders, A(B) = A x 108

n othe ‘ 15t ‘ ond ‘ grd

1| 1.20(=6) | 1.37(=6) | 1.17(—6) | 9.64(—6)
2 | 3.68(—9) | 4.25(—9) | 3.67(—9) | 2.93(—9)
3 | 6.36(—13) | 2.94(—11) | 5.06(—11) | 5.97(—11)
4 [ 7.03(=17) | 1.12(—15) | 1.86(—15) | 2.14(—15)
5 | 5.38(—21) | 2.37(—20) | 3.44(—19) | 8.18(—19)
6 | 3.03(—25) | 1.15(—23) | 1.30(—22) | 2.70(—22)
7 [ 1.30(—29) | 2.61(—28) | 9.49(—28) | 5.46(—27)
8 | 4.43(—34) | 2.75(—33) | 2.80(—32) | 2.97(—31)
9 | 1.21(—38) | 5.35(—37) | 7.32(—36) | 2.49(—35)
10 | 2.77(—43) | 6.98(—42) | 3.36(—41) | 1.05(—40)

1, perturbation method will fail as both the coefficients and E-fields
will fail to converge. For a smaller aspect ratio, convergence is very
fast and only expansion of lower orders are needed to achieve higher
accuracy.

4.2. Transmission and Scattering Coefficients with Varying
Frequencies

By varying the frequency from 0.5 MHz to 500 MHz at which the

antenna operates, the convergence of ag ) and @(f) are checked. The

effect of changing the frequency is the same as that of changing the
antenna dimension, rg. To keep coefficients constant, the factor kgrg
should remain constant. Here and subsequently, calculations are based
on |v| = 0.56.

At an operating frequency of 0.5 MHz, korg = 2.62 x 1073, At
such a low frequency, the antenna is electrically very small. Therefore,
it is valid to assume that the current distribution along the antenna is
constant. It is found that the coefficients converges rapidly as the order
increases. At a frequency of 5 MHz, korg = 2.62 x 1072, The values
of the coefficients are shown in Tables 2 and 3. At this frequency of 5
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MHz, the convergence is slow. At 50 MHz, kqrg = 0.26, the antenna
is almost non-electrically small. Therefore, the current distribution in
the antenna is almost sinusoidal. The convergence of the coefficients
are found to be much slower. When the frequency is further increased
to 500 MHz, kgrg = 2.62. At this frequency, the antenna can no longer
be considered to be small, and thus, the current distribution along the
antenna varies with ¢. The coefficients computed fail to converge, and
thus, the approximation of small antenna (with constant distribution
current) is no longer valid.

4.3. Transmission and Scattering Coefficients in Free Space

To test if our code works, we considered free space for which the
permittivity of the spheroid is set to ¢, = 1. The coefficients were
computed. The transmission coefficients, (3, is almost 1 while the
scattering coeflicients are almost zero. However, the first, second and
third orders coefficients, have very small values due to the perturbation
approximations. As compared to 1, these small values can be ignored.
This is expected because if the spheroid is absent, the electromagnetic
fields are not scattered, which is the same as scattering coefficients with
zero values. The transmitted field will be the same as the incident field,
which implies that the transmission coefficients all are 1.

4.4. Electric Fields along 6§ = 0 and 7 Directions

Along the z-axis, where § = 0 rad or 7 rad, the F-field is always zero.
From Eq. (10a), the factor dP,(cos 6)/df will always give 0 when § = 0
or 7 rad.

4.5. Near-Zone Field Pattern in Free Space

By setting the relative permittivity €, = 1, the spheroid is treated
as being removed. By plotting the E-field in free space, it gives the
general idea of the FE-field strength distribution inside the spheroid.
At the antenna position, 6y = ¢ rad, the E-field at r = pg = 0.5 m,
r = po/2 = 0.25 m, and r = pp/4 = 0.125 m are shown in Figure 2,
Figure 3, and Figure 4, respectively.

At r = pg and in the direction of the antenna, the field tends to
be the maximum. At an angle from 6 = 7/2 rad to 6 = 37/2 rad,
the field strength becomes small. At a distance closer to the origin,
the field strength is even smaller. At the antenna position of r = pg,
the field strength for 6y = 7/3 rad is found much larger than the field
for 6p = m/6 rad, as shown in Figure 5. The peak field strength again

tends toward the direction of the antenna. At r = £ and r = 22,
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1 2 3

Figure 2. Near field pattern at 6y = 7/6 rad and r = py.
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Figure 3. Near field pattern at 6y = 7/6 rad and r = pg/2.

Figure 4. Near field pattern at 6y = 7/6 rad and r = pp/4.
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Figure 6. Near field pattern at 6y = 7/2 rad and r = po.

the field strength patterns for 6y = 7/3 rad are almost the same as
those for 6y = /6 rad. At 6y = w/2 rad and r = pg, the antenna
field pattern is plotted in Figure 6. The antenna is symmetrically with
respect to the spheroid. The maximum field occurs at the § = 7/2 rad
direction, at which the antenna is situated. Therefore, the antenna
position will determine the direction of the maximum F-field.

4.6. Convergence of Electric Fields

The convergence is an important issue in the perturbation approach.
There are two convergence issues to be discussed, one is the
convergence of the field summation and the other is the convergence
of the perturbation approach. In this subsection, the convergence of
FE-fields as the order increases is first investigated. The convergence of
the perturbation approach is secondly discussed in the next subsection.
The parameters of the spheroid are set to h = 0.1 m, w = 0.08 m,
and |v| = 0.56. The E-fields inside and outside of the spheroid are
computed and compared.

The transmitted field inside the spheroid is computed at » = 0.05
m, and 0 = 7/4 rad. The E-field for n = 10 is about 7 orders smaller
than that for n = 1. This implies that to maintain a high accuracy, the
contribution due to terms beyond n > 10 can be ignored. Contrasting
to the coefficient terms in Table 2, the F-field converges fast with
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Figure 7. Magnitude of transmitted field of higher orders.

increasing n, while the coefficients remain almost constant. In the
increasing orders, the F-field oscillates in a convergence pattern, as
shown in Figure 7.

The scattered field outside of the spheroid is computed at r =
0.102 m, and € = 7/4 rad. Again, the scattered field for n = 10 is
almost 7 orders smaller than that for n = 1. Therefore, it is only
necessarily to compute the first 10 terms only for the summation of n.
Similar to the transmitted E-field, the value of scattered field oscillates
in a converging pattern as shown in Figure 7.

The total E-field at » = 0.102 m and # = x/4 rad is
thus computed. The total field outside the spheroid consists of
superposition of the incident and scattered fields while the total field
inside the spheroid is just the transmitted field only. In general,
different points inside and outside of the spheroid are considered, and it
is found that convergence of these E-fields behave in a pattern similar
to that of either the transmitted field or the scattered field.

4.7. Higher Order Approximations for Electric Fields

From Figure 7, the converging pattern allows for a graphical
approximation of higher orders of E-fields. It appears that E-fields
at different orders are bounded by 2 converging exponential curves. Of
the odd orders (e.g., the first- and the third-order), the E-fields fall on
the lower boundary curve, while F-fields of the even orders fall on the
upper boundary curve.

Assume that the upper and lower exponential curves converge to
a final converging E-field, F;y. Thus, the following equations can be
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obtained respectively:

Yiop = Cre” " + By (36a)
Ybottom — Ef - C3e_CQI (36b)

where Yo, and Ypottom refer to the magnitudes of the E-fields along the
top and bottom curves, respectively, while x refers to the orders. With
4 known points, the coefficient unknowns C7, C2, C3 and Ey can be
solved for. The E; will be the final value to which these 2 exponents
will converge and meet, and this can be used to approximate electric
field of higher-orders. In Fig. 7, this value is found to be 5.55648
V/m. By using this approximation, E-fields of higher orders can be
predicted, and it thus saves the time for obtaining the complex higher-
order coefficients.

4.8. SAR Varying with Antenna Positions

The specific absorption rate (SAR) is considered as a mean measure of
the power absorption in biological tissues and the SAR values in the
spheroid are calculated in this subsection using an equation as used in
[22]:

o|E[®

2p

where the conductivity and density of the spheroid are assumed to be
constant at o = 0.65 S/m and p = 1000 kg/m3, respectively.

The antenna position varies from 6y = 7/6 rad through 6y = 7/3
rad to /2 rad. Table 4 shows the maximum SAR values on the surface
of the spheroid at different antenna positions. In comparison between
the two figures at 6y = /6 rad and 6y = 7/2 rad, it is realised that
the SAR increases by a factor of almost 1200.

SAR = (37)

Table 4. SAR distributions at different antenna’s position.

0o (rad) | w6 | w3 | /2
Max SAR (W/kg) 0.0002911 | 0.095636 | 0.361657
0 at Max SAR (rad) | 0.958642 1.06644 1.57079

Figures 8, and 9 show the SAR distribution within the spheroid.
The distributions are plotted for half, quarter, one-eighth and one-
sixteenth power levels. The maximum power being absorbed tends
towards the direction of the antenna location, which agrees with the
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maximum F-field in free space shown earlier. These patterns agree

with the results obtained previously in [22] who used different approach
to deal with this problem.

0.1

-0.1

- 0.075 -0.05 - 0.025 0 0.025 0.05 0.075

Figure 8. SAR distribution inside the spheroid for § = 7/6 rad.
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Figure 9. SAR distribution inside the spheroid for § = /2 rad.
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4.9. Varying Antenna’s Size

Now, the antenna position is fixed at a height of 0.114 m above the
origin, and the antenna size varies from ro = 0.25 m to r¢g = 0.015625
m. The magnitude of the E-field is calculated on the surface of the
spheroid. Table 5 shows the E-field varying at different positions when
the antenna size varies. From Table 5, it is seen that small antennas are
non-efficient radiator, and there is an optimum size where the antenna
radiates more efficiently in the presence of the spheroid.

Table 5. Maximum FE-fields for different antenna sizes (or
corresponding positions rg).

Antenna position rg (m) 0.25 | 0.12 | 0.062 | 0.031 | 0.015
Maximum E-field (V/m) 21.03 | 30.54 | 17.21 | 4.39 0.64
0 at maximum FE-field (rad) | 1.14 | 0.78 | 0.48 | 0.33 | 0.025

Figure 10 shows that as rg changes from 0.125 m to 0.25 m, the
maximum of |E| on the surface increases, and the position where this
maximum occurs shifts from § = 1.14 rad to § = 0.078 rad. As the
radius decreases further, the |E| decreases rapidly, and the position
where the maximum |E| occurs tends towards 6 = 0 rad.

30 Lt N

——  10=0.25m

r0=0.125m

E (V/m)
3

6 (rad)

Figure 10. FE-field patterns on the surfaces for rg = 0.25, 0.125,
0.0625, 0.03125, and 0.015625 m.
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5. CONCLUSIONS

This paper deals with radiation due to a thin circular loop antenna in
the presence of a prolate spheroidal object (in this case, a spheroid
human head is considered). To simplify theoretical formulations
and speed up numerical computations, the perturbation approach is
employed in the theoretical treatment. Different from the previous
studies where only the first-order approximation was made, the present
research focuses on the higher-order perturbation approach. To ensure
good accuracies to be obtained, approximations of both the second-
order and third-order in the perturbation are considered. Validation
of the approach is made in different means, either by reducing the
present theoretical results to those existing object-free results and
the first order approximated results in the presence of a spheroid in
literature, or by comparing the present results with existing results and
the comparisons show an excellent agreement. Also, the convergence
of both the F-field summations and the perturbation approach are
discussed. Numerical results of both transmitted field inside the
spheroid and the scattered field and total field outside the spheroid
are obtained for different antenna sizes and different loop positions.
The specific absorption rate values due to the radiated power into
spheroidal head are also computed and various maximum SARs are
obtained for various parameters assumed.

APPENDIX A. INTERMEDIATE INTEGRALS

The integrations of integrand, a product of 2 Legendre functions’
derivatives with sinf and/or cos@ terms, are given subsequently.
In deriving the following expressions, the orthogonal and recurrence
properties of Legendre functions as given in [34] and [35] have been
applied:

7 /” dP,(cosf) dP(cos )
1 =
0

. 3 . _
70 g Sin 0dh = Q(l —n)

2n(n—D(n-2n+1) ..
_(2n_1)(2n—3)(2n+1)7 ifl=n-2,
= An’(n + 1)? if ] =
") @-Dent @+ "
2n(n+1)(n+2)(n+3) .., |
—(2n+1)(2n+3)(2n+5)’ ifl=n+2;
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2(n+1)2(n+2)(n+3) (n+4) (n+5) e r
G @ ) 23 @nt8) @nn o) @iy Ll ="n+4,
2(n+1)(n+2)(n+3)(n+4) (n+5)(n+6) (n+7) ifl=n+ 6:

(2n+1)(2n+3)(2n+5)(2n+7)(2n+9)(2n+11)(2n+13)°
/” dP;(cos ) dP,(cosb)
0

cos® fsin® 0df = R(l — n)

de dé
2(n—6)(n—5)(n—4)(n—3)(n—2)(n—1)n(n+1 .
(Qn—(ll)(2)7(7,—9)2§n—7))((2n—)5()(2nz(3)(2n)—(1)(2n)+1)’ if i =n—6
—2(n—4)(n=3)(n—2)(n—1)n(n+1)(2n%-6-9) flemn—4
(2n—9)(2n—7)(2n—5)(2n—3)(2n—1)(2n+1)(2n+3) )
—2(n—2)(n—1)n(n+1)(n*—2n313n2+14n+60) fl=mn—9

(2n—7)(2n—5)(2n—3)(2n—1)(2n+1)(2n+3)(2n+5)’
4n? (n+1)2(2n*+4n>—23n2—25n+60)
(2n—5)(2n—3)(2n—1)(2n+1)(2n+3)(2n+5)(2n+7)
—2n(n+1)(n+2)(n+3)(n*+6n3—n2—-30n+36 .
(2n73)((2n7)£)(2nZ£1)(21)1(+3)(2n+5)(2n+7)(2n429)’ itl=mn+2,

2n(n+1)(n+2) (n+3) (n+4) (n+5)(2n?+10n—1 .
- (2n7(1)(2n)i1)(2)n(+3)()2(n+5))((2n+7))((2n+9)(12n4)rl)’ it I =mn+4,
2n(n+1)(n+2)(n+3) (n+4)(n+5)(n+6)(n+7)

ifl =n,

(2n+1)(2n+3)(2n+5) 2n+7) (2n+9) (2n+11)(2n+13)° it { =n+6.
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