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Abstract—In this paper, we study the electromagnetic fields
propagating through a slab which permittivity and permeability are
simultaneously negative. We show that symmetry properties of the
wave solution remove all ambiguity in the choice of the sign of the
wave numbers inside the slab. Upon developing the Green’s functions
in terms of plane waves, growing “evanescent” waves in the direction
of power flow are shown to exist inside the slab. As an illustration,
the perfect imaging property of a slab where ε1 = −ε0 and µ1 = −µ0

is verified.
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1. INTRODUCTION

Until recently, materials possessing both negative permittivity and
permeability simultaneously have been merely a theoretical concept,
without any prospect of an impact on the technological world. After
the first theoretical consideration in 1968 [1], there has been little
effort to better understand the electromagnetic behaviors of these
materials for almost three decades. It is only recently, in 1996 for
the permittivities [2], and in 1999 for the permeabilities [3], that the
possibility of realizing plasma-like structures in the GHz band has been
demonstrated experimentally. These contributions have then been
naturally followed in year 2000 by the first realization of a material
with simultaneously negative permittivities and permeabilities in the
GHz band [4].

After [1], one of the very first theoretical contribution was offered
in [5], where the focusing property of a loss-less non-dispersive slab
made of a material with both negative permittivity and permeability
has been demonstrated. In this contribution, the author not only
discussed the question of propagating waves but also of evanescent
waves, showing that the overall transmission process through both
interfaces of the slab results in an increase in their amplitude. The
ability to focus both propagating and evanescent waves was thus
appropriately used to justify the denomination of a “perfect lens”.
However, despite these already involved theoretical considerations, the
main demonstration in [5] was based on a ray-optics approximation and
consequently, a more rigorous approach was still lacking in literature.

The present paper is aimed at providing such a detailed analysis.
The approach we have chosen first expresses the electromagnetic
fields inside and outside a loss-less non-dispersive slab with arbitrary
permittivity and permeability by using the layered Green’s function
in plane wave expansion for an excitation current source. Then the
coefficients in the Green’s functions’ kernels are solved by matching
the boundary conditions for tangential electric and magnetic fields.
Upon carefully carrying the algebra of the problem, it is shown that
the mathematical expressions governing the fields inside the dielectric
slab are symmetric with respect to both the total wavenumber (k1

in this paper) and the longitudinal wavenumber (k1z in this paper).
Consequently, the delicate issue of having to choose a sign for k1z is
avoided in this way. Finally, for the sake of validation with some recent
properties discussed in the literature, we also study the propagation of
waves through a slab of a material with both negative permittivity and
permeability, ε1 = −ε0, µ1 = −µ0 (ε1 and µ1 being the constitutive
parameters of the slab). It is then rigorously shown that, for this
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special case, if the current source is located from the first dielectric
interface at a distance smaller than the slab thickness, an identical
field distribution (“image”) is obtained inside the slab and a second
one at the exit of the slab.

2. FORMULATION OF THE PROBLEM

Consider a current source J situated at a distance h above a
homogeneous slab of thickness d, with arbitrary permittivity and
permeability (ε1, µ1), as depicted in Fig. 1. The regions z > 0 and
z < −d are free-space (ε0, µ0). In order to study the electromagnetic
waves and the Poynting power emanating from J and propagating
through the slab, the layered Green’s function formulation is employed.

Figure 1. A current source J placed above a slab by both negative
permittivity and negative permeability.

2.1. Layered Green’s Function and Boundary Conditions

The mathematical development of the problem starts by constructing

the layered Green’s functions, Gn0 (where n denoting the region of the
observation and 0 representing the region of the source), in a classical
plane wave expansion. The main advantage of proceeding this way in
our case is the possibility of using these Green’s functions for arbitrarily
distributed current sources. In the situation of Fig. 1, the layered
Green’s functions are written as [6, page 853]:
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1. In region 0, above the slab (0 < z < z′):

G00(r, r
′)

=
i

8π2

∫∫
dkxdky

1

k0z

{[
ê(−k0z)e

iK·r+RTE ê(k0z)e
ik·r

]
ê(−k0z)e

−iK·r′

+
[
ĥ(−k0z)e

iK·r + RTM ĥ(k0z)e
ik·r

]
ĥ(−k0z)e

−iK·r′
}

(1)

2. In region 1, inside the slab (−d < z < 0):

G10(r, r
′)

=
i

8π2

∫∫
dkxdky

1

k0z

{[
Bê1(−k1z)e

iK1·r+Aê1(k1z)e
ik1·r

]
ê(−k0z)e

−iK·r′

+
[
Dĥ1(−k1z)e

iK1·r + Cĥ1(k1z)e
ik1·r

]
ĥ(−k0z)e

−iK·r′
}

(2)

3. In region 2, below the slab (z < −d):

G20(r, r
′) =

i

8π2

∫∫
dkxdky

1

k0z

{
T TE ê(−k0z)e

iK·rê(−k0z)e
−iK·r′

+
[
T TM ĥ(−k0z)e

iK·r
]
ĥ(−k0z)e

−iK·r′
}

(3)

where TE and TM are the classical two polarization states, R and
T are the reflection and transmission coefficients, respectively, and
A, B, C, D are four constants to be determined from the boundary
conditions. Vectors ê and ĥ are the polarization vectors outside the
slab whereas ê1 and ĥ1 are inside the slab, respectively, defined by:

ê(±k0z) =
x̂ky − ŷkx

(x̂kx + ŷky)
(4)

ĥ(±k0z) =
∓k0z

k
√

k2
x + k2

y

(x̂kx + ŷky) + ẑ

√
k2

x + k2
y

k
(5)

ê1(±k0z) =
x̂ky − ŷkx√

k2
x + k2

y

(6)

ĥ1(±k1z) =
∓k1z

k1

√
k2

x + k2
y

(x̂kx + ŷky) + ẑ

√
k2

x + k2
y

k1
(7)

and the wave vectors k and K are defined by:

k = x̂kx + ŷky + ẑk0z (8)

K = x̂kx + ŷky − ẑk0z (9)
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for regions 0 and 2, and

k1 = x̂kx + ŷky + ẑk1z (10)

K1 = x̂kx + ŷky − ẑk1z (11)

for region 1.
The integrations in Eqs. (1)–(3) to be conducted in terms of kx and

ky are over entire real space (from −∞ to ∞). Note that the horizontal
components of the wave vectors, kx and ky, are the same in all the
regions due to phase matching, whereas the vertical components k0z

and k1z are, in general, discontinuous. The various coefficients, namely
the reflection (RTE,TM ) and transmission (T TE,TM ) coefficients as well
as A, B, C, D, are determined by a proper application of the boundary
conditions discussed in the following.

Given a current distribution J , the electric fields in region n, where
n ∈ {0, 1, 2}, are expressed as

En(r) = iωµ0

∫
Gn0(r, r

′) · J(r′)dr′ (12)

By satisfying the boundary conditions for tangential electric and
magnetic fields at z = 0 and z = −d, we obtain the
system of equations shown in Appendix A.1 for the coefficients
RTE, RTM , RTE , RTM , A, B, C , and D. The solutions from these
equations are as follows:

RTE =
1 − e2ik1zd

1 + RTE
01 RTE

10 ei2k1zd
RTE

01 (13)

T TE =
4ei(k1z−k0z)d

(
1 + pTE

01

) (
1 + pTE

10

) (
1 + RTE

01 RTE
10 ei2k1zd

) (14)

RTM =
1 − e2ik1zd

1 + RTM
01 RTM

10 ei2k1zd
RTM

01 (15)

TTM =
4ei(k1z−k0z)d

(
1 + pTM

01

) (
1 + pTM

10

) (
1 + RTM

01 RTM
10 ei2k1zd

) (16)

A =
1 − pTE

10

2

(
1 + RTE

01 RTE
10

1 + RTE
01 RTE

10 ei2k1zd

)
e2ik1zd (17)

B =
1 + RTE

01

1 + RTE
01 RTE

10 ei2k1zd
(18)

C =
µ1k

µ0k1

2RTM
10(

1 + pTM
01

) (
1 + RTM

01 RTM
10 ei2k1zd

)ei2k1zd (19)
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D =
µ1k

µ0k1

2(
1 + pTM

01

) (
1 + RTM

01 RTM
10 ei2k1zd

) (20)

Appendix A.2 lists the parameter pTE,TM
01 and the Fresnel reflection

coefficient R
TE,TM
01 on the z = 0 surface, as well as p

TE,TM
10 and R

TE,TM
10

on the z = −d surface.

2.2. Symmetry Properties of the Green’s Functions

After a close examination of Eqs. (13)–(20), the following symmetry
properties can be verified:

RTE,TM (−k1z) = RTE,TM (k1z) (21)

TTE,TM (−k1z) = TTE,TM (k1z) (22)

A(∓k1z) = B(±k1z) (23)

C(∓k1z) = D(±k1z) (24)

so that we immediately conclude that the Green’s functions G00 and

G20, and the fields in regions 0 and 2, are invariant with respect to the
sign of k1z, i.e.,

G00,20(−k1z) = G00,20(k1z) (25)

E0,2(−k1z) = E0,2(k1z) (26)

H0,2(−k1z) = H0,2(k1z) (27)

In addition, by using the symmetry properties of Eqs. (23) and (24),
we obtain the following relations for the summation terms in Eq. (2):

B(−k1z) ê1(k1z)e
ik1·r + A(−k1z)ê1(−k1z)e

iK1·r

= A(k1z)ê1(k1z)e
ik1·r + B(k1z)ê1(−k1z)e

iK1·r (28)

C(−k1z) ĥ1(k1z)e
ik1·r + D(−k1z)ĥ1(−k1z)e

iK1·r

= C(k1z)ĥ1(k1z)e
ik1·r + D(k1z)ĥ1(−k1z)e

iK1·r (29)

These relations imply that, in region 1, the Green’s function, as well
as the fields, are also invariant with respect to the sign of k1z, i.e.,

G10(−k1z) = G10(k1z) (30)

E1(−k1z) = E1(k1z) (31)

H1(−k1z) = H1(k1z) (32)
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In addition, another important property is extracted from a close
examination of Eqs. (28) and (29), which is the following: the wave

number k1 does not appear in G00,20, and appears as k2
1 in the Green’s

function G10. Therefore, the Green’s functions in all regions are
invariant with respect to the sign of k1 also. Notice that this conclusion
is not surprising since the waves expressed in Eqs. (1)–(3) include waves
in all possible directions.

3. CURRENT SOURCE WITH GAUSSIAN
DISTRIBUTION

In the previous section, the developments of the Green’s functions
have been kept very general. In the present section though, we shall
particularize the treatment to ε1 = −ε0, µ1 = −µ0. Hence, the Green’s
functions given by Eqs. (1)–(3) can now be written as:

G00(r, r
′) =

i

8π2

∫∫
dkxdky

1

k0z

{[
ê(−k0z)e

iK·r
]
ê(−k0z)e

−iK·r′

+
[
ĥ(−k0z)e

iK·r
]
ĥ(−k0z)e

−iK·r′
}

(33)

G10(r, r
′) =

i

8π2

∫∫
dkxdky

1

k0z

{[
ê(k0z)e

ik·r
]
ê(−k0z)e

−iK·r′

−
[
ĥ(k0z)e

ik·r
]
ĥ(−k0z)e

−iK·r′
}

(34)

G20(r, r
′) =

i

8π2

∫∫
dkxdky

1

k0z
e−i2k0zd

{[
ê(−k0z)e

iK·r
]
ê(−k0z)e

−iK·r′

+
[
ĥ(−k0z)e

iK·r
]
ĥ(−k0z)e

−iK·r′
}

(35)

In addition, we shall also suppose from now on that the current
source is placed above the slab at z = h, and has a Gaussian
distribution in the transverse xy-plane expressed by:

J(r′) = ŷIo`δ(z
′ − h)

e−x′2/g2
x+iβxx′

√
πgx

e−y′2/g2
y+iβyy′

√
πgy

(36)

where gx and gy are factors specifying the expansion size of the current
in the horizontal xy-plane, βx and βy are the parameters of phase shift,
and Io` is the amplitude of the current distribution with the same units
as a dipole moment. For simplicity, we assume here that βx = βy = 0.
Upon using Eq. (12), the Greeen’s functions (33)–(35) and the current
distribution (36), we obtain the electric and magnetic fields for the
x-, y-, and z-components as listed in Appendix A.3. Particularly, in
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the xz-plane where y = 0, the expressions for the fields are simplified
further to eventually yield:

1. In region 0 (0 ≤ z ≤ h),

E0y(r) = −
ωµ0k

8π2
Io`Iy(x, z − h) (37)

E0x,0z(r) = −
k2

8π2
Io`Ix,z(x, z − h) (38)

E0x(r) = E0z(r) = H0y(r) = 0 (39)

2. In region 1 (−d ≤ z < 0),

E1y(r) = −ωµ0k

8π2
Io`Iy(x,−z − h) (40)

E1x,1z(r) = −
k2

8π2
Io`Ix,z(x,−z − h) (41)

E1x(r) = E1z(r) = H1y(r) = 0 (42)

3. In region 2 (z < −d),

E2y(r) = −ωµ0k

8π2
Io`Iy(x, z + 2d − h) (43)

E2x,2z(r) = − k2

8π2
Io`Ix,z(x, z + 2d − h) (44)

E2z(r) = E2x(r) = H2y(r) = 0 (45)

where we have defined

Ix(x, z) =

∫ ∞

0
ds

∫ 2π

0
dφsψ (s, φ)e−ik

√
1−s2zeiksx cos φ (46)

Iy(x, z) =

∫ ∞

0
ds

∫ 2π

0
dφs

1 − s2 sin2 φ√
1 − s2

ψ (s, φ)e−ik
√

1−s2zeiksx cos φ (47)

Iz(x, z) =

∫ ∞

0
ds

∫ 2π

0
dφ

s2 cosφ√
1 − s2

ψ (s, φ)e−ik
√

1−s2zeiksx cos φ (48)

with ψ (s, φ) = e−
g2
xk2s2 cos2 φ

4 e−
g2
yk2s2 sin2 φ

4 .
The numerical computation of the fields in the different regions has

been performed at a frequency of f = 30GHz, with the permittivity
and the permeability of the slab set to −ε0, −µ0, respectively, and a
thickness of d = 8λ, or 8 cm (λ being the wavelength in free-space).
The current distribution is specified by the factors gx = gy = 1.2λ and
βx = βy = 0. The units of the field plots are all in Io`.
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Figure 2. y-component of the electric field propagating through a
slab of thickness d = 8 λ (f = 30GHz), with constitutive parameters
(−ε0,−µ0). The current source is placed at z = 11λ. The units of the
field amplitude are Io`. Left: |Ey|. Right: Re(Ey).

Fig. 2 shows the contour plot of Ey component for the current
source placed at z = 11λ, over the slab, namely at a distance to the first
interface superior than the slab thickness. The left plot is the absolute
value of Ey, which gives the time-averaged Ey field, whereas the right
plot is the real part of Ey, which represents the instantaneous Ey field
at time t = 0. Notice the continuity of Ey across the boundaries at
z = 0 and z = −8λ. Figs. 3 and 4 show the x- and z-components of the
magnetic field H, respectively. Note that the tangential component Hx

is continuous at the boundaries (z = 0, z = −8λ), while the normal
component Hz is not, as expected. The Poynting power is shown
in Fig. 5, where the left plot is the amplitude of the time-averaged
Poynting power overlapped with arrows indicating the direction of
the power ow. Note that the direction of the Poynting power flow is
consistently in the direction away from the current source. The right
plot in Fig. 5 shows the amplitude value of Re(E) × Re(H), which
represents the instantaneous Poynting power.

Figs. 6–9 show the fields, Ey, Hx and Hz, and Poynting power flow
for a current source placed at z = 5λ, namely at a distance to the first
interface inferior than the slab thickness. Note that perfect images for
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Figure 3. x-component of the magnetic field propagating through a
slab of thickness d = 8 λ (f = 30GHz), with constitutive parameters
(−ε0,−µ0). The current source is placed at z = 11λ. The units of the
field amplitude are Io`. Left: |Hx|. Right: Re(Hx).

Figure 4. z-component of the magnetic field propagating through a
slab of thickness d = 8 λ (f = 30GHz), with constitutive parameters
(−ε0,−µ0). The current source is placed at z = 11λ. The units of the
field amplitude are Io`. Left: |Hz|. Right: Re(Hz).
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Figure 5. Poynting Power for a slab with (−ε0,−µ0) and thickness
d = 8λ (f = 30GHz). The current source is placed at z = 11λ.
The units of the field amplitude are |Io`|2. Left: |〈S〉| with arrows
indicating the directions of power flow, 〈〉 denoting the time averaging.
Right: |Re(E)× Re(H)|.

Figure 6. y-component of the electric field propagating through a
slab of thickness d = 8 λ (f = 30GHz), with constitutive parameters
(−ε0,−µ0). The current source is placed at z = 5λ. The units of the
field amplitude are Io`. Left: |Ey|. Right: Re(Ey).
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Figure 7. x-component of the magnetic field propagating through a
slab of thickness d = 8 λ (f = 30GHz), with constitutive parameters
(−ε0,−µ0). The current source is placed at z = 5λ. The units of the
field amplitude are Io`. Left: |Hx|. Right: Re(Hx).

Figure 8. z-component of the magnetic field propagating through a
slab of thickness d = 8 λ (f = 30GHz), with constitutive parameters
(−ε0,−µ0). The current source is placed at z = 5λ. The units of the
field amplitude are Io`. Left: |Hz|. Right: Re(Hz).
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Figure 9. Poynting Power for a slab with (−ε0,−µ0) and thickness
d = 8λ. The current source is placed at z = 5λ (f = 30GHz).
The units of the field amplitude are |Io`|2. Left: |〈S〉| with arrows
indicating the directions of power flow, 〈〉 denoting the time averaging.
Right: |Re(E)× Re(H)|.

the field at z = 5λ are formed at z = −5λ in the slab and z = −11λ
below the slab. In other words, this slab forms identical image fields
inside the slab in the region −8λ < z < −5λ and outside the slab in
the region z < −11λ to the “source field” in the region 0 < z < 5λ.
More generally, if the condition h < d is satisfied, two perfect images
will be formed, one in each region 0 > z > −d and z < −d. The exact
location of these images has already been predicted in [1, 5] and in our
case, can also be directly verified from Eqs. (40)–(45) to be at:

zimage 1 = −h (49)

zimage 2 = h − 2d (50)

4. CONCLUSIONS

Electromagnetic waves inside and outside a slab made of a medium
with both ε1 and µ1 negative have been studied by using the
layered Green’s function formulations, with coefficients of plane waves
determined from the boundary conditions for the tangential electric
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and magnetic fields. The layered Green’s functions include complete
sets of planewave components, and it has been shown that the final
solution of the Green’s functions and the fields are invariant with
respect to the signs of the wave numbers k1 and k1z in the slab.
Consequently, it appears that in general, the up- and down-going
waves for propagating waves, and the growing and decaying waves for
evanescent waves may all exist inside the slab. For the special case in
which the slab has ε1 = −ε0 and µ1 = −µ0, the evanescent waves in
the slab are growing in amplitude and the wave vector has an opposite
direction to the direction of the Poynting power ow. Finally, for a slab
with ε1 = −ε0 and µ1 = −µ0 and a current source located at a proper
position, the image fields are found inside and outside the slab, and
are identical to the field radiated in the source region.

APPENDIX A.

A.1. Boundary Conditions

In the situation of Fig. 1, boundary conditions applied on the
electromagnetic field lead to the following system of equations:

For TE Waves:

1 + RTE = B + A (A1)

k0z

µ0

(
−1 + RTE

)
=

k1z

µ1
(−B + A) (A2)

Beik1zd + Ae−ik1zd = T TEeik0zd (A3)

k1z

µ1

(
−Beik1zd + Ae−ik1zd

)
= −

k0z

µ0
T TEeik0zd (A4)

For TM waves:

k0z

k

(
1 − RTM

)
=

k1z

k1
(D − C) (A5)

k

µ0

(
1 + RTM

)
=

k1

µ1
(D + C) (A6)

k1z

k1

(
Deik1zd − Ce−ik1zd

)
= T TM k0z

k
eik0zd (A7)

k1

µ1

(
Deik1zd + Ce−ik1zd

)
=

k

µ0
TTMeik0zd (A8)
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A.2. Fresnel Reflection Coefficients

RTE,TM
01 =

1 − p
TE,TM
01

1 + pTE,TM
01

= −RTE,TM
10 (A9)

where

pTE
01 =

µ0k1z

µ1k0z
= 1

/
pTE
10 (A10)

pTM
01 =

ε0k1z

ε1k0z
= 1

/
pTM
10 (A11)

A.3. Electromagnetic Fields for a Slab with (−ε0,−µ0) and a
Gaussian Distributed Current Source

In region 0 (0 ≤ z ≤ h),

E0x(r) =
ωµ0

8π2k2
Io`

∫∫
dkxdky

kxky

k0z
eikxx+ikyy ψ (kx, ky) (A12)

E0y(r) =−
ωµ0

8π2k2
Io`

∫∫
dkxdky

1

k0z
eikxx+ikyye−ik0z(z−h)e−ik0z(z−h)

· (k2−k2
y)ψ (kx, ky) (A13)

E0z(r) =− ωµ0

8π2k2
Io`

∫∫
dkxdkykye

ikxx+ikyye−ik0z(z−h) ψ (kx, ky) (A14)

H0x(r) =− 1

8π2
Io`

∫∫
dkxdkye

ikxx+ikyye−ik0z(z−h) ψ (kx, ky) (A15)

H0y(r) = 0 (A16)

H0z(r) =−
1

8π2
Io`

∫∫
dkxdky

kx

k0z
eikxx+ikyye−ik0z(z−h) ψ (kx, ky) (A17)

In region 1 (−d ≤ z < 0),

E1x(r)=
ωµ0

8π2k2
Io`

∫∫
dkxdky

kxky

k0z
eikxx+ikyyeik0z(z+h) ψ (kx, ky) (A18)

E1y(r)=−
ωµ0

8π2k2
Io`

∫∫
dkxdky

k2−k2
y

k0z
eikxx+ikyyeik0z(z+h) ψ (kx, ky)(A19)

E1z(r)=
ωµ0

8π2k2
Io`

∫∫
dkxdkykye

ikxx+ikyyeik0z(z+h) ψ (kx, ky) (A20)

H1x(r)=−
1

8π2
Io`

∫∫
dkxdkye

ikxx+ikyyeik0z(z+h) ψ (kx, ky) (A21)

H1y(r)=0 (A22)

H1z(r)=− 1

8π2
Io`

∫∫
dkxdky

kx

k0z
eikxx+ikyyeik0z(z+h) ψ (kx, ky) (A23)
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In region 2 (z ≤ −d),

E2x(r) =
ωµ0

8π2k2
Io`

∫∫
dkxdky

kxky

k0z
eikxx+ikyye−ik0z(z+2d−h) ψ (kx, ky)

(A24)

E2y(r) = −
ωµ0

8π2k2
Io`

∫∫
dkxdky

1

k0z
eikxx+ikyye−ik0z(z+2d−h)

· (k2 − k2
y)ψ (kx, ky) (A25)

E2z(r) =−
ωµ0

8π2k2
Io`

∫∫
dkxdkykye

ikxx+ikyye−ik0z(z+2d−h) ψ (kx, ky)

(A26)

H2x(r) =− 1

8π2
Io`

∫∫
dkxdkye

ikxx+ikyye−ik0z(z+2d−h) ψ (kx, ky) (A27)

H2y(r) = 0 (A28)

H2z(r) =−Io`
1

8π2

∫∫
dkxdky

kx

k0z
eikxx+ikyye−ik0z(z+2d−h) ψ (kx, ky)

(A29)

where

ψ (kx, ky) = e−
g2
x(kx−βx)2

4 e−
g2
y(ky−βy)2

4 (A30)
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