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Abstract—The small slope approximation (SSA) and the Kirchhoff
approach (KA) are applied to the prediction of microwave sea surface
backscatter for both Ku and C bands for various wind speeds
and incident angles. Numerical results are obtained assuming a
non-directional surface wavenumber spectrum and compared with
azimuthally averaged C- and Ku-band radar backscattering data. The
KA can be obtained rigorously for a perfectly-conducting surface,
whereas for a dielectric surface, either the KA of order one (KA1l) or
the stationary phase (SP) method can be used. Numerical results are
obtained assuming a non-directional surface wavenumber spectrum and
compared with azimuthally C and Ku bands radar backscattering data
for incidence angles of interest for remote sensing. Since the SSA and
KA formulations are expressed in polar coordinates, the backscattering
coefficient is expressed in terms of surface height autocorrelation and
its derivatives of one- and second- orders computed from integrating
the sea spectrum multiplied by Bessel functions of the first kind. This
allows to have for KA and first-order SSA (SSA-1), a single numerical
integration over the radial distance instead of four, when the cartesian
coordinates is chosen. Moreover, the azimuthal harmonic magnitudes
of the backscattering coefficient according to the wind direction can
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be performed separately. For an isotropic sea surface assumed to be
perfectly conducting where the KA is valid, the deviation between
SSA and KA models is smaller than the one computed from the SP
model for HH polarization. For the VV polarization, the difference
is greater, since the polarization term of SSA is given by the small
perturbation method, whereas for the KA approach, it is equal to the
Fresnel coefficient. For an anisotropic sea surface, the comparison of
KA with SSA-1 leads to the same conclusion. The isotropic part and
the second azimuthal harmonic of the backscattering coefficient are
also compared with empirical backscattering models CMOD2-13 and
SASS-II valid in C and Ku bands, respectively.
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1. INTRODUCTION

Observations of microwave backscattering from the sea are important
for understanding the air-sea fluxes that arise from wind acting on
the roughened surface of the ocean and for remote sensing. Analytical
models can be used to compute the normal radar cross section (NRCS)
from stationary sea surface. We can quote the Kirchhoff approach
(KA) [1-4], the small-perturbation model (SPM) [2,5], the phase
perturbation model [6,7] (PPM), the full wave method (FWM) [8],
and recently the small slope approximation [9-16] (SSA) developed by
Voronovich.

The most widely used method for relating microwave scattering
to surface roughness is composite-roughness [17] theory. This model
introduces a scale-dividing parameter k; separating small- and large-
scale components of the roughness which can be arbitrarily chosen
within wide limits. There are therefore two terms in the NRCS.
The first one corresponds to the geometrical optics solution (KA in
high-frequency limit valid for a very rough surface) for the large-scale
component (specular reflections), and the second one corresponds to
the Bragg scattering solution (SPM solution valid for a slightly rough
surface) for the small-scale component modulated by tilts of large-scale
waves. The advantage of this method is that it is easily applied. As
illustrated [11], one disadvantage is that the predictions are dependent
on how the surface is partitioned within the choice of k;. A second one
is the difficulty in establishing the accuracy of the theory.

The small slope approximation (SSA) has not the above-men-
tioned drawbacks. For the Gaussian statistics of roughness, the result
can be expressed strictly in terms of a roughness spectrum. The SSA
can be applied to an arbitrary wavelength, provided the tangent of
grazing angles of incident /scattered radiation sufficiently exceeds rms
(root mean square) slopes of roughness. The SSA represents a regular
expansion of the scattering amplitude (or the scattering cross section)
in terms of the roughness slope, and both the first- and the second-
order results of SSA calculations can be obtained. When the difference
between the first- and the second-order results is relatively small, one
can be sure that the solution of the scattering problem is accurate for
the first-order.

Recently the Kirchhoff approach (KA) have been re-examined by
Bourlier et al [18] for an anisotropic perfectly conducting surface in
backscattering configuration. It is important to note that the KA
is often confused with the stationary phase (SP) method which is a
particular case of KA. Indeed, the SP formulation assumes that the
resulting scattering field expression contains only contributions from
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specular points in the surface. This allows to remove the statistical
dependence of the surface slopes involving that the integrations over
the surface slopes is not required. The NRCS depends then only on
the surface height joint characteristic function equal to the Fourier
transform of the surface height joint pdf (probability density function).
Unlike, with the KA approach, the NRCS is formulated in terms of a
surface height characteristic function, and in terms of expected values
for the integrations over the surface slopes. As depicted [18] (see
Figures 3-4), for scattering angles larger than twenty degrees where
the Bragg scattering regime is involved, the NRCS computed from
KA is more greater than the one performed with SP. This behavior is
similar to the one observed by Voronovich [11].

For a dielectric surface, the KA approach can not be tractable
analytically since the dependence over the surface slopes is a com-
plicated function [18]. To have therefore a formulation of KA for
a dielectric rough surface, Bourlier et al [19] extended the scalar
approximation (SA) developed by Ulaby et al [2] to an anisotropic
surface. The SA is obtained by expanding the Kirchhoff integral
over the surface slopes and keeping only the terms of first order.
With these models, the calculation of the backscattering coeflicient
used a surface height and slope joint pdf assumed to be Gaussian
given by [20, page 272]. It is expressed from a covariance matrix
of six-dimension, where the elements depend on the surface height
autocorrelation function in polar coordinates and its first and second
derivatives. The autocorrelation function [21] is defined from the
general behavior of ocean-like spectrum proposed by Elfouhaily [22].

Considering an anisotropic sea surface, this paper compares the
normal radar cross section (NRCS) computed from the Kirchhoff (KA)
and scalar (SA) models with the small slope approximation (SSA).
Numerical models are also compared with measurements from the
CMOD2-I3 [23,24] and Ku SASS-IT [25] backscattering models valid
for C and Ku bands, respectively.

The paper is organized as follows. Section 2 presents the
backscattering coefficient derived from KA, SA, and SSA models
by considering the sea spectrum symmetry [22]. In Section 3, the
Elfouhaily et al [22] spectrum is studied. To analyze the sea surface
roughness (product kw with k the incident wave number and w the
surface rms heights), the surface rms heights and slopes are computed
versus the wind speed. The slope surface is directly related to the
capillary waves which involves the Bragg scattering solution. This
region is also affected by the spreading function of the spectrum. The
Cox and Munk models [27] in upwind and crosswind directions are
compared with the variance slopes computed from integrating the sea
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spectrum multiplied by the square wave number. The shadowing effect
is also analyzed [20]. In Section 4, numerical results are presented for a
perfectly-conducting and dielectric sea surfaces and are compared with
CMOD2-I3 [23,24] and SASS-II [25] backscattering models valid in C
and Ku bands, respectively. From measurements made in microwave
band [23-26] for co- polarlzatlons pq (VV and HH), the NRCS is model
as Opg = O'Zo,q + 0' q COS P+ a cos(2¢) which depends on the scattering
angle, the wind speed and Che wind direction ¢.

2. BACKSCATTERING MODELS

This section presents the Kirchhoff (KA), scalar (SA) and small slope
(SSA) approximations for the derivation of the normal radar cross
section (NRCS). The KA is valid if the radius of curvature at every
point on the surface is large relative to the electromagnetic wavelength
A, and if the correlation length L. is larger than A [1-3]. The KA is
used as a starting point for high-frequency analysis when the geometric
optics approximation is obtained by applying the stationary phase
method. The SA have similar assumptions as KA and assumes that
the surface rms slopes are smaller than 0.25 [2] which is verified for
the sea surface. The SSA can be applied for an arbitrary wavelength,
provided the tangent of grazing angles of incident /scattered radiation
sufficiently exceeds the rms slopes [9-11].

For a backscattering configuration, Bourlier et al [18,19] showed
that the statistical shadowing function [20] can be ignored in the KA
and SA computations. Thus, the shadowing effect is omitted and
Section 3 will prove for the sea surface that this assumption can be
easily verified.

2.1. Incoherent Backscattering Coefficient from Kirchhoff
Approximation

With the Kirchhoff approach, the scattered field is written in terms
of the tangential field on rough surface. The surface field is then
approximated by the field that would be present if the rough surface
was replaced by a planar surface tangential to the point of interest.
With this assumption, the backscattered field is expressed as [2]

EszKlﬁsA// (71 A B — it A (i A )] exp(j2Kit, - 7)dS (1)

K, = jKexp(—jKRy)/(4mRy), with K the wave number in the
medium where the field is evaluated, Ry range from the center of the
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illuminated area S to the point of observation, 7is the unit vector in
the scattered direction defined in spherical coordinates as

iy = sin 0 cos & 4 sin 0 sin y + cos 7 (1a)

where (Z, 7, Z) are unit vectors in cartesian coordinates. 7= xZ + yy+
zZ is the vector indicating the location of the surface point according
to the center of the illuminated area.

The incoherent scattering coefficient o), (p and g denote the state
polarization which is either vertical V or horizontal H) for an extended
target can be written as [2]

2
AR 1) ]

S| Eo*

(2)

Substituting (1) into (2), Bourlier et al [18] showed in polar coordinates
for a perfectly conducting surface

oA _ M /Cx;«dr 27&:1)(. . .)KA exp[2jr K sin(6) cos(¢ — )]
0

7T 0
(3)
where the symbol (...)54 denote the ensemble average under the
Kirchhoff approximation (exponent KA) given by

(5 = expl=K2(1 — fo)l[L + jxa(ox tan6) + xo(ox tan6)?]

—exp(—K7) (4)
with
K, = 2Kwcosf (4a)
x1 = 2K, x <Cf1 + %> (4b)
2D¢
5202 2sco
Yo = ot };f56 N v [36
0% ox

2

_K? (c f 4 Sovhio 16) (4c)
2D¢

¢ = cos(¢p — D) s =sin(¢p — ) (4d)

In (4), the expl...] first term corresponds to the surface height
joint characteristic function obtained from a surface height joint pdf
assumed to be Gaussian. The second term exp(—K2) gives the
contribution of the coherent component.
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The normalized functions { fo, f1, f2, fi6, f36, f56} are given by

fo = Ro/w? fi=—Ri/(wox)
fo=—Ry/o% fie = —Cig/(woy) (5)
fs6 = —Cs6/0% J36 = —C36/(0yox)

where { Ry, R1, Ra, Ri¢, R36, Rs6} are expressed as [20, page 272]
Ro = Roo — COS(QCI))ROQ .
d' Ro;
Ry = Ryp — cos(2®)Ry;  Rij = dri (5a)
RQ = R20 — COS<2(I))R22

Cro = 2Ro2 s;n(2®)

Csp = %&2@(7’312 — Ro2) (5b)

Cse = @ + Cosgq’) (4Rg2 — rR1o)

0§{:a+ﬂcos(2gz5) o M

oy = o — [ cos(2¢) 2200 (5¢)
0%y = —(sin2¢ p= x2 !

In (5a), Ro(r, ®) is the surface height two-dimensional autocorrelation
function in polar coordinates, whereas —Rs is the surface slope
two-dimensional autocorrelation function. {Rgo(r), Ro2(r)} represent
the isotropic and anisotropic parts of Ry, and ® the azimuthal
direction which characterizes the anisotropic effect. In (5¢), {o% =
—R3(0,0),0% = —C56(0,4)} denote the surface slope variances in
the {(0X), (0Y)} directions, respectively, and 0%y = —Cs36(0, ¢) the
surface slope cross-variance. {02, 05} are the slope variances in upwind
and crosswind directions. As depicted Figure 1, ¢ is the wind direction.
w? = Ro(0,®) = Ryo(0) is the surface height variance with Rg2(0) = 0.

Since the surface is assumed to be perfectly conducting, the NRCS
in VV and HH polarizations are equal. In (5a), the functions R;;(r)
will be expressed from the sea spectrum in Section 3.3.

2.2. Incoherent Backscattering Coefficient from Scalar
Approximation

The scalar approximation consists of approximating the Kirchhoff
integral by a series expansion about the origin of the slopes and retains
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Figure 1. Indication of the different wind directions.

only the first-order term. From Ulaby et al [2, chapter 12] Bourlier et al
[19] proved for a Gaussian anisotropic dielectric random surface that
the backscattering coefficient has the similar form as (3) where the
ensemble average (...)%4 is

= exp[~ K3 (1~ fo)l[| Ry [* + jx1(ox tan6)
R(RuvRuiyv1)] — exp(—K2)| Ry v |? (6)
where R denotes the real part. K,, xi1, {c,s} and {fo} are given by
(4a), (4b), (4d) and (5), respectively. Ry are the Fresnel coefficients
in V (for VV polarization) and H (for HH polarization) polarizations
defined as
R cosf — (g, — sin? §)1/2 _ cosf — (g, — sin? 0)1/2
v g, cos + (g, —sin? §)1/2 H= cos ) + (g, — sin? 9)1/2

(...)54

(6a)

with €, the permittivity of the surface. The permittivity of the air is
assumed to be equal to one.
In (6), Rm1,v1 are expressed as

Rot — cosO[l —e, + Ry (1 +¢;)] Ry 2cosORy
V1 e, cosO + (g, sin2 0)1/2 ™ cos0 + (e, — sin20)1/2

(6b)
In (6), to have a form as +jx1(ox tan@), the {Ry1, Ry} coefficients
have been multiplied by —1/(tan#). Comparing (6) with (4) without
the second-order term (o tan)?, a similar behavior of the ensemble
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average is found. For a perfectly conducting surface, we have Ry =
1, Ry =—1, Ry1 =0, Ry1 =0, and for ox tan § < 1 (slope standard
deviation ox much smaller than the slope cot 6 of the scattered field),
the ensemble averages {(...)54, (.. .)54} are equal.

With the stationary (SP) method [2], the ensemble average

(exponent SP) is

(.5 = {exp[~K3(L — fo)] — exp(~K2)}Ruv[*/(cos8)"  (7)

It is important to note in [4] that the ensemble average given by (7) is
multiplied by (cos #)* inferring on the level of the incoherent scattering
coefficient.

From (7) and (4), for a perfectly conducting surface (|Rg,v| = 1),
we can see that (...)9F # (.. )K4  Therefore, the NRCS computed
from KA and SP methods are different excepted for y1 = x2 = 0
with (cos#)* = 1. On the other hand, from (4b)—(4c) this is similar
to consider {f1, fo, fi6, f36, fs56} = 0 involving that the correlation
between the surface heights-slopes ({f1, fis} = 0) and slopes-slopes
({ f2, f36, f56} = 0) is assumed to be equal to zero.

2.3. Incoherent Backscattering Coefficient from Small Slope
Approximation

The small-slope approximation is appropriate for scattering from both
large- (the SP regime), intermediate- and small-scale (the Bragg
regime) roughness within a single theoretical scheme. Both the lowest-
order approximation (which we refer to as the SSA-1) and the next-
order approximation (the SSA-2), which includes corrections to the
SSA-1, can be calculated. The SSA was verified in a number of
numerical simulations [15-16].

In [11], Voronovich proposed a formulation of the backscattering
coefficient which combines both SSA-1 and SSA-2. The ensemble
average from SSA approach (...)*54 can be then written as

(.5 = Buy [Mlexp[-K2(1 — fou)] —exp(=K2)}  (8)

With (6, ~ Dlsin? 01— &,) — =,
er— 1)[sin®0(1 —¢g,) — &,
v [, cos O + (g, — sin? §)1/2]2 " H (8a)
This formulation is weakly different that the one proposed in [9, 10, 12—
14], and presents the drawback that the cross-polarization is not taken
into account with accuracy. On the other hand, the computer time is
less important for the second order.
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In (8), form(r,®) is the normalized modified surface height
autocorrelation function in polar coordinates which contains the effect
of SSA-2. For a backscattering configuration, in cartesian coordinates
7T =[x y|, fom(7) is defined from the Fourier transform of the surface
roughness spectrum ¥(£) as (equation (10) of [11] with ks = —kq for
the backscattering case)

_ My u = oz
IGErS| | 8BVHCOS@| V@ exp(j€ M (9)

with

—

MV,H( ) = BlV,lH(_EO — g) + BlV,lH(EO + g) + 4KB\/7H cos 0 (9a)

where lgo = K (Zcos ¢sin @ + ¢sin ¢ sin 0) is the horizontal wave vector
of the incident field according to the wind direction.

The polarization terms Byy,1g in VV and HH polarizations are
defined as (see appendix of [11])

- 2(er — 1) { 1—e, o o (ko-&)?
B = gT]g _ NV ™S
() (erqo1 + g02)? Lerger + ge2 [ 0"~ doz k3
+e,rk2qo2 + g8 (g1 — %2)} (9b)
2 —DE2 [ 1—g [, (Ko-€)?
B - — et
18 () (401 + 9032 {&qm T i [5 | e tae
(9¢)
where
qo1 = K cos6 qo2 = K (g, — sin? 0)1/2
g1 = K(1— /K2 e = K(e, — &/K?)Y? (9d)
2_Ff k2 = ko - ko = (K sin6)?

— —

From (9b)—(9¢), we get Biv,1r(—¢) = Biv,im(€), which leads from (9a)

to
My 5 (€) 1 (1 B By (ko +€)> (10)

1 WHS)
SBVHCOSG 2 2K cosf

—

We can note that Biv1p (ko + & %) /K is dimensionless.
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Substituting (10) into (9), the normalized modified surface height
autocorrelation function becomes in polar coordinates

e ) = gz [0 [ - 2

$5(&,9) expljEr cos(¢p — @)]dg (11)

where S(&,1) = & x ¥(£, 1) is the sea spectrum in polar coordinates.
The fact to substitute in (9b)—(9c) & by ko + £ involves that

{EOE—>k%+E05:k8+k0§COS(?/}—¢) (11&)

€2 — (ko + €)% = kg + & + 2ko€ cos(v) — )

In (10), for £ = 0, we can verified that —Blv’lH(Eo—l—g)/ (2K cosf) =1
meaning that the square modulus term in (11) is equal to four.
With S(&,¢) = M(§)[1 + A(E) cos(2¢)]/(2m) (general behaviour of
the sea spectrum, see Section 3.1), the integration over i can be
then performed analytically [21], yielding foar(r, ®) = fo(r, ®). This
assumption is similar to consider only the first term of the small slope
approximation. Comparing therefore (8) (...)%%4 with (6) (...)"4
ensemble averages, the backscattering coefficients are different within
the polarizations terms (6a) Ry,p and (8a) By g, respectively. For
6 = 0, we have |Ry(0)| = |Rg(0)] = |By(0)] = |Br(0)| meaning that
the backscattering coefficients are equal.

Since the sea spectrum S (5) is even and Biy;; H({) is not generally
an even function with (1la) variable transformations, the global

spectrum is not even with respect to E which involves that foas(r, @)
is not symmetrical as fo(r, ®).

In Figure 2, the Fresnel coefficients {| Ry, #|?} and {R(Ry.v Ru1v1)}
in VV and HH polarizations are plotted versus the scattering angle.
The sea permittivities [28] are equal to e, = 67 + 535 (f = 5.3GHz
in C band) and &, = 47 + 738 (f = 14 GHz in Ku band). We observe
that {|Ry|?,|Ru|?}, are larger than {R(Rp,y Rp1,v1)}. For the SSA
approach, By = Ry and |By|? is not represented because is greater
than one (there is no restriction on the modulus of By since this is not
a reflection coefficient).

3. SEA SPECTRUM

The computation of the backscattering coefficient requires the
knowledge of either the sea spectrum or the sea surface height
autocorrelation function obtained from the Fourier transform of the



42 Bourlier and Berginc
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Figure 2. Fresnel coefficients {| Ry, x|*} and {R(Rp,vRpu1,v1)} in VV
and HH polarizations versus the scattering angle. The sea permittivity
is €, = 67+ 735 and €, = 47 + 538.

sea spectrum. The ensemble average with KA (equation (4)) and
SA (equation (6)) can be studied within the roughness parameters
K, =2Kwcosf and ox tanf. K is the incident wave number, w the
surface height standard deviation, ox the rms of the surface slopes in
the wind direction, and # the scattering angle. Indeed, according to
the value of these roughness parameters, the integrations over {r, ®}
of (3) scattering coefficient can be simplified.

In this section, these parameters are analyzed from the Elfouhaily
et al spectrum [22] in microwave region. The shadowing effect is also
addressed.

3.1. Elfouhaily et al Sea Spectrum

The Pierson spectrum [29] is one of the first spectra published in the
literature to describe capillary and gravity waves. The gravity region
has been modified by adding the JONSWAP behavior [30] where the
fetch effect is provided. Since the capillary region does not fit some
physical criteria as the surface slope variance, its behavior has been
investigated. We can quote the Apel spectrum [31] which is a synthesis
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of works done in 80’s and 90’s. Unfortunately as shown Elfouhaily et
al [22], this spectrum does not agree with the slope model proposed by
Cox and Munk [27]. This discrepancy is due to an inaccuracy of the
capillary waves. The set of these aspects are summarized in [21].

In our simulations we used the Elfouhaily et al model for the sea
roughness spectrum, which was recently developed based on available
field and wave-tank measurements, along with physical arguments. It is
important to note that this model was developed without any relation
to remote-sensing data. We avoided some deficiencies of this spectral
model found in [32].

Elfouhaily et al assume a directional spectrum S(k, ) defined in
polar coordinates as

S(k,p) = M(k)f(k, 1) (12)
where
M(K) = (By + Bi) /I (12a)
and
[k, ) = [1+ A(k) cos(2¢)] /(2m) (12b)

In (12), M(k) denotes the non-directional spectrum (isotropic part)
modulated by the f(k,) spreading function. In (12a), By, and Bpy
are the respective contributions from low (gravity waves) and high
(capillary waves) wavenumbers.

The low-wavenumber curvature spectrum By, is assumed to obey

By (k) = ape(ky) Fp/[2¢(F)] (13)

The parameters in (13) are dependent on u1g, the wind speed measured
at an altitude of ten meters above the sea, and on inverse wave age
Q =~ uy0/c(kp) where ¢(k) is the phase speed and kj, is the wave number
of the spectral peak. In (13)

{ ap =6x 1073012 |, = g% /u?, (14)
c

(k) = [g(1 + k2 /K )]M?

where ¢ is the gravitational constant and k,, = 363rad/m. The
function Fj, in (13) is given by

F, =" x exp[—(5k%)/(4k2)] x exp{—Q[(k/k,)"/* — 1]/v/10}  (15)
where
RN 0,84 <0 <1
"T) 1746150 1<Q<5 (15a)
T = exp{—[(k/k,)"/? —1]2/(26%)} & =0,08(1 +4/9Q3)
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The assumed contribution to (12a) at high wavenumbers is
Bu(k) = cmc(km) Fm/[2¢(k)] (16)
where
o 10_2{ U4 Infug/e(kn)]  ur < clkm)
1+ 3Infus/c(km)] up > c(km) (17)
Fy = exp{~[(k/km) — 1]°/4}

with ¢(ky,) = 23cm/s. The data used to formulate (17) are limited to
wind speeds u1p < 17.2m/s. For a neutrally stable atmosphere, the
friction speed uy is obtained in [22] by using the relationships

Cho = (0,8 +0,064u10) x 1073wy = 1/ ugg (18)

where the units of w19 and uy are m/s.

In this study, to obtain spectra consistent with those presented in
[22], an additional factor exp[—(5k?)/(4k2)] is inserted on the right-
hand side of (16).

In (12b), the function A(k) which characterizes the spreading
function is assumed to be equal to

A(k) = tanh{ag + ap[e(k)/c(kp)]*® + amle(km) /c(k)*°}  (19)

where
ao=0,173 ap =4 am =0,13us/c(kn) (19a)

For the simulations, a fully developed sea is assumed which is similar
to take an inverse wave age {2 equal to 0.84.

In Figures 3-5, the isotropic parts {k~—3(Br + Bpy),k 2B}, the
curvature isotropic parts { Br + By, Br }, and the angular part A(k) of
the sea spectrum are plotted versus the wave number k, respectively,
with wind speeds u1p = {5,15} m/s. The vertical lines in Figures 4-5
are placed at wave numbers equal to k = 2K sin§ with § = {30,60}°
for frequencies f = 5.3 GHz (dashed lines) and f = 14 GHz (dashdot
lines). As depicted Figure 3, when the wind speed increases, the
maximum (equal from [21] to 0.00193/14:% with k, = ¢g0%/u?,) of
the spectrum increases with a shift toward low-wavenumbers (equal
from [21] to O.98k:g) because the contribution of the gravity waves
increases. Unlike Figure 4 where the curvature spectrum is represented,
we observe that the total spectrum is weakly affected by the capillary
region (Bp term) since k~3(Br + By) ~ k~3Br. Indeed from Figure
4, for the curvature spectrum, the capillary region takes place and
strongly increases with the wind speed. In microwave frequencies, this
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Figure 3. Isotropic part of the sea height spectrum versus the wave
number. The wind speed w19 = {5,15} m/s. In full curve the total
height spectrum (low- and high- wavenumbers) k—3(B, + By ), and in
dashed curve the gravity height spectrum k=3B (low-wavenumber).

zone is responsible for Bragg backscattering, since the backscattering
coefficient is equal to [2] |By.u|? cot*(0)[BL(2ko) + Bu(2ko)]/2 (ko =
ksing and {By g} are expressed from (8a)). As shown Figure 5, the
anisotropic effect increases in capillary region with the wind speed.

3.2. Surface Height and Slope Variances

In this subsection, the surface slope variances in upwind o2 and
crosswind 05 directions are computed from the previous spectrum,
with the aim to compare them with the Cox and Munk model [27].
From equation (4), the comparison of the rms surface slopes ox in the
wind direction with the incident beam slope cot 8 allows to quantify the
contribution of the {12} additional terms provided by the Kirchhoff
approximation.

From the general behavior of the directional sea spectrum,
{o2, O'Z} can be expressed as [21]

ol=a+p UZ:a—ﬂ (20)
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Figure 4. Isotropic part of the curvature sea spectrum versus the
wave number. The wind speed ujg = {5,15} m/s. In full curve the
total curvature spectrum (low- and high- wavenumber) B, + By, and
in dashed curve the curvature gravity B, (low-wavenumber).
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Figure 5. Angular part A(k) of the sea height spectrum versus the
wave number. The wind speed uig = {5,15} m/s.
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Figure 6. At the top, rms surface slopes in upwind o, and crosswind
directions o, obtained from the Cox-Munk data and computed from
the Elfouhaily spectrum versus the wind speed ujg in m/s defined at
ten meters above the sea. At the bottom, numerical and model rms
surface heights versus uig.

where

o= %/Ook’l[BL(k) + By (k)|dk
5 oo

(20a)
k™' [BL(k) + Bu (k)] A(k)dk

0

and for a Gaussian process, the surface slope variance 0% (¢) in the

wind direction ¢ is

ST,

% (8) = a+ B cos(29) (21)
We can notice that 0% (0) = 02 and 0% (7/2) = o3.
The Cox and Munk model gives

02 = (3,16u12 £4)107° o, = (34 1,92u12 £4)107°  (22)

At the top of Figure 6, the rms surface slopes in upwind o,
and crosswind directions o, obtained from the Cox-Munk model and
computed from the Elfouhaily spectrum are plotted versus the wind
speed u1p in m/s defined at ten meters above the sea. As depicted
Figure 6, the Elfouhaily results which are slightly overestimated are in
agreement with the Cox and Munk ones.
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From the spectrum, the surface height variance w? is defined as

P = [TH3Bak) + B )k (23)
0

At the bottom of Figure 6, numerical and model [21] (w? =~

193 x 107°/k2 ~ 3,95 x 10~%u3y* for a fully developed sea = 0.84)
rms surface heights are represented versus uig. A good fit is observed,
and therefore w is proportional to the square of the wind speed u1g. As
depicted Figure 3, w? is not affected by the capillarity waves permitting
to model w? with respect to kg.

At the top and at the middle of Figure 7, the products o, tan(f)
and wcos® are plotted versus wuig, respectively, for scattering angles
6 = {10,30,50,60}° of interest for remote sensing. For scattering
angles smaller than 60°, we can see that the product o, tan(#) is smaller
than one (u1p € [5;20) m/s). For wind speed ujp shorter than 10m/s,
the contribution in (4) of the (ox tan§)? becomes then negligible. We
can note that SSA is valid if the incident beam slope 1/tan# is larger
than the rms of the surface slopes which is similar to have ox tanf < 1.

In the range frequencies f € [1;20] GHz, K € [21;419] rad/m. As
depicted at the middle of Figure 7, for moderate scattering angles,
the product K, = 2Kw cosf increases with the wind speed and can
be larger than one. In (4), (6) and (8), the exponential term exp|...]
becomes then small, and for the integration over radial distance r, the
surface height normalized autocorrelation function can be replaced by
its Taylor development of order two, which gives the optics geometrical
approximation. For example, in C band (f = 53GHz), K =
111rad/m, 2Kw cos 8 € [18;592] with u1g € [5;20] m/s and 6 € [0; 60]°.
In Ku band (f = 14 GHz), the previous ranges are multiplied by 2.64,
whereas in L band (f = 1.5 GHz), they are divided by 3.53.

3.3. Sea Surface Height Autocorrelation Function

In cartesian coordinates, the surface height autocorrelation function
Ro(z,y) is equal to the Fourier transform of the spectrum
U(ky; ky). From (12) general behavior, in polar coordinates, the sea
autocorrelation function Ry(r, ®) is expressed from the sea spectrum
Sk, ) = k x W(k, 1) as [21]

RQ(T‘, (I)) = ROQ(T‘) - COS(Q(I))ROQ (T) (24)
where

Roo(r) = / "M (k) Jo(rk)dk
o (25)
Roa(r) = /0 M(k)A () Jo(rk)dk
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Figure 7. At the top, product o,tan(f) versus wujg. At the
middle, product wcos# versus ujg. At the bottom, parameter v =
1/(0,tan(0)v/2) versus ujg. For three figures, the scattering angle
6 = {10, 30, 50,60}°.

Roo(r) is the isotropic part, whereas Rpz(r) denotes the anisotropic
part. J,, is the n™® order Bessel function of the first kind. Unlike Funk
et al [4], the integration over 1 is performed analytically involving
a dependence in cos(2®). As the sea spectrum, the autocorrelation
function is both even with respect to the upwind and crosswind
directions.

From simulations with w19 € [2;17]m/s, Ro(r, ®) can be modeled
as [21]

Roo(r) = w? cos (L%) /

Roa(r) = w2AJ, (LLQ) /
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Figure 8. Comparison of the modeled surface normalized height
autocorrelation function with the numerical one for wind directions
® = {0,45,90}° and wind speeds u1p = {5,15} m/s.

where

w? = 3,953 x 1075u; " Lo =0,154uly? L} = 0, 244u;p"

A = 3,439uf;! Ly =0,157uyy”  Lh = 0,138u3y”
(26a)
Figure 8 Compares the modeled surface normalized height auto-
correlation function (equation (26)) with the numerical one ((equation
(25)) versus the radial distance r for wind directions ® = {0, 45,90}°
and wind speeds ujg = {5,15} m/s. A good fit is observed between
the numerical and modeled results. The vertical dashed lines are
located at distance r corresponding to Lo = 0, 154u%604 and 5Lg. Note
that the correlation length Lo increases very quickly with the wind
speed and there is a significant range of negative values not present
in most correlation functions for land surfaces. The correlation length
can not be equal to Ly since with respect to the wind direction, the
autocorrelation function can be close to one (0.6 with & = 90°). On
the other hand, for » = 5Ly the autocorrelation function is close to

zero which allows to take Lo = 5Lg. For uig = {5,15} m/s, we have
Lo = {20,192} meters.
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The negative values of the autocorrelation function comes from the
fact that the sea gravity spectrum reaches a maxima located around of
k,. This means that the sea spectrum can be expressed as a convolution
product of a Dirac distribution centered around k, by the spectrum
centered in zero. The autocorrelation function is then equal to the
product of the Fourier transforms of the sea spectrum and the Dirac
function which explains the oscillatory behavior of Ry(r, ®).

The computation of the backscattering coefficient with the Kirch-
hoff approximation requires also the knowledge of {R10, Ri2, Roo, R22}
defined as R;; = d'Ry;/dr' (see equation (5a)). From (25), we can
write

d
Ryp = 400 _ / kM (k)Jy (rk)dk
dr
dR()Q (27)
Ris — / KM (R)AR) [Ty (rk) — Jo(rk)]dk
and
d2R00 1 [,
= — = — — M —
Ry 02 5/, kM (k)[Jo(rk) — Ja(rk)]dk
d*R 1 [
Ry = dr‘)? =1 | FME)AR)o(rk) — 2Ta(rk) + Ja(rk)ldk
0
(28)
The surface slope variance % (¢) in the wind direction is defined
as —R2(0,¢) = —[R20(0) — cos(2¢)R22(0)]. Comparing then (20a)-

(21) with (28) and knowing that {Jy(0) = 1, J24(0) = 0}, the same
relationship is found.

Figure 9 compares the modeled isotropic { fi0 = —Rio/(wox), f20
= —Ry/(wox)} (on the left) and anisotropic {fi2 = —Ri2/0%, fa2 =
—Ry2/0%} (on the right) parts with the numerical ones for wind speeds
uio = {5,15}m/s. ox is chosen equal to a (wind direction equal
to 45 degrees), w is computed from (26a) and the modeled isotropic
and anisotropic parts are provided by [20, table 2.5]. As depicted
Figure 9, there is a discrepancy between the numerical and modeled
results, because in (25) modeling of the surface height autocorrelation
function Ry(r, @), the capillary region is omitted due to the attenuation
in k=3 according to S(k) (see Figure 3 with (12)). With the first
and second derivatives of Ry(r,®) expressed from (27)-(28), this
attenuation becomes {k~2, k11, respectively, which involves that the
capillary region can not be ignored. We can also explain this deviation
by the fact that there are several functions which can be modeled
Ry(r, @) with very different derivatives.
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Figure 9. Comparison of the modeled isotropic { fi0, f20} (on the left)
and anisotropic { f12, fa2} (on the right) parts with the numerical ones
for wind speeds uj9 = {5,15} m/s.

For the computation of the backscattering coefficient, the mod-
eling of Ry(r,®) can be used, and the computations of its first and
second derivatives have to be obtained from numerical evaluations of
(27)-(28).

3.4. Shadowing Function

For a backscattering configuration, the shadowing function character-
izes the surface fraction which is visible from the receiver. A study
regarding the shadowing function has been done with Smith [33, 34]
and Wagner [35]. These authors determined the shadowing function
for a one-dimensional stationary stochastic process. Bourlier et al [20,
36] extended their results for a two-dimensional stationary surface by
including the correlation between the surface heights and slopes. They
also noted that Smith’s results are more accurate than Wagner’s. Since
the difference between the correlated and uncorrelated Smith’s shad-
owing functions is very small, the uncorrelated statistical shadowing
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function can be used with a good approximation.

As shown Bourlier et al [18,19], for a scattering problem, the
shadowing function modifies the height distribution and carries a
restriction over the surface slopes. With the Smith formulation, the
surface joint height and slope distribution with shadow pgp((x,h) is
then written as [18]

1 A(v)
psn(h ) = p(h ) % X0 = Gx) [1 = jerte(®)] (29

where p(Cx, h) is the unshadowed distribution assumed to be Gaussian

p(h, Cx) = exp(—Ck — h?)/m (292)

(x is the surface slope normalized by oxv/2 (ox given by (21)), and
h the surface elevation normalized by wv/2. In (29)

A(v) = [exp(v?) — vy/merfe(v)]/(2uy/T) v =cotf/(vV20x) (29b)
T(x)=1 if x>0 elseO (29¢)

where Y (x) is the Heaviside function. The shadowing function involves
therefore a restriction over the surface slopes within the term Y (v—_x),
and modifies the height distribution due to the term, [1—erfc(h)/2]M®).

In Figure 10, the shadowed surface slope (psp(Cx) = p(¢x)Y (v —
(x) term of (29) plotted on the left) and height (psn(h) = p(h)[1 —
erfe(h)/2]2®) term of (29) plotted on the right) distributions are
compared with the unshadowed one (crosses curve) according to the
parameter v and versus the normalized slope (x and height h. We
see that the area of pgn(Cx) is inversely proportional of v and for
v = 0, only the negative values of pg,({x) are taken into account.
Since p(Cx = 2) = 0.01, for v larger than 2 the shadowing effect on
the surface slopes is negligible. As depicted in Figure 10 (right), the
shadowing effect on the surface height distribution increases when v
decreases due to the fact that (29b) A increases, and for v > 2, the
shadowing effect can be ignored.

In conclusion, if v > 2, then the shadowing effect on the surface
heights and slopes can be omitted and pgp(h, (x) = p(h, (x).

At the bottom of Figure 7, the parameter v = 1/(0, tan6v/2)
is plotted versus wjg, with scattering angles § = {10,30,50,60}°.
Since v is greater than 1.6, the shadowing effect can be neglected
for the computation of the backscattering coefficient. This result is
in agreement with articles [18,19] which explains how the shadowing
function can be accounted for the Kirchhoff approximation. As proved
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Figure 10. Comparison of the shadowed and unshadowed
distributions of the surface slopes (left) and heights (right) according
to the parameter v and versus the normalized surface slopes (x and
heights h.

by Sancer [37], with the geometrical optics approximation, the average
shadowing function (integrations over {h, (x} of (29)) can be used and
it is equal to S(v) = [1 + erfc(v)]/{2[1 + A(v)]}. Then S(1.6) = 0.986.

4. NUMERICAL RESULTS

In this section, the incoherent backscattering models presented in
Section 2 are computed from the sea directional spectrum given in
Section 3. To compare the Kirchhoff approach (KA) with the small
slope approximation (SSA), in the first subsection, the sea surface is
assumed to be perfectly conducting with an isotropic spectrum. In
Subsection 2, the models are compared for a dielectric sea surface, and
in Subsection 3, the effect of the wind direction is analyzed within
the CMOD2-13 and SASS-II backscattering models valid in C and Ku
bands, respectively.
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4.1. Perfectly-Conducting Surface with an Isotropic Sea
Spectrum

For an isotropic surface, the anisotropic part of the sea surface
spectrum is equal to zero involving in (12b) that A(k) = 0 and the
spectrum depends only on the wave number k. This means from (5a),
{Ri2} = 0, ox = oy = 0,), and from (5b), {C16,C36} = 0, Cs¢ =
Rip/r. The {x1, x2} terms of (4b)—(4c) becomes then

x1=2K, xcft xa2= 62f2 + 82f56 — K‘%(Cf1>2 (29d)

We can also notice that f; = fio.
Knowing that

Wy = / Y expljz cos(é — ®)]d® = 2rJo(z) (30)
0
we have

U, = /27;:05((b — @) x exp[jx cos(¢p — P)|dP
0

= —j% = 2mjJi(z)
Uy = /27[rcos(¢ — @))% x expljz cos(¢p — ®)]d®
> o . (30a)
= i = 1lJo() + Ja(2)

Uy — /0 08|26 — )] x explj cos(e — BY]dd

=2Uy — Uy = =27 Jy(x)

Substituting (29d) into (4), we show with the use of (30a) that
the integration over @ of (3) incoherent backscattering coefficient with
the Kirchhoff approximation leads to

o = 2 cos0)? exp(~K2) [ (expli o) {Jo(ar)

[L+ (ox tan0)*(fa + fro — TKZ)/2]
—2J1(zr)(ox tan 0) f1 K, — Jo(xr)(ox tan §)?

(fa = f56 = JEK2)/2} = Jo(ar) )rdr (31)

where

x = 2K sin(6) (31a)
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With the stationary phase (SP) method, the incoherent backscat-
tering coefficient is from (7)

oSF = 2(K/ c0s0)? exp(—K2)| Ry |2 / v do(ar) fexp(K2 fo) — 1)dr
0

(32)
with Ry = 1 and Ry = -1 for a perfectly conducting. For
a sufficiently rough surface (K, > 1), the geometrical optics ap-
proximation (exponent GO) or high-frequency limit is obtained by
approximating fy by the first two terms of its Taylor series expansion
about the origin. The integration over r of (32) leads to

oGO = ]RHVV\Q exp[— tan? 0/(20%)]/(20% cos? 0) (33)

For the small slope approximation, the incoherent backscattering
coefficient ¢°%4 required the computation of (11) modified surface
height autocorrelation fops(r, ®). From (9b)—(9¢c) and (11a), Ey. g =
1 — Biviu(§,¢)/(2K cosf) can be written as

K2[€% cos? (1 — §) — €2+ K2 — k§[£2 426 ko cos (v — p) + k3]
(2 —€2— k3 — 2k cos(— )| /2 (K2 —kZ) 2 (K2 +kE)
— [€cos(¥) — @) + kol?
(K2 — €2 — I — 2ho€ cos(d — @) 2(K? — k7)1 /2

[1]

v=1+

Eg =1+

(34)
We can note for & = 0, the above equations are equal to 2. Although
the sea spectrum is assumed to be isotropic, the integration over
of (11) can not be performed analytically. Substituting (11) into (8),
and using (3), the normal radar cross section with the small slope
approximation (exponent SSA) is

(K cosf)? exp(—Kg)’BFLVP

0SSA =
/ rdr/ exp[2jrK sin(6) cos(® — ¢)]
K 00 27
(e {W/O M(©ds [ v - o)
-exp[j&r cos(v — <I>)]d1/)} — 1> dd (35)

For given wind direction ¢ and kg = K sin 6, the computation of 054

requires therefore four-fold integrations over {¢, £, ®,r} demanding an
extensive computer time.
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For an isotropic surface, we have S(&,v¢) = M(£)/(2n), and for
a perfectly conducting By = —1, By = —[sin?(6) + 1]/ cos?(6) which
are equal to the polarization terms of the small perturbation method
[2].

The first-order SSA solution (exponent SSA0) is obtained when in
(34), £ = 0 meaning that {ZEy, i} = 2. Substituting these relationships
into (35), the integration over 1 leads to 8wJy(&r). The integration
over & corresponds then to the isotropic part of the surface height
autocorrelation function Rpo(r) (see equation (25)). Performing the
integration over ®, we obtain finally the same form as with the
stationary method

5540 — 9(K cos 0)| By |? exp(—K2) / rJo(ar)[exp(K2 fo) — 1]dr
0

(36)
The comparison of (36) with (32) yields 0°94% = 5P (cos 0)*| By /
Ruvl|?
Approximating (34) |=y.g|? by the first term of its Taylor series
expansion about the origin & = 0, and applying the same way as
previously, we show in appendix A

oo
S SSAL _ 2(KCOSQ)2’BH7V’2€X[)(—KE,)/0 {exp(KZ foo)

Jo(zr — Kf)floaz/[wKV,H]) — Jo(ar)}rdr (37)

where {foo = fo, fio = f1} (isotropic surface) and {Ky g} are defined
from (A5).

In the numerical examples presented in this section, the isotropic
wavenumber spectrum of Section 3.1 for a fully developed sea with
Q = 0.84 is assumed.

Figure 11 presents predictions of (31) ¢4 Kirchhoff approxima-
tion (full curve), (32) " phase stationary (chain curve) and (33)
09 optics geometric scattering (circle curve) normal radar cross sec-
tions. Also shown in this figure are the predictions of small slope
approximation term (36) of ¢°54° (symbols plus) and the small per-
turbation method (symbols x-marks). Only the HH polarization case
is depicted (the VV case is discussed later for a dielectric surface). At
the top and at the bottom of Figure 11, the NRCS is plotted for C
(f = 5.3GHz) and Ku bands (f = 14 GHz), respectively, with wind
speeds uig = {5,15} m/s.

At near-nadir scattering angles, the KA, SP, SSAO models are
similar, whereas the OG solution is overestimated by several dB. As
discussed [11,14], the deviation come from the fact that the wave
spectral components k£ > 2K may contribute significantly to the RMS



58 Bourlier and Berginc

(@) : u_10=5 m/s, f=5.3 GHz - Pol HH (b) : u_10=15 m/s, f=5.3 GHz - Pol HH

NRCS in dB
NRCS in dB

10 20 30 40 50 60 ’ 0 10 20 30 40 50 60
Scattering angle in degree Scattering angle in degree

(d) : u_10=15 m/s, f=14.0 GHz - Pol HH

177«
7
[as} [as}
° T .3
£ £
0 %)
(S (S
T - x -13 =
z z =
-23 S
o
o
a2 -33 =
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Scattering angle in degree Scattering angle in degree

Figure 11. HH normal radar cross section in C (f = 5.3 GHz, at the
top) and Ku Bands (f = 14 GHz, at the bottom) versus the scattering
angle for wind speeds u19 = {5,15} m/s with an isotropic sea surface
assumed to be perfectly conducting. Kirchhoff approximation ¢4 in
full curve, stationary phase ¢°% in chain curve, optics geometric ¢9¢
in circle curve, first-order small slope approximation o°°4% in symbols

plus, and the small perturbation method in symbols x-marks.

slope but contribute negligibly to scattering. A smooth transition at
scattering angles of 2040 degrees where the geometric-optics regime
becomes not valid and where the Bragg scattering regime predominates
is observed. In this region, the deviation between the KA and SSAQ
models increases with the scattering angle, and the SP results are
underestimated. In fact with KA, there are numerical problems for
large incidence angles. Since for the HH polarization, By = —1, we
get %7 = 55540 /(cos #)* with explains the overprediction of SP.
Figure 12 compares the SSAQ results with (37) SSA1 ones for VV
and HH polarizations with the same parameters as Figure 11. Unlike
with the Kirchhoff approach, for a perfectly-conducting surface, the
SSA model for the VV polarization is larger than the HH one because
the polarization terms {By y} are different. We can also see that
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Figure 12. Comparison of the SSAQ results with SSA1 ones for VV
and HH polarizations with the same parameters as Figure 11.

the discrepancy between the SSAO and SSA1 models increases with
the scattering angle, involving that the SSA1 model is not similar to
the rigorous SSA solution. This solution will be discussed for a two-
dimensional dielectric surface.

When the isotropic part of (26) sea surface height modeled
autocorrelation function R () is used, the NRCS is very different than
the one computed from (25). Therefore, for the simulations Rgo(r) is
computed numerically from (25). This explains by the fact that around
zero, Roo(r) has to be very accurate for observing the Bragg regime.

4.2. Dielectric Surface with an Isotropic Sea Spectrum

As shown Bourlier et al [18], for a dielectric surface, the integrand in
the Kirchhoff integral is a very complicated function involving that the
integrations over the statistical variables (heights and slopes) can not
be performed analytically. On the other hand, the SA model presented
in this subsection can be used.

Using the same way as previously, the incoherent backscattering
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coefficient under the scalar approximation o°4 is from (6)

oo

ot = 2(Kcos€)26Xp(—Kf))\RHy|2/ rdr
0
. (eXp(Kf,f()){Jo(aZT) - 2J1((E7’)(0’X tan Q)fle

R(Ray Riasy1)/|Basy = Jo(or)} ) (38)

For the SSA1 model, equation (37) is similar, where the { Ky, Kf}
are expressed from (9b)—(9¢c) (see appendix A) as

031902
Ky=R|—"F"""—"— 38
H lkO(QOl - %2)] (382)

K2 (g8 + vk )qo2(k§ — K*)(qo1q02 + k)
ko(qo1 — qo2) [t 0 + K2kG + k3 (48,02 — 26, K*)]

where {qo1, qo2, ko} are given by (9d).

Figures 13-14 represents the NRCS of SA (full curve), SSAO (chain
curve), SP (circle curve), OG (plus curve) versus the scattering angle
for VV and HH polarizations in C (f = 5.3 GHz, &, = 67 + 535 [28],
at the top) and Ku Bands (f = 14 GHz, ¢, = 47 + 538 [28], at the
bottom). The wind speeds w19 = {5,15} m/s.

For the HH polarization, since Ry = By, the deviation between
the SA and SSAOQ models is smaller than the one obtained for VV
polarization. For the VV polarization, |By| > |Bg| which explains
in Figure 15 that the scattering coefficient in VV polarization is
greater than the one computed for HH polarization. In fact we have
oPv [t = |Bu /By .

Voronovich [11, Figures 1-(e) and 1-(f)] have compared the SSA0
and (35) SSA models with the same parameters as (c¢)—(d) of Figure
15 (f = 14GHz and w19 = {5,15} m/s). He observed for scattering
angles 6 € [0;60]° that the SSA0 and SSA scattering coefficients are
similar for the VV polarization, whereas for the HH polarization, the
difference o33! — o254 > 0 increases with the wind speed, but remains
within about 2 dB which is observed in Figure 15 with the 01*3%41 model.
Therefore, %949 ~ o494 with an accuracy of order 2dB. McDaniel
[14, Figures 4-5] with uj0 = {5,10} m/s and f = 5.3 GHz, observed a
deviation o594 — ¢9540 > () less smaller than 0.8 dB. Therefore, the
SSA1 model is not sufficient for the HH polarization to account for the
SSA formulation. Nevertheless, 05540 ~ o554 allowing to compute
rapidely the backscattering coefficient, since the SSA requires four-fold
integrations.

Ky = 5)%{ } (38b)
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Figure 13. VV normal radar cross section in C (f = 5.3GHz, ¢, =
67+ 735, at the top) and Ku Bands (f = 14 GHz, e, = 47+ j38, at the
bottom) versus the scattering angle for wind speeds ujo = {5,15} m/s
with a dielectric isotropic sea surface.

4.3. Dielectric Surface with an Anisotropic Sea Spectrum

From measurements made in microwave band [23-26] for co-polariza-
tions pg (VV and HH), the NRCS is given as

Opg = qu + all)q cos ¢ + qu cos(2¢) (39)

In (39), the mean backscatter agq mainly carries the information of the

wind speed, a;q describes the upwind and downwind asymmetry, and

agq accounts for the difference in backscatter extrema. We get

ol = (a;;”q + qu + 205(1)/4
Opg = (0p = 05g) /2 (39)

Opq = (qu + ng B 2‘713(1)/4
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Figure 14. Same variation as Figure 13 for HH polarization.

where {opq, gq,ogq} are the backscattering coefficients in upwind
(¢ = 0°), crosswind (¢ = 90°) and downwind directions (¢ = 180°),
respectively.

In paper [11,14], the effect of the wind direction ¢ is studied
numerically from the previous model. The originality of this subsection
is to give an analytical representation of the {(op;*} terms from the
SSAO and SA approaches.

For a two-dimensional sea surface, the general behavior of the
sea surface height autocorrelation function Ry(r,®) is expressed as
(24) Ro(r,®) = Roo(r) — cos(2®)Rga(r), where the isotropic Roo(r)
and anisotropic Rpo(r) parts are given by (25). Substituting these
equations into (35), the integration over 1 yields then for the SSA0
approach (|Z(§,9 — ¢)| = 2 which means £ = 0)

K cos §)2 —K2)|Byy|?
55540 _ (K cos)” exp )| Bry| /rdr/ expljxr cos(® — ¢)]

s

(exp{KZ[foo(r) — cos(2®) foz(r)]} — 1)d® (40)
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Figure 15. Comparison of the SSAO model with SSA1 one for VV
and HH polarizations. At the top f = 5.3 GHz, and at the bottom
f =14GHz.

where z is given by (31a), foo = Roo/w? and foa = Rga/w?. The use
of (B4) leads to

0¥ = (K cos0)?| By v |* /Oc;‘dr{ oxp{—K3[1 = foo(r)]}
0

Jo(zr)Io(z1) + 2 i cos(2n@) Jon (xr) I, (x1)

n=1
~Jolar) exp(~K3) | (41)

with
:El(’l“) = KngQ(’r‘) = (2Kw COS (9)2f02(7“) (41&)

with {J,,, I, } the n'"-order Bessel function of the first and second kinds,
respectively.

In Figure 16, the exp{—(2Kw)?[1 — foo(r)]} x In[(2Kw)? fo2(r)]
(z1(r) = (2Kw)? foa(r) for § = 0) function is plotted versus the radial
distance r for wind speeds ujp = 5m/s (at the top) and uig = 15m/s
(at the bottom) with frequencies f = {5.3,14} GHz. n = {0,1,2}. We
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Figure 16. Variation of exp{—(2Kw)2[1 — foo(r)]} x I.[K2 foz(r)]
function versus the radial distance r for wind speeds ujp = 5m/s
(at the top) and ujp = 15m/s (at the bottom) with frequencies
{f =5.3,14} GHz, n = {0,1,2}.

observe that the term of order n = 2 can be neglected. Moreover, in
(41) around of zero, the Jo,o(2r) functions with x = 2K sin 6 is close
to zero which decreases the term in the symbol 3. This involves that
the backscattering coefficient can be written as (39) (the subscript pq
is understood)

gSSA0 — ;SSA00 | 5SSAOL g | GSSADZ o5(90) (42)
where
o900 — 9(K cos0)?| By |? exp(—K2)
. /0 o) [Ho(@) exp(K2 foo) — 1] (42a
oS30 — (42b

oo
oo540.2 4([(0059)2|BH,V|2exp(—Kf,)/0 rexp(KﬁfOO)JQ(xr)Il(wl
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If the surface is assumed to be isotropic,then x; = 0, meaning
that {Io(z1),I1(z1)} = {1,0}. o%54%2 is then equal to zero and
g 39400 — 55540 (equa‘mon (36)). We can notice that ¢54%! = 0 since
the sea spectrum is assumed to be even in the upwind and crosswind
directions due to the behavior in cos(2®).

With the SSA model, Voronovich [11, Figures 2 and 4] showed
in Ku and C bands for wind speeds ujg = {5,10,15} m/s that the

backscattering coefficient in the upwind and downwind directions

coincide, involving from (39a) ¢%°4! = 0. Therefore, although
(11) modified autocorrelation function is not symmetrical, %54 is
symmetrical.

As discussed by Fung [39], the asymmetry of the radar cross
section can be studied within the skewness effect. The sea spectrum is
then represented by its real part which is centro-symmetric whereas its
imaginary part is not equal to zero and it is an antisymmetric function.
The spectrum is then Hermitian.

Substituting (4d), (5), (5a), (5b) into (4b), we get

oxx1 = —4K cos x {cos(¢ — P)[R1p — cos(2P) R12]
+2sin(¢ — ®)Roz sin(2®) /r} (43)

The use of (6) with (3) leads to
oS4 _ (K cos§)® exp(—KZ)| Rp,v|*

T
[e%¢) 2m
/ rdr | d®(.. )5 expljzr cos(® — ¢)] (44)
0 0
where
(...)9 = exp{K3[foo(r) — cos(2®) foa (r)]}
{1 — 45 sin(0) KR(Ry,v R v1)/|Rav|?
{cos(¢p — P)[R1g — cos(2P) Ry2]
+2sin(¢ — ®)Rozsin(2®)/r}} — 1 (45)
where 0°4 is the incoherent backscattering coefficient under the scalar

approximation (SA).
Substituting (45) into (44) and making the integration over ® we
show

o4 = 2(K cos0)? exp(—K?2)

[Co — 4K sin Gw(RHyRHLVl)
'(RmCl — R12Cy + 2R0252/T)/|RH7\/|2] — J()(l’T‘)}TdT (46)

(K2 foo)
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Figure 17. VV normal radar cross sections {O‘V’(‘]/, av’%/} of {SSA0,SA}
in C (f = 5.3GHz, ¢, = 67 + 535, at the top) and Ku Bands
(f = 14GHz, &, = 47 + 538, at the bottom) versus the scattering
angle for wind speeds u1p = {5,15} m/s with a dielectric anisotropic
sea surface.

where C;(a,b, ) and Sa(a,b, ¢) with {a = ar,b = K2 fo2(r)} are given
in appendix B. Expanding C;, and So, we can show that they expressed
with respect to even harmonics cos(2n¢). Consequently, as the SSAQ
approach, the cos ¢ term in (39) is equal to zero.

The identification of (46) with (39) yields

oo
o340 = (K cosh)? eXp(—Kz)’RH,VP/O {exp(K2 foo)

[JoIo + 4sin 0K R(Ryv Ru1v1)/|Ruv|?
-1 (Rl()Jo + R12J1)] — Jo}TdT (46&)
oA = 0 (46b)

oo
0342 = 9(K cosh)? exp(—Kz)]RHy]Q/ {2J211 + 4sin 0K
0

R(Ruy Rmv1)/|1Ruy|*{[lo + L][RioJ2 + Ria(Js — J1)/2]
+4RgaJo 1o/ (x1?)} }r exp(K2 foo)dr (46¢)
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Figure 18. Same variation as Figure 17 for HH polarization.

where {J;(...), I;(...)} depend on {zr, 1 = K2 fo2(r)}, respectively.
Figures 17-18 shows the predictions of the VV and HH normal
radar cross sections {0’°,0"*} of {SSA0,SA} in C (f = 5.3CGHz, ¢, =
67+ 735, at the top) and Ku Bands (f = 14 GHz, e, = 47+ 538, at the
bottom) versus the scattering angle for wind speeds ujg = {5,15} m/s

with a dielectric anisotropic sea surface. As for an isotropic surface,

for HH polarization the {0?}%40’2, 0?}%2} models coincide, whereas for

the VV polarization the SA results are underestimated. When the
scattering angle is close to the zero, 095402 ~ 5542 and ¢’ can be
neglected, meaning that the backscattering coefficient does not depend
on the wind direction.

In Figure 19, with the same parameters as Figures 17-18, for VV
and HH polarizations, the SSAO model is plotted versus the scattering
angle with wind direction ¢ = {0,90}°.

In Figure 20, the VV normal radar cross sections {J‘S,*?/AO’O, a‘s,*?,AOQ}
in C band are compared versus the scattering angle with experimental
data. 6 € [18;58]°, the wind speeds ujgp = {5,10,15,20} m/s and a
dielectric anisotropic sea surface is considered. Experimental data are
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Figure 19. Comparison of the VV and HH normal radar cross section
of the SSA0 model for wind direction ¢ = {0,90}°. The parameters
are the same as Figures 17 and 18.

calculated according to the CMOD2-I3 model (there is no model for the

HH polarization for the C band). For small wind speeds, 05“9}40’2 over-

predicts the measurements at low incidence angles and underpredicts it
at high angles of incidence. For the isotropic part, 0{9‘/ underestimates
the experimental data.

In Figure 21, the comparison of the experimental data for ¢ =
{0,180}° shows that the upwind and downwind asymmetry described
by 0';(11 is slightly.

In Figure 22, the backscattering coefficients {55400, 579540.21 for
VV (one the left) and HH (on the right) polarizations in Ku band
are compared with experimental data (SASS-II model [25]) versus
the scattering angle. The wind speeds u1g = {5,10,15} m/s. The
deviation between the results and the measurements is greater for the
HH polarization and decreases with the wind speed. As Figure 20,
o9540.2 gverpredicts the measurments. In a brief report, Voronovich
et al [40] note comparable disparities between small-slope predictions
and measured directionality at low incidence angles.
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Figure 20. Comparison of the VV normal radar cross sections

ag}q/AO’O,Jg}q/AO’Q} in C band with experimental data versus the

scattering angle. The wind speeds ujp = {5,10,15,20} m/s and a
dielectric anisotropic sea surface is considered. Experimental data are
calculated according to the CMOD2-I3 model (there is no model for
the HH polarization for the C band).

5. CONCLUSION AND DISCUSSION

We have calculated the backscattering cross section as a function of
incidence angle in the upwind, downwind and cross-wind directions
for Ku and C bands for three wind speeds of 5, 10 and 15m/s and
compared the results with averaged experimental data provided by
the empirical models SASS-II [25] and CMOD2-13 [24]. Calculations
were performed with the help of the small-slope (SSA) [9-11] and
the Kirchhoff (KA) approximations. Sea roughness was assumed to
obey Gaussian statistics and the Elfouhaily et al [22] spectrum of
roughness was used in numerical calculations. It is shown with the
KA approach that the shadowing effect can be omitted for scattering
angles of interest of remote sensing.

For an isotropic sea surface assumed to be perfectly conducting,
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Figure 21. Comparison of the VV normal radar cross section
o934% in C band with experimental data (CMOD2-13 model) versus
the scattering angle for wind speeds u;p = {5,10,15,20} m/s and
¢ = {0,90,180}°. A dielectric anisotropic sea surface is considered,
and aé}g/‘o with ¢ = 180° is not plotted since it is equal to the one
computed for ¢ = (0°.

the Kirchhoff approximation (KA) can be performed rigorously [18]
without additional assumptions widely used in order to obtain the
stationary phase (SP) method [19]. The simulations show that the first-
order SSA approach denoted as SSAQ describes both the two regimes
come from the gravity and capillary waves. At nadir-scattering angles,
the SSAO backscattering coefficient is close to the SP model which
gives the contribution of the gravity waves, whereas for intermediate
scattering angles, the Bragg regime is observed due to the capillary
waves. With the KA formulation, a transition is observed with an
underestimation of the radar cross section. Since the copolarization
terms of SSAQ are equal to the ones of the small perturbation
method, the backscattering coefficient for co-polarizations are not
equal, whereas with the KA model, they are equal.
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Figure 22. Comparison of the VV (on the left) and HH (on the

right) normal radar cross sections {J€€A0,07 cr{if,AO’Q} in Ku band with
experimental data (SASS-II model) versus the scattering angle. The
wind speeds ujp = {5,10,15} m/s and a dielectric anisotropic sea
surface is considered.

For isotropic and anisotropic sea dielectric surfaces, the NRCS
computed from the SA (KA of first-order according to the surface
slopes) is similar to that SSAO for HH polarization. The use of the polar
coordinates allows to have an analytical expression of the harmonic
magnitudes with respect to the wind direction. The backscattering
coefficient requires then a single integration over the radial distance
instead of four-fold integrations in cartesian coordinates with the SSA
formulation. Since the sea spectrum is assumed to be symmetrical and
real, with the SSA and SA approaches, the effect of the first azimuthal
harmonic is nil.

The mean deviation given in Table 1 between the SSAQ results
and measurements in C [24] and Ku [25] bands increases with the wind
speed. As shown [14,40] better agreement with measurements could
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w10 in m/s 5 10 15 20
o indB 15 07 15 29
o %% indB 22 21 20 23

Table 1. Mean deviations 05@’40’0,05@’40’2 between the SSAO model

and experimental data in C band for the VV polarization.

uio in m/s 5 10 15
oo indB 1.0 14 1.1
o %% indB 3.7 25 2.3
oy A% indB 25 26 3.0
oyt indB 4.8 3.3 2.8

Table 2. Mean deviations G‘S}}g}’q]g’lg, G‘S}‘?/?Hofl between the SSAO model

and experimental data in Ku band for the VV and HH polarizations.

be obtained by modifying the sea spectrum. The modification means
a more directional spectrum for long waves (at near-nadir scattering
angles, the magnitude of the second azimuthal harmonic decreases),
and a less directional spectrum for shorter waves (in the Bragg regime,
the magnitude of the second azimuthal harmonic increases). This is
consistent with Figure 6, where the surface slope standard deviations
overestimate weakly the Cox and Munk models.

APPENDIX A. NORMAL RADAR CROSS SECTION OF
SSA BY APPROXIMATING {|Zy 4|2} BY THE FIRST
TERM OF ITS TAYLOR SERIES

Approximating (34) {Ey.g} by the first term of its Taylor series
expansion about the origin £ = 0, we get

ko cos(¢) — cb)]
2(k¢ + K2)

1

kof COSW - (b) (Al)

=g ~2|1
g [+ 2063 - K?)

va2 1+
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This involves that

IZv]? ~ 4 [1 + {cos(y) — @) R <k§ _]T_OK2>]

Zul ~ a1+ ceostv - o (s )| (A2)

Using the following relationship

/02?1 + & cos(¢h — ¢)] expljEr cos(vh — ¢)]dyp =
2m[Jo(ér) + €' J1(Er) cos(® — @)],  (A3)

Substituting (A2) into (35), and performing the integration over 1), the
exponential term exp{...} of (35) is then expressed as

i j cos(P —
exp{Kw Ji [M(&)Jo@r)+"@¢)5M<5>J1<fr>] dg} (Ad)

w? Ky pu

where

Kv = R[(k§ + K?)/ko] Kn = R[(k§ — K?)/ko] (A5)

The integration over ¢ is expressed from { Ry (), Rio(r)} given by (25)
and (27). Substituting then (A4) into (35), we get

ssar _ (K cosf)? GXP(—K2)|BHV|2

/ rdr/ exp[2jr K sin(f) cos(® — ¢)](exp{K?
[foo(r) = joufro(r) cos(® — ¢) /WKy, m)]} — 1)d® (A6)

where
foo(r) = Roo(r)/w?®  fio(r) = —Rio(r)/(woy) (AT)

The integration over ® leads then to

o
goSAL 2(Kcos€)2exp(—K3)|BH,v|2/0 {eXp(Kifoo)

Jo(2rK sin6 — K fioos/[wKv,u])
—Jo(2rK sin 0) }rdr (A8)
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APPENDIX B. ANGULAR INTEGRATIONS FOR A
TWO-DIMENSIONAL SEA SURFACE

We need to solve the following integral over ®

Co(a,b,¢) = % /27(raxp[ja cos(® — ¢) — beos(29)]dP (B1)
0

The complex exponential can be expressed as [38]

exp[jacos(® — ¢)] = Z 3" Jm(a) exp[jm(® — ¢)]

m=—0o0

= Jo(x) + 235217 Jm(a) cos[m(® — )]
exp|[—bcos(2®)] = Z " In(jb) exp(2jn®)

n=—oo

= Jo(Jy) + 222521 5" In(5b) cos(2n®)

(B2)
where J,, is the Bessel function of the first kind and order m.
Substituting (B2) into (B1) and performing the integration over ®
we show

Co = Jo(a)Jo(by) + 2 Z Z §(m — 2n) cos(2n¢) I (a) J, (jb) ™"
m=1n=1
(B3)
where § is the Dirac function. Using the relation J,(jb) = j"I,(b)
where I, denotes the Bessel function of the second kind and order n,
we obtain

Co(a, b, ¢) = Jo(a)Ip(b) + 2 i cos(2ne)Jap (a) I, (b) (B4)

n=1

The computation of the normal cross section requires the know-
ledge of the following integrals

Ci(ab, &) = /O 7 cos(® — &) explja cos(® — ¢) — beos(2)|dd  (BS)

Cy(a,b,¢) = /22 cos(2P) cos(P — @) expljacos(P — ¢) — bcos(2P)]dP
0

Si(a,b,¢) — /0 “un(20) explja cos(® — ) — beos(20)]dd (B7)



Microwave analytical backscattering models 75

Sa(a, b, ¢) = 27;' sin(® — ¢) sin(2®P) exp[ja cos(P — @) — bcos(2P)]dP
0

(B8)

Noting from (B1) that C; = 0Cy/da and Cy = —0C}/0b, we show
from (B4)

Ci(a,b,9) = —Ji(a )+ Z cos(2n¢)
n=1
[Jan—1(a) — Jont1(a)]In(D) (B9)

Co(ab,d) = Ji(a)hy (b) — % S cos(2n)
n=1

[J2n-1(a) = Jznll(a)][fn—l(b) + Inta (b)) (B10)

Using (B2), and the same way as Cy, we get

Si(a,b, @) 2] Z I,,(b) exp(2jne)[Ja—2n(a) exp(—2j¢)

n=—oo

—J2-2n(a) exp(2j¢)] (B11)
Noting from (B7)—-(B8) that aSy = 051/0¢, we show

Sa(a,b,¢) = — Z 1, () exp(2jn¢)[J2-2n(a)(n — 1) exp(=2j¢)

'I’L——OO

—J2-2n(a)(n + 1) exp(2;j¢)] (B12)
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