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Abstract—Classical electrodynamics can be divided into two parts.
In the first one, a need of introducing a plenty of directed quantities
occurs, namely multivectors and differential forms but no scalar
product is necessary. We call it premetric electrodynamics. In this
part, principal equations of the theory can be tackled. The second part
concerns solutions of the equations and requires establishing of a scalar
product and, consequently, a metric. For anisotropic media two scalar
products can be introduced depending on the electric permittivity and
magnetic permeability tensors. In the case of plane electromagnetic
waves both of them are needed because two constitutive equations are
needed: one for the electric fields, the other for the magnetic field. We
show which part of the description of plane electromagnetic waves is
independent of scalar products, and where they become necessary.
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1. INTRODUCTION

In the last decades, a way of presenting electromagnetism has been
proposed based on a broad use of differential forms; see Refs [1–12].
Most of authors are content with algebraic definitions of the exterior
forms: nice exceptions are Refs. [2, 8, 9] where visualizations by
geometric images are shown. Not all presentations, also, put enough
care to the use of odd forms. In Refs. [1–4], D is claimed to be a two-
form. Only few authors applied odd forms in electrodynamics, under
various names: covariant W-p-vectors [5], twisted forms [6, 9] or odd
forms [10, 7].

When asked what directed quantity in three-dimensional space
are the electric field strength E and electric induction D we usually
answer: they are vectors. Similarly, when asked about the directed
nature of the magnetic field strength H and the magnetic induction B
we answer: they are pseudovectors or axial vectors. We do so because
we do not realize that to exterior forms (called also differential forms
if they depend on position) also attributes of magnitude and direction
can be assigned. There are arguments showing that E, D, H and B
are differential forms, hence they also can be considered as directed
quantities. This characterization is basis-independent, hence it allows
to proceed within the theory without tedious burden of indices.

The even and odd forms are necessary to formulate electrodynam-
ics in a scalar-product-independent way. We call it premetric electro-
dynamics. It turns out that only the principal equations of this theory
can be tackled in this manner: Maxwell’s equations, the potentials,
the Lorentz force, the continuity equation for charge, the boundary
conditions. When one seeks their solutions, that is, specific electro-
magnetic fields as functions of position, a scalar product is needed
for writing, among others, the constitutive equations involving elec-
tric permeability and magnetic permittivity. A special scalar product
can be introduced in the case of anisotropic dielectric, for which the

vectors ~E and ~D become parallel. In this manner the medium can
be treated analogously to the isotropic one. Then the counterpart of
the Coulomb field and the fields for many electrostatic problems can be
found in a very natural way [13]. Analogously in the case of anisotropic
magnetic medium another scalar product can be introduced, for which
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pseudovectors ~H and ~B are parallel. Then the medium appears to be
isotropic, so the counterpart of the Biot-Savart law can be found and
solutions of many magnetostatic problems [13] are possible. When con-
sidering plane electromagnetic waves electric and magnetic fields are
present simultaneously, hence both scalar products have to be taken
into account.

The present work depends strongly on previous one [13] where
the geometric images of the multivectors and exterior forms (called
directed quantities) have been introduced. A terminological change
is now introduced: the ordinary quantities are now called even (even
bivector, even one-form etc.) and pseudo-quantities are called odd.
Also the premetric electrodynamics in the three-dimensional space
has been presented in [13]. The electromagnetic field quantities have
turned out to be of different nature: E is even one-form, H is odd
one-form, D is odd two-form, and B is even two-form. This paper
is devoted to the discussion of plane electromagnetic waves as long
as possible without scalar products, and to show the place where the
scalar products enter into considerations.

Principal types of directed quantities are recalled in Section 2.
Useful products, namely the exterior product, contraction and scalar
product, are recollected in Section 3. The first two products serve to
formulate electrodynamics in a scalar-product-independent way what
is done in the beginning of Section 4. We show also in it that two special
scalar products can be introduced, related to electric permeability and
magnetic permittivity, which enter the constitutive relations along with
the contraction with the basic three-form.They form two kinds of the
Hodge star operator.

In Section 5, we describe plane waves first in a metric-independent
way and then with the use of two above mentioned scalar products.
We convince that a one-form quantity, slowness, is more useful than
the phase velocity which should be a vector quantity. For anisotropic
medium, we find that two kinds of plane waves are possible which are
called eigenwaves. The energy fluxes for these waves are not parallel to
each other and serve to determine the velocity of the energy transport
by the wave.

The present paper describes an approach to constitutive
relations that is becoming popular in finite-element/finite-difference
formulations of numerical electromagnetics. In the 90’s computational
electromagnetics people were trying to reformulate it with the aid
of differential forms, but some problems remained, among them the
way of introducing constitutive relations into the formalism. In the
statics, the use of two suitably modified Hodge operators, electric and
magnetic, for anisotropic media worked well, see e.g., [13, 14]. This
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idea caught on, and some research groups adopted the approach. The
idea of applying metrics in constitutive relations has been used to treat
absorbing boundary conditions [15]. The most recent development in
this approach to constitutive relations is that of Obukhov and Hehl
[16].

2. DIRECTED QUANTITIES IN THREE-DIMENSIONAL
SPACE

The list of directed quantities in three-dimensional space consists of
even and odd multivectors, even and odd forms.† For their more
systematic introduction see Ref. [13]. Each directed quantity has a
separate direction which consists of attitude and orientation. For
the well known vector, depicted as a directed segment, the direction
consists of a straight line (on which the vector lies), after Lounesto
[17] called an attitude, and an arrow on that line which is called the
orientation. The parallel vectors are said to have the same attitude.

Geometric images of the directed quantities are shown in
Figures 1–9. These pictures should be treated as a recapitulation of
more thorough definitions presented in [13].

Figure 1. Two odd vectors of the same attitude and opposite
orientations depicted by oriented parallelograms.

Table 1 collects relevant features of eight quantities which, in the
presence of a metric, can be replaced by vectors (or pseudovectors).
The upper part contains even and odd multivectors, the lower
part contains their duals. Typical examples of geometric and
electromagnetic quantities are added for all of them.

† Even vector is the ordinary or polar vector, odd vector is the pseudovector.
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Figure 2. Even bivectors represented as exterior products of two
vectors. Orientation is depicted as circulation on the boundary. Two
bivectors a ∧ b and b ∧ a, opposite to each other.

Figure 3. Odd bivectors represented as exterior products of even
vector a and odd vector c. Orientation is depicted as the arrow piercing
the plane. Two odd bivectors a ∧ c and c ∧ a, opposite to each other.

Table 1. Directed quantities replacing vectors.



284 Jancewicz

Figure 4. Solid body represents trivector. Orientation of the even
trivector is marked as the helix, that of the odd trivector — as the
sign.

(a) (b)

Figure 5. a) Family of parallel planes representing a one-form.
Orientation depicted as the vertical arrow. b) By counting pierced
layers between the planes we ascribe a number to a vector.

Figure 6. Family of parallel planes representing an odd one-form.
Orientation depicted as a curved arrow on one of planes.
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(a) (b)

Figure 7. a) Family of parallel pipes representing even two-form.
Orientation depicted as a curved arrow around axis of the pipe. b)
Value of two form B on bivector S.

Figure 8. Family of parallel pipes representing odd two-form.
Orientation depicted as rectilinear arrow along a pipe.

Figure 9. Family of cells representing a three-form. Orientation of
the even three-form is marked by the helix and of the odd three-form
— by the sign.
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3. VARIOUS PRODUCTS

Let us denote by M the set of all even and odd multivectors including
scalars. Each quantity has its grade, namely k-vectors have grade k.
The exterior product can be defined for each pair of quantities from
M. Figures 2 and 3 show how bivectors are obtained as products of
two vectors. The grades of factors add in such a product; but, when
their sum is greater than three, the product is zero. Multiplication by
two unit odd scalars‡ r, l gives two natural isomorphisms between the
subspaces of even k-vectors and odd k-vectors.

Let F denote the set of all even and odd forms. We can similarly
define the exterior product for all pairs of elements from F . As an
example we show in Fig. 10 how one can build a two-form B as the
product of two linear forms f ∧g. We can say that the pipe of B is the
intersection of the layers of the factors as the one-forms. The attitude
of B is a straight line — the intersection of the attitudes (planes) of f
and g, the orientation is obtained by juxtaposing the arrows of both
forms, second after the first.

Figure 10. The exterior product f ∧ g of two one-forms f and g.

Since each odd quantity N can be represented as N = rM for some
even quantity M , we may introduce the value of an even one-form f
on an odd vector b = ra as

f [b] = f [ra] = rf [a].

In this way, even one-form becomes a linear form on M1; that is, on
the set of even and odd vectors. Analogous claims can be formulated
about the two-forms as linear forms on M2 and three-forms as linear
forms on M3.

Similarly, the value of an odd one-form g = rf on an even vector
a is defined as

g[a] = (rf)[a] = r(f [a]).

‡ They are called right and left, and are opposite to each other.
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Another kind of product can be introduced, namely, contraction.
The contraction of the one-form f by the vector a is acf = f [a] where
f [a] is the value of f on a. We define, similarly, the contraction from
the other side: fba = f [a].

The contraction of the two-form B = f ∧ g (where f, g are one-
forms) by the vector a is

acB = ac(f ∧ g) = f [a]g − g[a] f . (1)

We can also define the contraction of B by a from the other side:

Bba = (f ∧ g)ba = f g[a] − g f [a] = g[a] f − f [a] g. (2)

After comparing this with (1), we notice that this contraction is
anticommutive:

Bba = −acB. (3)

It is possible to check that the contraction of a two-form by a vector
a is parallel to both factors.

The contraction of the three-form w = g ∧ B by the vector a is

acw = ac(g ∧ B) = g[a]B− g ∧ (acB). (4)

Since we can write w = B ∧ g as well, we define also the contraction
from the other side:

wba = (B ∧ g)ba = Bg[a] − (Bba) ∧ g.

The last term is the exterior product of two one-forms; hence, it is
anticommutive and we obtain

wba = g[a]B + g ∧ (Bba).

Now we use (3):
wba = g[a]B − g ∧ (acB).

Comparing this with (4), we notice the commutivity:

wba = acw.

The result of this contraction is obviously a two-form. One can check
that the contraction of a three-form by a vector is parallel to the vector.

Similar inductive procedure serves to define contractions of
multivectors with one-forms. For instance, the counterpart of (1) for
a one-form k is the definition:

kc(a ∧ b) = (kca)b − a(kcb). (5)
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Then one defines the contraction of the trivector T with the two-form
B = f ∧ g as follows:

T bB = T b(f ∧ g) = (Tbf)bg, BcT = (f ∧ g)cT = fc(gcT ).

One can check that this product is commutive and parallel to the two-
form.

We omit tedious calculations leading to the following identity
including a one- form k, a three-form I and a bivector s:

k ∧ (Ibs) = Ib(kcs). (6)

The both sides of this equality are two-forms. For vector b in place of
s, another identity is fulfilled:

k ∧ (Ibb) = k(b) I. (7)

A scalar product is the bilinear form g which is symmetric, positive
definite and nondegenerate. Let g(v,u) denote the value of g on two
vectors v and u. When the vectors are expressed in a basis {ej}, that

is, v = viei, u = ujej ,
§ then the bilinearity allows to write down

g(v,u) = vigiju
j , where gij = g(ei,ej).

The matrix G = {gij} is known as the metric tensor, we call it the
scalar product matrix.

For a given vector basis {ej} a unique one-form basis {fk} exists

such that fk(ej) = δk
j – it is called dual basis. The scalar product of

vectors induces the scalar product g̃ of one-forms by the formula

g̃(h,k) = hig̃
ijkj, where h = hif

i, k = kjf
j (8)

and the matrix G̃ = {g̃ij} is inverse to G:

G̃ = G−1 (9)

Let us consider two scalar products g1 and g2 in the same linear
space such that g1 is not proportional to g2. As explained in [13], each

of them has its own concentric spheres‖ which for us are ellipsoids. We
visualize them in Fig. 10 which for the sake of simplicity is made in two
dimensions, hence the ellipsoids are shown as ellipses. One can find
pairs of ellipses, one being g1-sphere the other g2-sphere such that they
are tangent to each other. We show two such pairs in Fig. 11. Now
we draw two vectors c1, c2 from the origin to the point of tangency of
the ellipses and two vectors b1, b2 tangent to ellipses of two families
simultaneously, see Fig. 12.

§ The Einstein summation convention is assumed for repeated indices.
‖ Sphere means a set of points with equal distances from the origin.
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Figure 11. Each scalar product defines its spheres which look like
ellipsoids.

Figure 12. Two pairs of vectors orthogonal with respect to both
scalar products.

From the properties of the scalar product b1 ⊥ c1 and b2 ⊥ c2

with respect to both scalar products gi. It follows from this that
c1 ⊥ c2 with respect to both gi’s. In the plane one can find only
two attitudes for which vectors (like c1 and c2) have tips at points
of tangency of ellipses from the two families. This means that in
two dimensions when g1 and g2 are not proportional, there exist only
two attitudes perpendicular to each other with respect to g1 and g2

simultaneously. It may happen that in three dimensions, only three
such attitudes exist, we shall call them principal attitudes or principal
axes of one scalar product with respect to the other. In such a case,
the scalar product g1 will be called biaxial with respect to g2 and vice
versa.

If one of the scalar products – let it be g2 – is the ordinary scalar
product of our space, its spheres are ordinary spheres, see Fig. 13
where the ellipsoids are represented by ellipses and the spheres by
circles. Now the counterpart of Fig. 12 is as shown in Fig. 14, where
we have an ellipsoid inscribed in a circle and a circle inscribed in an
ellipsoid. In three dimensions, three vectors c1, c2 and c3 exist which
are perpendicular to each other, we say that they determine principal
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Figure 13. Ellipsoids become true spheres for the natural scalar
product g2.

Figure 14. Ellipsoids become true spheres for the natural scalar
product g2.

attitudes or principal axes of g1 with respect to the ordinary scalar
product. At the tip point of c1, the two vectors c2 and c3 span a plane
tangent to the ellipsoid and to the sphere simultaneously. The same
is valid for the circular permutation of indices. This is the situation
when the scalar product matrix G1, after putting into diagonal form,
has three different values on the diagonal.

In the special case, when two eigenvalues of G1 are equal, the
situation is different. In this case, there exists one vector c1 and the
infinite family of vectors cα orthogonal to c1 with respect to both scalar
products. They scan a plane perpendicular to c1. Then the sphere of
g1 is the ellipsoid of revolution. It is not strange then that there exists
a ring of points of tangency of this ellipsoid to a sphere of g2. The
plane of this ring will be called principal plane and the attitude of c1

— principal axis of g1. In this case the scalar product g1 is called
uniaxial.

The scalar product of one-forms serves to define a scalar product
of two-forms. Namely, for B = h ∧ k, D = p ∧ s one defines it by the
determinant

g̃(B, D) = g̃(h ∧ k, p ∧ s) =

∣∣∣∣
g̃(h,p) g̃(h, s)
g̃(k,p) g̃(k, s)

∣∣∣∣ . (10)
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One may also introduce inner products of a two-form D = h ∧ k
with a one-form E by the expressions

g̃(D,E) = g̃(h ∧ k,E) = h g̃(k, E)− k g̃(h,E)

and
g̃(E, D) = g̃(E,h ∧ k) = g̃(E, h)k− g̃(E,k)h.

It is easy to notice that g̃(D,E) = −g̃(E,D). The inner product can
be written in coordinates:

[g̃(D, E)]k = Dkj g̃
jiEi, [g̃(E,D)]k = Eig̃

ijDjk. (11)

The scalar product matrix G serves also to transform vectors into
one-forms by the following formula for the basis vectors:

G(ei) = fkgki,

and then, by linearity, for the arbitrary vectors. Similarly the inverse
matrix G̃ serves to transform one-forms into vectors:

G̃(fk) = ej g̃
jk.

Here f i’s are elements of a basis dual to the vector basis ej, which
means f i[ej] = δi

j . These linear operators are inverse of each other:

GG̃ = G̃G = 1. The linearity allows to find the image of arbitrary
one-form E = Ekf

k:

~E = G̃(E) = G̃(Ekf
k) = EkG̃(fk) = g̃jkEkej.

This means that vector coordinates Ej are related to form coordinates
Ek by the relation

Ej = g̃jkEk. (12)

After short calculations one may prove the following identities

(G(v))(u) = ucG(v) = g(u, v), f(G̃(h)) = fcG̃(h) = g̃(f , h).
(13)

We define also operator G̃∧2, called compound or 2-compound,
acting on two-forms by the prescription:

G̃∧2(h ∧ k) = G̃(h) ∧ G̃(k).

This object is obviously a bivector. Let us calculate its contraction
with a one-form f with the use of (5):

fcG̃∧2(h ∧ k) = fc[G̃(h) ∧ G̃(k)] =
(
fcG̃(h)

)
G̃(k)−

(
fcG̃(k)

)
G̃(h).
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We apply now (13):

fcG̃∧2(h ∧ k) = g̃(f ,h)G̃(k) − g̃(f ,k)G̃(h).

Both sides of this equation are vectors. We contract this with a three-
form I and use the identity (6) to the left-hand side:

f ∧
[
IbG̃∧2(h ∧ k)

]
= Ib

[
g̃(f ,h) G̃(k) − g̃(f ,k) G̃(h)

]
. (14)

Now both sides are two-forms.
It is useful to introduce a kind of Hodge operator Ng which acts on

one-forms. It is the composition of the mapping G̃ and the contraction
with the basic odd three-form f123

∗ = f 1 ∧ f2 ∧ f 3
∗ :

Ng(E) = f123
∗ bG̃(E) =: D (15)

It maps even one-forms into odd two-forms or odd one-forms into
even two-forms. Its inverse is the composition of inverses of the two
mappings in the opposite order:

N−1
g (D) = −G(e∗123bD) = E

where e∗123 is the basic odd trivector.
Another kind of Hodge operator Pg can be introduced, acting

on two-forms. It is the composition of the mapping G̃∧2 and the
contraction with f123

∗ :

Pg(D) = f123
∗ bG̃∧2(D) (16)

Lemma 3.1. The composition of the operators Ng and Pg has
the form

Pg (Ng(E)) = −
(
det G̃

)
E.

P r o o f . For D = 1
2Dij f i ∧ f j

∗ a calculation yields

G̃∧2(D) =
1

2
g̃lig̃kjDij el ∧ e∗k.

Then

Pg(D) = f123
∗ b

(
1

2
g̃lig̃kjDij el ∧ e∗k

)
=

1

2
g̃lig̃kjDij f123

∗ b(el ∧ e∗k) ,

Pg(D)=
1

2
Dij

[(
g̃3ig̃2j−g̃2ig̃3j

)
f1+

(
g̃1ig̃3j−g̃3ig̃2j

)
f2+

(
g̃2ig̃1j−g̃1ig̃2j

)
f3

]
.

(17)
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For E = Ekf
k we obtain

D=Ng(E)= f123
∗ bG̃

(
Ekf

k
)
=g̃jkEk f 123

∗ bej=Ek

(
g̃3kf12

∗ +g̃2kf31
∗ +g̃1kf23

∗

)
.

We recognize from this the following coordinates of D:

D12 = g̃3kEk, D31 = g̃2kEk, D23 = g̃1kEk,

which can be written as Dij = εijl g̃
lkEk with the Levi-Civita symbol

εijl. We substitute this into (17)

Pg (Ng(E)) =
1

2
εijlg̃

lkEk

[(
g̃3ig̃2j−g̃2ig̃3j

)
f1+

(
g̃1ig̃3j−g̃3ig̃1j

)
f2+

(
g̃2ig̃1j−g̃1ig̃2j

)
f3

]
.

The antisymmetry of εijl with respect to i, j allows to write

Pg(Ng(E)) = −εijlg̃
lkEk

(
g̃2ig̃3j f1 + g̃3ig̃1j f 2 + g̃1ig̃2j f3

)
.

First coordinate of this one-form is

[Pg (Ng(E))]1 = −εijlg̃
2ig̃3j g̃lkEk = −εijlg̃

2ig̃3j g̃klEk.

where the symmetry of the matrix G was used. We write the
summation over k explicitly

[Pg (Ng(E))]1 = −εijlg̃
2ig̃3j g̃1lE1 − εijlg̃

2ig̃3j g̃2lE2 − εijlg̃
2ig̃3j g̃3lE3.

The second term vanishes because it contains summation over i, l of
symmetric symbol g̃2ig̃2l with antisymmetric one εijl. Similarly the
last term vanishes, hence we are left with

[Pg (Ng(E))]1 = −εijlg̃
2ig̃3j g̃1lE1 = −(det G̃)E1.

Similar calculations lead to the results

[Pg(Ng(E))]2 = −(det G̃)E2, [Pg(Ng(E))]3 = −(det G̃)E3,

which can be summarized as

Pg(Ng(E)) = −(det G̃)E.

This lemma allows us to write

E = −(det G̃)−1Pg(D) = −(detG)Pg(D) (18)

for D = Ng(E). In this manner −(detG)Pg is the inverse mapping to
Ng.
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Lemma 3.2. If a two-form D is the exterior product of two one-
forms: D = h ∧ H then E = N−1

g (D) is perpendicular to h and H
with respect to scalar product g̃.

P r o o f . Let h be an even one-form and H an odd one-form,
then

−e∗123b(h ∧ H)=(h3H2−h2H3) e1+(h1H3−h3H1)e2+(h2H1−h1H2)e3

and

E = G [−e∗123b(h ∧ H)]

= (h3H2−h2H3)G(e1) + (h1H3−h3H1)G(e2)+(h2H1−h1H2)G(e3)

= [g1i(h3H2 − h2H3) + g2i(h1H3 − h3H1) + g3i(h2H1 − h1H2)] f
i.

Now calculate the scalar product of E and h:

g̃(E,h) = g̃ijEihj

=
[
g̃ijg1i(h3H2−h2H3)+g̃ijg2i(h1H3−h3H1)+g̃ijg3i(h2H1−h1H2)

]
hj .

Matrix G is symmetric and G̃G = 1, hence

g̃(E, h)=
[
δj
1(h3H2−h2H3)+δj

2(h1H3−h3H1)+δj
3(h2H1−h1H2)

]
hj

= (h3H2 − h2H3)h1 + (h1H3 − h3H1)h2 + (h2H1 − h1H2)h3 = 0.

Similar calculations lead to the result

g̃(E, H)=(h3H2−h2H3)H1+(h1H3−h3H1)H2+(h2H1−h1H2)H3=0.

4. DESCRIPTION OF ELECTRODYNAMICS

4.1. Premetric Description

We now present a list of physical quantities with their designation as
directed quantities along with short justifications.

The most natural vectorial quantity is the displacement vector l
which is of the same nature as the radius vector r of a point in space
relative to a reference point. Of course, the velocity v = dr/dt, the
derivative of r with respect to a scalar variable t, is also a vector.
The same is true of the acceleration a = dv/dt and the electric dipole
moment d = ql.

The best physical model of the even bivector is a flat electric
circuit. Its magnitude is just the area encompassed by the circuit; its
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attitude is the plane of the circuit and orientation is given by the sense
of the current. This bivector could be called a directed area S of the
circuit. A connected bivectorial quantity is then the magnetic moment
m = IS of the circuit, where I is the electric current.

An even one-form occurs naturally in the description of the waves.
The locus of points is space with the same phase of a plane wave is just
a plane. The family of planes with phases differing by a natural number
can be viewed as the geometric image of the physical quantity known
as the wave vector k with magnitude 2π/λ, where λ is the wavelength.
This physical quantity in its true directed nature is the one-form, not a
vector, thus, in my opinion, it deserves another name. One possibility
is wave density. If I am allowed to create an English word I would
propose shorter name wavity.

Another even one-form quantity is the electric field strength E,
since we consider it to be a linear map of the infinitesimal vector
dr into the infinitesimal potential difference: −dV = E[dr]. The
magnetic induction B is an example of a two-form quantity, since it
can be treated as a linear map of the directed area bivector ds into the
magnetic flux: dΦ = B[ds].

Now for some examples of odd quantities; the area s∗ of a surface,
through which a flow is measured, is the first one. The side of the
surface from which a substance (mass, energy, electric charge, etc.)
passes is important. Hence, the orientation of s∗ can be marked as an
arrow piercing the surface. We claim that the area of a flow is an odd
bivector quantity. Accordingly, the current density j has to be an odd
two-form quantity. It corresponds to the linear map dI = j[ds∗] of the
infinitesimal area ds∗ into the infinitesimal electric current dI.

The nature of the electric induction D can be deduced from the
following prescription of its measurement. Take two identical metal
discs, place one disc on top of the other, electrically discharge them
and then place them in the presence of a field. As you separate the
discs, the opposite sign charges induced on them are also separated.
Now measure one of them with the aid of a Faraday cage. It turns out
that for a small enough disc the charge is proportional to its area. One
will agree that the disc area ds∗ is an odd bivector since its magnitude
is the area, its attitude is the plane and its orientation is given by an
arrow showing which disc is to be connected with the Faraday cage.
Because of the proportionality relation dQ = D[ds∗], we ascertain that
the electric induction is a linear map of the odd bivectors into scalars,
i.e. it is an odd two-form.

The operational definition of the magnetic field strength H is
as follows: Take a very small wireless solenoid prepared from a
superconducting material. Close the circuit in a region of space where
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the magnetic field vanishes. Afterwards, introduce the circuit into an
arbitrary region in the field. A superconductor has the property that
the magnetic flux enclosed by it is always the same; a current will be
induced to compensate for this external field flux. Now measure the
current dI flowing through the superconductor. It turns out to be
proportional to the solenoid length: dI = H[dl∗]. The solenoid length
dl∗ in this experiment is apparently an odd vector, hence the magnetic
field strength H is an odd one-form.

As shown above, the four electromagnetic field quantities are of
different directed nature: the electric field strength E is the even one-
form, the electric induction D is the odd two-form, the magnetic field
strength H is the odd one-form, and the magnetic induction B is the
even two-form. With the aid of the exterior derivative

d = f1 ∂

∂x1
+ f2 ∂

∂x2
+ f3 ∂

∂x3
,

where f i are basic one-forms, one can express the differential Maxwell’s
equations in terms of differential forms:

d ∧ E +
∂B

∂t
= 0, (19)

d ∧ H−
∂D

∂t
= j, (20)

d ∧ B = 0, (21)

d ∧ D = ρ. (22)

where ρ is the density of charge odd three-form and j is the electric
current density odd two-form.

The continuity equation for the electric charge, d ∧ j + ∂ρ
∂t = 0,

can be derived from (20) and (22).
By virtue of the Poincaré lemma, one obtains from eq. (21) the

existence of the directed potential A such that B = d ∧ A. After
substituting this into eq. (19) one obtains again due to the Poincaré
lemma the scalar potential Φ such that E = −dΦ − ∂A

∂t .
The energy density of the electromagnetic field can be expressed

by the formula:

w =
1

2
(E ∧ D + B ∧ H).

The energy flux density of the electromagnetic field, as all flux
densities, should be an odd two-form. Only the exterior product
H ∧E (or E ∧ H) gives such a quantity which replaces the traditional
Poynting vector:

S = E ∧ H.
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It may be called the Poynting two-form.
The Lorentz force F acting on the electric charge q moving with

velocity v can be expressed with the aid of contraction between B and
v:

F = qE + qBbv.

4.2. Variable Metric

In an isotropic medium, the electric field vector ~E is parallel to the
electric induction vector ~D. In terms of the forms this sentence has to
be formulated as follows: In an isotropic medium planes of the electric
field one-form E are perpendicular to the lines of the electric induction
two-form D. Since we know that in an anisotropic medium the fields
~E and ~D are no longer parallel, we should express this so: the forms E
and D are no longer perpendicular. But perpendicularity depends on
a scalar product. In this manner a question arises: can we find another
scalar product, appropriate for a given medium, such that the same
forms become perpendicular to each other?

We tackle this question now. We all live in the three-dimensional
space in which the natural scalar product exists, because we know
which vectors are orthogonal and we ascribe a length to each of them
independently of attitude. Knowing this natural scalar product, we
may, in agreement with § 3, change even and odd one- and two-forms

into even vectors ~E, ~D or odd vectors ~B, ~H, which are present in
the physics textbooks. With the natural orthonormal basis, we relate
vector coordinates (with the upper indices) to one-form coordinates
(with lower indices) according to formulas:

Ei = Ei, H i = Hi. (23)

On the other hand, relations concerning the electric and magnetic
induction can be written with the aid of Levi-Civita symbol:

Dij = εijkDk, Bij = εijkB
k. (24)

This corresponds to the formulas

D = f123
∗ b~D, B = f123

∗ b~B. (25)

where f123
∗ = f1 ∧ f2 ∧ f3

∗ is the basic odd three-form, obtained from
the one-form basis.

It is the vector notation in which the constitutive relations usually

are written down: ~D = ε(~E), ~B = µ(~H) in which, for so called linear
media, symbols ε and µ denote linear mappings.
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From now on we consider the electric field only. For the electric
quantities, the constitutive relation has the form:

D1 = ε0(ε
11E1 + ε12E2 + ε13E3),

D2 = ε0(ε
21E1 + ε22E2 + ε23E3),

D3 = ε0(ε
31E1 + ε32E2 + ε33E3),

where εij are (dimensionless) elements of the relative electric
permittivity matrix E of the medium, whereas ε0 is the electric
permittivity of vacuum. After using (23) we write this as

D1 = ε0(ε
11E1 + ε12E2 + ε13E3),

D2 = ε0(ε
21E1 + ε22E2 + ε23E3),

D3 = ε0(ε
31E1 + ε32E2 + ε33E3),

or, according to the summation convention

Di = ε0ε
ijEj. (26)

By virtue of (24) we write this in terms of form coordinates:

Dij = ε0εijkεklEl.

Calculate now the exterior product E ∧ D:

E ∧D =
(
E1f

1 + E2f
2 + E3f

3
)
∧

(
D12f

12
∗ + D23f

23
∗ + D31f

31
∗

)

= (E1D23 + E2D31 + E3D12) f123
∗ =

(
E1D

1 + E2D
2 + E3D

3
)

f123
∗

= EiD
i f 123

∗ = ε0

(
Eiε

ijEj

)
f123
∗ .

Hence the energy density of the electric field is

we =
1

2
E ∧ D =

1

2
ε0

(
Eiε

ijEj

)
f123
∗ .

It is an odd three-form, but its single scalar coordinate,

|we| =
1

2
ε0Eiε

ijEj, (27)

is an image of the bilinear mapping of one-forms into scalars. We see
that a scalar product of one-forms should be introduced for which the
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permittivity matrix is the scalar product matrix. Comparing (27) with

(8) allows us to introduce G̃ε = E , and due to (9)

Gε = E−1.

We formulate our observation as follows: matrix Gε, inverse to the ma-
trix of relative electric permittivity, determines a scalar product app-
ropriate for a given anisotropic dielectric.

It has been stated in § 3 that the inverse G−1
ε = G̃ε of the metric

tensor serves to change one-forms into vectors. Thus we could write
~E = G̃ε(E). This is not the usual vector of the electric field intensity,
hence it is more safe to denote it differently, for instance by prime:

~E′ = G̃ε(E). (28)

By dint of (12) this mapping assumes the following form on the
coordinates

E′i = g̃ijEj = εijEj .

Only the coefficient ε0 is lacking to obtain (26) which can be written
in the vector notation:

~D = ε0G̃ε(E). (29)

This relation can be expressed physically: electric permittivity
changes the electric field intensity into the electric induction, and
mathematically: as the inverse of the metric tensor (with the additional

coefficient ε0) it changes the one-form E into the vector ~D. After using
notation (28) we write down

~D = ε0
~E′. (30)

Notice that the vectors ~D and ~E′ are parallel, and the relation between
them looks like in the vacuum. Thus, when one introduces a basis

orthonormal with respect to the metric gε, the coordinates of ~D and ~E′

are related to each other like in isotropic medium, hence all electrostatic
problems can be solved for this medium just by rewriting the well know
results in these new coordinates. This has been done in [13] for the
Coulomb law and the plane capacitor. In this sense the metric can be
variable, accommodated to a given anisotropic medium.

We may combine mapping (29) with (25) and obtain the equality

D = f 123
∗ b(ε0G̃ε(E)) = ε0f

123
∗ bG̃ε(E) (31)

as a relation between the even one-form E and odd two-form D. This
is a composition of two linear mappings: first the inverse of the metric
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tensor connected with a given dielectric (that is, such that G̃ε = E),
and then the contraction with the odd three-form f123

∗ made from the
one-form basis, orthonormal in ordinary metric, not connected with
the dielectric. At the end the multiplication by the scalar electric
permittivity ε0 of the vacuum is performed. The mapping E → D
given by (31) is a kind of Hodge star operator.

Let us calculate the inner product of the forms D and E according
to the scalar product g̃ε. We first rewrite formula (11) accommodated
to our situation:

[g̃ε(D, E)]k = Dkj g̃
ji
ε Ei = Dkjε

jiEi.

Use (24) and (26)

[g̃ε(D, E)]k = ε−1
0 εkljD

lDj .

The symbol εklj is antisymmetric, the product DlDj is symmetric in
the indices l, j, thus the sum is zero. Hence

g̃ε(D,E) = 0. (32)

We have shown that the odd two-form D is perpendicular to the even
one-form E in the metric given by the permittivity. This is a formal
proof of the expectation expressed in the first paragraph if this
subsection.

Typically, the matrices of permittivity E = {εij} and permeability
M = {µij} are not proportional, hence the application of two scalar
products is necessary: the electric one gε and the magnetic one
gµ. We omit the analogous reasoning leading to the result that the
counterparts of relations (29) and (31) for the magnetic field assume
the form

~B = µ0G̃µ(H), (33)

B = µ0f
123
∗ bG̃µ(H), (34)

where metric tensor G̃µ is related to the magnetic permeability via
the matrix M. The mapping H → B given by (34) is another kind of
Hodge star operator. Moreover, the identity

g̃µ(B,H) = 0

holds, meaning that the even two-form B is perpendicular to the odd
one-form H in the metric given by the permeability.

Here, again, the vectors ~B and ~H′ = G̃µ(H) are parallel, so the
relation between them looks like in the isotropic medium. Thus, with



A variable metric electrodynamics. Plane waves 301

the use of a variable metric, accommodated to a given anisotropic
medium, all magnetostatic problems can be solved for this medium
just by rewriting the well know results in new coordinates orthogonal
for the new metric. This has been done in [13] for the Biot-Savart law,
the plane magnetic capacitor and the solenoid.

By virtue of Lemma 3.1 we write the relation inverse to (34):

H = −µ−1
0 (detM)−1f123

∗ bG̃∧2(B). (35)

5. PLANE WAVES

5.1. Premetric Description

We are searching for solutions of the free Maxwell equations in shape
of the plane wave:

E(r, t) = ψ (k[r] − ωt)E0, B(r, t) = ψ (k[r] − ωt)B0,

H(r, t) = ψ (k[r] − ωt)H0, D(r, t) = ψ (k[r] − ωt)D0, (36)

where ψ (·) is a scalar function of a scalar argument, ω is a scalar
constant, and k[r] is the value of the linear form k of the wavity on the
radius vector r. In the expected solution (36) all fields maintain their
attitudes for all times and positions; only magnitudes and orientations
may change. This means that the wave is linearly polarized. Why
these solutions are called plane? Because they are constant where the
function k(r) = k[r] is constant, i.e. on planes. The arbitrariness of ψ
means that the plane wave (36) needs not be time-harmonic. When
the one-form k is used, the problem of propagation direction is open.
This direction, understood as one-dimensional direction of a vector,
can not be chosen as perpendicular to the planes of the constant fields,
because no scalar product is discriminated.

The argument φ = k[r] − ωt of ψ , called phase, depends linearly
both on position and time. The loci of points of constant phase are still
planes, but these planes move when time flows. Can a phase velocity
be introduced? If position r becomes a function of time this means
that we introduce the motion r(t) of a fictitious particle. Introduce
thus a motion (of course uniform) such that, the fictitious particle is
always on a plane of fixed phase:

φ = k[r(t)] − ωt = const.

Differentiate this equality with respect to time:

dk[r(t)]

dt
− ω = 0.
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Since the mapping r → k[r] is linear and continuous, the derivative
may be put under the argument of k:

k

[
dr(t)

dt

]
= ω,

that is
k[v] = ω,

where v = dr/dt denotes velocity of the fictitious particle. We obtain:

ω−1k[v] = 1. (37)

Figure 15. There are many velocities reciprocal to ω−1k.

There is a lot of velocities v for which the one-form ω−1k gives
value one, see Fig. 15. All of them may be called reciprocal to ω−1k.
Which one can we admit as the phase velocity? As long as scalar
product is not present, none of them. Once a scalar product is
introduced, we choose velocity perpendicular to the planes of constant
phase. For such velocity v, relation (37) assumes the form

ω−1~k · v = ω−1kv = 1,

where ~k is the vector also perpendicular to the planes of constant
phase, k = |k|, and hence v = ω

k , which is the well known formula

for the phase velocity. The equivalent formula k/ω = v−1 says that
the quotient ω−1k is the inverse of the phase velocity. If we want
to designate ω−1k by a separate word, the slowness is most suitable.
(Less the velocity, the greater slowness – its physical dimension is s/m.)
Returning to (37), we may say that the linear form h = ω−1k is phase
slowness. This notion can be introduced when no scalar product is
present, which is not the case for the phase velocity.

We proceed to consider the Maxwell equations. The equation
d ∧ E + ∂B/∂t = 0 gives the condition

ψ ′ k ∧ E0 − ψ ′ωB0 = 0
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(where prime denotes the derivative with respect to the whole
argument) and allows to write

B0 = ω−1k ∧ E0 and B = ω−1k ∧ E = h ∧E. (38)

This equality expressed in the traditional language has the shape
~B = ω−1~k × ~E. We see also from (38) that the two forms are

parallel: B || E, which in terms of vectors is written as ~B · ~E = 0.

Moreover, B || k which corresponds to ~B ·~k = 0. We illustrate all this
observations on Fig. 16.

Figure 16. Spatial relations between h, E and B.

Next Maxwell equation, d ∧ B = 0, gives the condition

ψ ′ k ∧ B0 = 0.

This condition and this Maxwell equation are automatically satisfied
by virtue of (38).

The third free Maxwell equation d ∧H − ∂D/∂t = 0 reduces to
the condition

ψ ′ k ∧ H0 + ψ ′ωD0 = 0

and allows us to write down

D0 = −ω−1k ∧H0 and D = −ω−1k ∧ H = −h ∧ H. (39)

Therefore, the fourth free Maxwell equation d ∧ D = 0 is automatically
satisfied. The constant forms E0, H0, present in relations (38) and
(39), for the time being, are arbitrary. It is visible from (39) that
D || H and D || k; we display this on Fig. 17. Condition (39) can be

translated on the traditional language as ~D = −ω−1~k × ~H, and the

parallelity conditions as ~D · ~H = 0 and ~D · ~k = 0.
Summarizing, we write now the plane-wave solutions of the

Maxwell’s equations:

E(r, t) = ψ (k[r] − ωt)E0, B(r, t) = ψ (k[r] − ωt)u ∧ E0,

H(r, t) = ψ (k[r] − ωt)H0, D(r, t) = −ψ (k[r] − ωt)u ∧ H0, (40)
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Figure 17. Spatial relations between h, H and D.

Figure 18. Field quantities and h in their spatial relations.

Figure 19. Spatial relation of S to other quantities.

where E0, H0 are arbitrary constant one-forms. This could be
considered as a premetric form of the plane waves. The configuration
of four field quantities is depicted on Fig. 18.

As we know from Fig. 10, the one-dimensional attitude of the
Poynting odd two-form as the exterior product S = E ∧ H of one-forms
is the intersection of the planes of the two factors. If E and H are as
on Fig. 18, the attitude of S is oblique with respect to the planes of
k. We repeat it here as Fig. 19 with the Poynting form added. It
is visible from it that its direction is inclined in the vertical plane
parallel to D. The direction of S must be conceded as the direction of
wave propagation. We have now settlement of the dilemma considered
immediately after Fig. 15: phase velocity is not given uniquely, hence
it should be abandoned in the anisotropic medium. On the other hand,
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the propagation direction of the plane wave is determined by the energy
flux density i.e., by the Poynting odd two-form.

The energy densities of the electric and magnetic field,

we =
1

2
E ∧ D, wm =

1

2
H ∧ B,

after a use of (38) and (39) are

we =
1

2
E ∧ (H∧ h), wm =

1

2
H ∧ (h ∧ E),

that is the contributions of two fields are exactly the same

we =
1

2
(E ∧ H) ∧ h, wm =

1

2
(E ∧ H) ∧ h.

This means that in the plane electromagnetic wave, the same amount
of energy is contained in the electric as in the magnetic field, compare
Eq. (4.4) in Ref. [18].

The energy of the whole electromagnetic field for the considered
plane waves is thus

w = we + wm = (E ∧H) ∧ h = S ∧ h. (41)

We obtained interesting identity relating the energy density with the
energy flux density.

One may also introduce the velocity of the energy transport by
the electromagnetic wave. In the traditional approach (solely in terms
of vectors and scalars) the following equality is written

~S = w~v, (42)

which defines ~v as the energy transport velocity. This relation is

analogous to ~j = ρ~v linking the current density ~j with the density
ρ of charges and their velocity ~v.

Because of another type of the directed quantities we should write
(42) rather as the contraction

S = wbv. (43)

It is an inverse relation to (41). Can one calculate v from this formula?
In this purpose it is worth to introduce and odd trivector T inverse to
the odd three-form w in the sense that the condition

w[T ] = 1
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is satisfied. It is possible to calculate that T = |w|−1e∗123. If w is the
energy density, T may be called volume of unit energy, since it has the

physical dimension volume
energy . We may look at (43) as a mapping of a

vector into an odd two-form The inverse mapping is the contraction of
the odd two-form with the basic odd trivector, hence we have

v = −T bS = − |w|−1 e∗123bS. (44)

Since the odd trivector T is positive, the direction of v is the same as
that of S. In this way (44) is the sought formula for the velocity of the
energy transport by the electromagnetic field.

In this sense we may claim that the phase slowness and the velocity
of the energy transport by the plane electromagnetic wave are mutually
inverse quantities. The energy transport velocity is one of vectors
depicted on Fig. 15.

5.2. The Use of Scalar Products

When considering plane waves we admit simultaneous presence of the
electric and magnetic fields. If the matrices of electric permittivity E
and magnetic permeability M are not proportional, the application
of two scalar products is necessary: the electric one gε(·, ·) and the
magnetic one gµ(·, ·).

After comparing relations (31) and (34) with equation (15) we
notice that the former define two Hodge-like operators Nε and Nµ by

ε0Nε(E) = ε0f
123
∗ bG̃ε(E) = D, (45)

and
µ0Nµ(H) = µ0f

123
∗ bG̃µ(H) = B. (46)

By dint of (38) and (39) we have B = h ∧ E, D = −h ∧ H, hence we
apply Lemma 3.2 and obtain the following orthogonality conditions

g̃ε(E,h) = g̃ε(E, H) = 0, (47)

g̃µ(H,h) = g̃µ(H,E) = 0. (48)

The perpendicularity E ⊥ h implies E ⊥ k and similarly for H:

g̃ε(E, k) = 0, g̃µ(H,k) = 0. (49)

In order to calculate the dielectric scalar products of two-forms
we use eq. (10):

g̃ε(B,D) = g̃ε(h ∧ E, −h ∧ H) = −
∣∣∣∣

g̃ε(h,h) g̃ε(h, H)
g̃ε(E,h) g̃ε(E, H)

∣∣∣∣ .
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= −g̃ε(h,h)g̃ε(E, H) + g̃ε(h,H)g̃ε(E,h).

Due to (47), we obtain

g̃ε(B, D) = −g̃ε(h,h) · 0 + g̃ε(h,H) · 0 = 0. (50)

Similarly, with the use of (48), we get for the magnetic scalar product

g̃µ(B, D) = −g̃µ(h, h) · 0 + 0 · g̃µ(E,h) = 0.

All the obtained perpendicularity conditions can be summarized
in the following Table 2:

Table 2. Orthogonality relations between quantities of one wave.

g̃µ(E,H) = 0 g̃µ(B,D) = 0 g̃µ(k, H) = 0

g̃ε(k, E) = 0 g̃ε(E, H) = 0 g̃ε(B,D) = 0

Four of these relations were given in vectorial language as
Equations (4.2) and (4.3) inf Ref. [18].

5.3. Eigenwaves

The orthogonality of B and D according to two scalar products g̃ε

and g̃µ means that the one-dimensional attitudes of B and D are
perpendicular to each other in two metrics. This is the situation
described in Sec. 3 when discussing Fig. 12. As it was mentioned there,
in two dimensions (this is the case now because D and B are parallel
to the planes of k) when gε and gµ are not proportional, there exists
only two attitudes, represented by two vectors c1 and c2, perpendicular
to each other in both scalar products. This implies that two kinds of
plane waves of the form (36) exist such that:

D(1) ||c1 and B(1) ||c2, (51)

or
D(2) ||c2 and B(2) ||c1. (52)

They are called eigenwaves. The relations (51, 52) imply

g̃ε

(
D(1), D(2)

)
= 0, g̃µ

(
D(1), D(2)

)
= 0, (53)

g̃ε

(
B(1),B(2)

)
= 0, g̃µ

(
B(1), B(2)

)
= 0. (54)
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The problem will have the same degree of complication, if we
assume that the medium is magnetically isotropic, and only electrically
anisotropic. Therefore, we assume that the magnetic scalar product
gµ coincides with the natural scalar product g of the physical space.
We know that B, D are parallel to the planes of k. All the magnetic
orthogonalities in first raw of Table 2 mean the natural orthogonalities
of respective quantities. This has been taken into account in Figs. 18
and 19 .

Since the relative permittivity matrix E defines the dielectric scalar
product gε, its properties determine properties the dielectric metric.
Namely, the principal axes of E coincide with the principal attitudes
of gε with respect to g, mentioned in Sec. 3. If three eigenvalues of E
are distinct, the scalar product gε is bi-axial and the medium should
be called bi-axial. If two eigenvalues of E are equal, gε is uniaxial and
the medium is called uniaxial.

Let us combine relation (39) with the constitutive equations. By
virtue of (35) and (38) we write

H=−µ−1
0 (detM)−1 f123

∗

⌊
G̃∧2

µ (B)=−µ−1
0 (detM)−1f123

∗

⌊
G̃∧2

µ (h ∧E)

(55)
and substitute this to (39):

D = −h ∧ H = µ−1
0

(
detM)−1h ∧

[
f123
∗ bG̃∧2(h ∧ E

)]
.

Identity (14) allows us to write

D = µ−1
0 (detM)−1 f123

∗ b
[
g̃µ(h,h) G̃µ(E) − g̃µ(h, E) G̃µ(h)

]
.

We insert expression (31) in the left hand side

ε0f
123
∗ bG̃ε(E)=µ−1

0 (detM)−1 f123
∗ b

[
g̃µ(h,h) G̃µ(E)−g̃µ(h,E) G̃µ(h)

]
.

The contraction with the three-form f123
∗ is reversible, hence one may

write down

ε0µ0(detM)G̃ε(E) = g̃µ(h,h) G̃µ(E) − g̃µ(h, E) G̃µ(h). (56)

In this manner we arrived at a linear equation for the electric field E.
Its solutions determine the eigenwaves.

Since we assumed that the magnetic scalar product coincides with
the natural scalar product, we may write

detM = 1, G̃µ(E) = ~E, G̃µ(h) = ~h, (57)
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hence
ε0µ0 G̃ε(E) = g̃µ(h,h) ~E − g̃µ(h,E) ~h.

We may also write g̃µ(h, E) = ~h · ~E and g̃µ(h,h) = h2 where h is the
magnitude of the slowness:

ε0µ0 G̃ε(E) = h2~E − (~h · ~E) ~h.

This equation can be found in Section 97 of Ref. [19]. If the vector basis
{e1, e2, e3} is orthonormal according to the natural scalar product,

and such that u = uf 3, this implies ~h = h e3 and we obtain

ε0µ0 G̃ε(E) = h2~E− h2E3 ~e3,

G̃ε(E) =
h2

ε0µ0

(
~E− E3 ~e3

)
. (58)

This is a simplified version of equation (56). After comparing it with

eq. (29) we observe that vector ~D is proportional to the component of
~E, perpendicular to ~h.

When expressed by coordinates of E, condition (58) assumes the
form

ε11E1 + ε12E2 + ε13E3 =
h2

ε0µ0
E1,

ε21E1 + ε22E2 + ε23E3 =
h2

ε0µ0
E2,

ε31E1 + ε32E2 + ε33E3 = 0.

We conclude from this that the coordinates of E can not be arbitrary—
they have to fulfill the above system of linear equations. We get rid of
one coordinate and one equation by substituting the relation

E3 = −
ε31

ε33
E1 −

ε32

ε33
E2, (59)

obtained from the third equation, to first two ones:
(

ε11 −
ε13ε31

ε33

)
E1 +

(
ε12 −

ε13ε32

ε33

)
E2 =

u2

ε0µ0
E1, (60)

(
ε21 − ε23ε31

ε33

)
E1 +

(
ε22 − ε23ε32

ε33

)
E2 =

u2

ε0µ0
E2, (61)
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Notice that at the left-hand side matrix A = {aij} is present with
elements

aij = εij −
εi3ε3j

ε33

Since matrix E is symmetric, A has the same property. Equa-
tions (60, 61) constitute the following eigenvalue equation for A:

A

(
E1

E2

)
=

h2

ε0µ0

(
E1

E2

)
. (62)

Matrix A is symmetric, hence its eigenvalues and eigenvectors exist.
If it has two distinct eigenvalues a(1) and a(2), we obtain two distinct
conditions for the phase slowness:

h2

ε0µ0
= a(1), or

h2

ε0µ0
= a(2),

hence
h =

√
a(1)ε0µ0 or h =

√
a(2)ε0µ0.

This gives different phase slowness for two solutions of (62):

h(i) =
√

a(i)ε0µ0,

for i ∈ {1, 2}. According to this, for fixed circular frequency ω we
have two values for the wavity coordinate k(i) = ωh(i). If the electric
permittivity does not depend on the frequency of the electromagnetic
field, the phase slowness coordinate is the same for various frequencies
and is characteristic of the given medium and of a chosen two-
dimensional direction in it. The eigenequation (62) can be also written
as:

2∑

m=1

ajmE(i)
m = a(i)E

(i)
j . (63)

In this manner we ascertained that only columns

(
E1

E2

)

satisfying the eigenequation (62) give solutions of the free Maxwell
equations; these are the eigenwaves.

For our choice of basis such that h = h f3, we obtain

h ∧ E = h f3 ∧ (E1f
1 + E2f

2 + E3f
3) = hE1f

31 + hE2f
32.

Then G̃∧2(h ∧ E) = h(E1e31 + E2e32). Inserting this into (55) yields

H = −µ−1
0 f123

∗ bh(E1e31 + E2e23) =
h

µ0

(
−E2f

1
∗ + E1f

2
∗

)
. (64)



A variable metric electrodynamics. Plane waves 311

From this, we derive

D = −h ∧H = −h f3 ∧
h

µ0

(
−E2f

1
∗ + E1f

2
∗

)
=

h2

µ0

(
E1f

23
∗ + E2f

31
∗

)
.

(65)
The electric field, after taking into account (59), is

E = E1f
1 + E2f

2 − (ε33)−1(ε31E1 + ε32E2) f
3. (66)

5.4. Relations Between the Eigenwaves

We shall now calculate some other scalar products between forms of the
same kind, corresponding to different indices i ∈ {1, 2} enumerating
the eigenwaves. To find the magnetic scalar product g̃µ(H(1),H(2)) we
use (64):

g̃µ

(
H(1),H(2)

)
=

h(1)h(2)

µ2
0

(
E

(1)
1 E

(2)
1 + E

(1)
2 E

(2)
2

)
.

Two eigenvectors

(
E

(1)
1

E
(1)
2

)
and

(
E

(2)
1

E
(2)
2

)
of one symmetric matrix A

are perpendicular columns, hence we obtain

gµ

(
H(1), H(2)

)
= 0. (67)

We see that the forms H(i) are magnetically orthogonal.
Let us elaborate on the dielectric scalar product of the two one-

forms E(i)

g̃ε

(
E(1), E(2)

)
=

3∑

i,j=1

E
(1)
i εijE

(2)
j .

We apply (59):

g̃ε

(
E(1),E(2)

)
=E

(1)
1 ε11E

(2)
1 +E

(1)
1 ε12E

(2)
2 −E

(1)
1

ε13

ε33

(
ε31E

(2)
1 +ε32E

(2)
2

)

+E
(1)
2 ε21E

(2)
1 + E

(1)
2 ε22E

(2)
2 − E(1) ε

23

ε33

(
ε31E

(2)
1 + ε32E

(2)
2

)

−
(
ε33

)−1(
ε31E

(1)
1 +ε32E

(1)
2

)
ε31E

(2)
1 −

(
ε33

)−1(
ε31E

(1)
1 +ε32E

(1)
2

)
ε32E

(2)
2

+
(
ε33

)−1 (
ε31E

(1)
1 + ε32E

(1)
2

) (
ε31E

(2)
1 + ε32E

(2)
2

)
.
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After reduction of similar terms we are left with

g̃ε

(
E(1), E(2)

)
=E

(1)
1

(
ε11−

ε13ε31

ε33

)
E

(2)
1 +E

(1)
1

(
ε12 −

ε13ε32

ε33

)
E

(2)
2

+E
(1)
2

(
ε21 −

ε23ε31

ε33

)
E

(2)
1 + E

(1)
2

(
ε22 −

ε23ε32

ε33

)
E

(2)
2 .

We recognize elements of A, hence

g̃ε(E
(1), E(2)) =

2∑

i,j=1

E
(1)
i aijE

(2)
j .

Since

(
E

(2)
1

E
(2)
2

)
is the eigenvector to the eigenvalue a(2), we obtain

g̃ε(E
(1), E(2)) = a(2)(E

(1)
1 E

(2)
1 + E

(1)
2 E

(2)
2 ) = 0. (68)

In this manner we see that the forms E(i) are dielectrically orthogonal.
The perpendicularity relations (53), (54), (67) and (68) are

summarized in next Table 3:

Table 3. Orthogonality relations between quantities of two eigen-
waves.

Only four of these relations can be found in Ref. [18] as
Eqs. (4.15)–(4.18).

5.5. Energy Flux and Energy Density

One-dimensional attitude of the Poynting odd two-form as the exterior
product S = E ∧ H of one-forms is the intersection of the planes of
the two factors. If E and H are as on Fig. 18, the attitude of S is
oblique with respect to the planes of k. The energy flux density for
the eigenwaves, according to (55), is

S = E ∧ H = −µ0
−1 (detM)−1 E ∧ f123

∗ bG̃∧2
µ (h ∧ E) .

We apply (14)

S = µ0
−1 (detM)−1 f123

∗ b
[
g̃µ(E, E) G̃µ(h)− g̃µ(E,h) G̃µ(E)

]
. (69)
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By substituting (57) we obtain

S = µ−1
0 f 123

∗ b
[
E2~h − (~h · ~E) ~E

]
.

After replacing the two-form S by the vector ~S this can be written as

~S = µ−1
0

[
E2~h −

(
~h · ~E

)
~E

]
=

E2

µ0

~h⊥

where ~h⊥ is the component of ~h perpendicular to ~E.
Let us calculate the energy density

w=h ∧ S=µ−1
0 (detM)−1h ∧

{
f123
∗ b

[
g̃µ(E,E)G̃µ(h)−g̃µ(E,h)G̃µ(E)

]}

with the use of identity (7)

w = µ−1
0

(
detM)−1 [ g̃µ(E, E) h(G̃µ(h)) − g̃µ(E,h)h(G̃µ(E))

]
f123
∗

and of identity (13)

w = µ−1
0 (detM)−1 [ g̃µ(E, E) g̃µ(h,h) − g̃µ(E,h) g̃µ(E, h)] f123

∗ . (70)

After substitution of (69) and (70) to (44) we obtain

v =
g̃µ(E,E) G̃µ(h)− g̃µ(E, h) G̃µ(E)

g̃µ(E,E) g̃µ(h, h)− g̃µ(E, h) g̃µ(E,h)
(71)

We may calculate the value of one-form h on vector v:

h[v] =
g̃µ(E,E)h(G̃µ(h))− g̃µ(E, h) h(G̃µ(E))

g̃µ(E, E) g̃µ(h, h) − g̃µ(E,h) g̃µ(E, h)

=
g̃µ(E,E) g̃µ(h,h) − g̃µ(E, h) g̃µ(E,h)

g̃µ(E,E) g̃µ(h,h) − g̃µ(E, h) g̃µ(E,h)
= 1.

In this sense we may claim that the phase slowness and the velocity of
the energy transport by the plane electromagnetic wave are mutually
reciprocal quantities. The energy transport velocity is one of vectors
depicted in Fig. 15.

Having used the identity g(G̃(h), G̃(E)) = g̃(h,E) one may
calculate also the magnetic scalar product of the vector v with itself:

gµ(v, v) =
g̃µ(E,E)

g̃µ(E,E)g̃µ(h, h) − g̃µ(E,h)g̃µ(E, h)
. (72)
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Figure 20. Configuration of relevant quantities for first eigenwave.

Figure 21. Configuration of relevant quantities for second eigenwave.

This shows that for the same magnitude of the electric field of two
eigenwaves (i.e. for the same expression g̃µ(E, E) ) the magnitudes
of phase velocities of two eigenwaves are different because the phase
slownesses are different.

We may assume that Fig. 19 shows the first eigenwave. We repeat
it here as Fig. 20 with the indices of the eigenwave added. In such a
case the second eigenwave should be as in Fig. 21. A careful look at
the two pictures allows to notice that quantities describing the second
eigenwave are obtained from the first one by rotation about 90 degrees
around the vertical axis.

We notice that the Poynting odd two-forms, corresponding to the
two eigenwaves may have different directions. In such a case two
plane eigenwaves with the same frequency and the same planes of
constant phase propagate differently, i.e., they transport the energy
in distinct directions and have distinct magnitudes of phase slownesses
and, therefore, different phase velocities.

It is worth to ponder why the eigenwaves are not needed in
isotropic medium. Now, the matrix E is then diagonal, εi3 = ε3j = 0

and the elements of A given by aij = εij − εi3ε3j

ε33 should be written as

aij = εij = εrδ
ij . Thus in the isotropic medium, matrix A becomes
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the multiple of the unit matrix, hence each column

(
E1

E2

)
is its

eigenvector and no two of them are distinguished. Also one eigenvalue
exists and in this connection only one phase slowness occurs in the
given medium h =

√
εrε0µ0. Then formula (59) for arbitrary E1, E2

gives E3 = 0, which means that E is also magnetically perpendicular
to the wavity one-form k. In the traditional language, this means that

vectors ~E and ~k are perpendicular.

6. CONCLUSION

For the description of plane waves in an anisotropic medium, the metric
independent formalism is used, based on the differential forms. An
argument is presented, showing that the phase velocity vector v is not
unique and a phase slowness one-form h should be introduced such
that h[v] = 1 for any phase velocity vector v. It is uniquely related to
wavity one-form k via the relation h = ω−1k.

The Maxwell equations imply two relations between the
electromagnetic fields B = h ∧ E and D = −h ∧ H. The both two-
form fields B and D are parallel to the phase slowness. The Poynting
two-form S = E ∧ H and the energy density w of the electromagnetic
field are related via w = S ∧ h. These relations belong to the premetric
description of the plane electromagnetic wave.

The constitutive equations for linear media allow to introduce
two scalar products: g̃ε for the electric field and g̃µ for the magnetic
field. In this way the metric can vary from medium to medium,
therefore the name: variable metric electrodynamics. It turns out for
the plane waves that the perpendicularity conditions g̃ε,µ(E, H) = 0
and g̃ε,µ(B,D) = 0 are satisfied for both scalar products. The
perpendicularity of the one-forms E and H to the slowness occurs
only in one of the scalar products: g̃ε(h, E) = 0, g̃µ(h, H) = 0.

When the scalar product matrices G̃ε and G̃µ are not proportional,
only two linearly independent plane waves exist, called eigenwaves,
and for them the following perpendicularity conditions are satisfied:
g̃ε,µ(B(1),B(2)) = 0, g̃ε,µ(D(1),D(2)) = 0, g̃ε(E

(1),E(2)) = 0 and

g̃µ(H(1), H(2)) = 0. The two eigenwaves have phase slowness of distinct
magnitude but the same direction.

For each eigenwave the phase velocity vector can be introduced,
parallel to the Poynting two-form S through the relation S = wbv.
The explicit formula (71) is given for v and the relation h[v] = 1 is
checked. The phase velocities of two eigenwaves have distinct directions
and magnitudes.



316 Jancewicz

The presented formalism is suitable also for the magnetically
anisotropic medium. In such a case it is sufficient to choose for gµ not

the natural scalar product, but the scalar product for which G̃µ = M,
the matrix of relative magnetic permittivity.
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