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Abstract—This paper presents theoretical studies of polarimetric
thermal emission from foam-covered ocean surface based on a com-
posite volume and rough surface scattering model using the radiative
transfer theory. The sea foam is modeled as a layer containing
randomly distributed thin-film water bubbles. The small perturbation
method (SPM) is used for random rough ocean surface, where the
bistatic scattering is calculated up to the second order. The radiative
transfer equations with a rough interface are solved using an iterative
technique. Model predictions are compared with empirical expressions
for foam emissivity and with the WINDRAD measurement data.
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1. INTRODUCTION

In the microwave remote sensing of ocean surface, the use of polarimet-
ric passive techniques has shown potential for enhancing the retrieval
of wind speed and directions [1]. Recent theoretical and experimental
research activities have concentrated on studies of polarimetric thermal
emissions regarding the anisotropic ocean surface assuming a smoothly
varying surface profile [1–4]. However, under high wind conditions,
the presence of breaking water waves, foam patches and bubbles will
affect the polarimetric brightness temperatures of the plain ocean
surface. The significance of foam on the ocean surface was recognized
a long time ago [5], and several subsequent experiments performed
have verified its importance [6, 7]. Previous studies of the foam
contribution to the emissivity of ocean surface were based on empirical
formulations [8, 9] derived from experimental data. Although several
attempts at theoretically modeling the foam have been presented [10,
11], it is difficult to incorporate them with rough ocean surface.
The more realistic modeling for foam-covered ocean surface has been
proposed by Huang et al. [12], who consider the sea foam to be a layer
with water particles over a rough sea surface.

However, it is not suited to model the sea foam as the layer of
spherical water particles, since the sea foam is dominated by water
bubbles [13]. In this chapter, we present the theoretical study on the
polarimetric thermal emissions from foam-covered ocean surface based
on a composite volume and rough surface scattering model using the
radiative transfer theory. We model the locally foam-covered ocean
surface as a random layer with water bubbles. The small perturba-
tion method (SPM) is used for random rough ocean surface, where
the bistatic scattering is calculated up to the second order. The
radiative transfer equations for foam layer are solved using an iterative
technique. The model predictions are compared with measurement
data [14].
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Figure 1. Generation of sea-foam.
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Figure 2. Configuration of local foam layer on wind-driven rough
ocean surface.

2. FORMULATIONS FOR FOAM EMISSION

2.1. RT Equations for Foam Layer

Sea-foam is made of spray, small water droplets and air bubbles which
are generated by wind tearing and further processions such as bubble
production, bubble downward entrainment, and droplet produced by
bubble bursting as illustrated in Fig. 1 [13]. Since the thermal emission
from sea-foam is dominated by water bubbles, we simplify the sea-foam
as a water bubble layer as shown in Fig. 2. For simplicity, the top
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surface of the foam layer is considered to be a flat surface. Above the
foam layer (region 1) is a half free space that is labeled as region 0
with εo, µo. The foam layer is specified by a foam thickness d1, the
inner bubble radius R, bubble film thinkness δ and permittivity ε1,
the fractional volume fv of bubbles, the extinction coefficient κe, and
the temperature profile T (z). The background of the foam layer is
considered to be free space with εo, µo. The sea water (region 2) is
in the lower half space with permittivity ε2, salinity S, and physical
temperature To. The foam coverage is denoted by F , thus the coverage
of the plain ocean surface is 1− F .

In the foam layer, the radiative transfer equation [15, page 229] is
given by

cos θ
d

dz
I(θ, φ, z) = −¯̄κe(θ, φ) · I(θ, φ, z)

+
∫
4π

dΩ′ P (θ, φ, θ′, φ′) · I(θ′, φ′, z) + IT (θ, φ, z),

(1)

where P (θ, φ, θ′, φ′) is the phase matrix which is derived by using Mie
theory in Appendix A. The phase matrix provides the contributions to
the specific intensity I(θ, φ, z) in the direction (θ, φ) from the direction
(θ′, φ′). κe is the extinction tensor. In this thesis, the specific intensity
with the unit of W/m2 is defined as

I(θ, φ, z) =
1
η




〈
|Ev|2

〉
〈
|Eh|2

〉
2Re〈EvE

∗
h〉

2Im〈EvE
∗
h〉



, (2)

where η =
√
µo/εo is the free space impedance. IT (θ, φ, z) is the

intensity of the physical temperature and it is written as IT (θ, φ, z) =
κ̄a(θ, φ)CT (z). In this expression, κa is the absorption coefficient
vector, C = KB/λ

2 where KB is the Boltzmann constant (KB =
1.380658 × 10−23 J/K) and λ is the electromagnetic wavelength. We
assume that the scatterers are bubbles and the absorption is isotropic,
thus

κ̄a = κa

[
1 1 0 0

]T

. (3)
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As mentioned in the previous section, the foam layer is modeled as the
composition of spherical water bubbles randomly distributed in the
foam layer, therefore the extinction coefficient κe(θ, φ) is a scalar, i.e.,
κe(θ, φ) = κe. The formulations of calculating κe and κa are provided
in Appendix A. We assume that the temperature T (z) in the foam
layer is independent of elevation and it is equal to the temperature of
the sea water, i.e., T (z) = To. Thus

IT (θ, φ, z) = κ̄a(θ, φ)CTo. (4)

Define the new specific intensities for 0 ≤ θ < π/2 as

Iu(θ, φ, z) = I(θ, φ, z), (5)
Id(θ, φ, z) = I(π − θ, φ, z), (6)

IT u(θ, φ, z) = IT (θ, φ, z), (7)
IT d(θ, φ, z) = IT (π − θ, φ, z), (8)

the RT equation (1) is split into two:

cos θ
d

dz
Iu(θ, φ, z) = −κeIu(θ, φ, z)

+
∫

upper 2π

dΩ′ P (θ, φ, θ′, φ′) · Iu(θ′, φ′, z)

+
∫

lower 2π

dΩ′ P (θ, φ, π − θ′, φ′) · Id(θ′, φ′, z)

+IT u(θ, φ), (9)

− cos θ
d

dz
Id(θ, φ, z) = −κeId(θ, φ, z)

+
∫

upper 2π

dΩ′ P (π − θ, φ, θ′, φ′) · Iu(θ′, φ′, z)

+
∫

lower 2π

dΩ′ P (π − θ, φ, π − θ′, φ′) · Id(θ′, φ′, z)

+IT d(θ, φ). (10)

We assume that the thickness of the foam layer is much larger than the
penetration depth of the electromagnetic wave. Under this assumption,
there is no returned wave from the bottom of the foam layer. Thus the
boundary conditions are:
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on the upper boundary (z = d1)

Id(θ, φ, d1) = I
A
d (θ, φ, d1), (11)

on the lower boundary (z = 0)

Iu(θ, φ, 0) = 0, (12)

where IA
d (θ, φ, d1) is the specific intensity of the atmospheric layer.

2.2. Solution of the RT Equation

To solve the RT equations (9) and (10), the iterative and numerical
methods can be used. The iterative method is applied to scattering
problems with small absorption which is the case for the foam layer,
while the numerical method can be applied for strong absorption
problems.

In the iterative method of solving the RT equations, we consider
the integral terms as known from the lower order solutions, thus the
RT equations for each step are in the form of an ordinary differential
equation (ODE). The general form of the first order ODE is written as

dy(z)
dz

+ f(z)y(z) = g(z), (13)

with the boundary condition y(zo) = yo. The solution of the ODE is

y(z) =




z∫
zo

g(z′)e

z′∫
zo

f(z′′)dz′′

dz′ + yo


 e
−

z∫
zo

f(z′)dz′

. (14)

The zeroth order RT solution
To solve the RT equations for the zeroth order, we first ignore the

scattering by assuming P = 0. Thus we obtain

cos θ
d

dz
I

(0)
u (θ, φ, z) = −κeI

(0)
u (θ, φ, z) + ITu(θ, φ), (15)

− cos θ
d

dz
I

(0)
d (θ, φ, z) = −κeI

(0)
d (θ, φ, z) + ITd(θ, φ), (16)

with the boundary conditions

I
(0)
d (θ, φ, d1) = I

A
d (θ, φ, d1), (17)

I
(0)
u (θ, φ, 0) = 0. (18)
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From the formula of the general solution (14) of the first order ODE,
the zeroth order solutions of the RT equations (9) and (10) can be
derived as follows:

I
(0)
u (θ, φ, z) = IT u(θ, φ)

1− e−z sec θκe

κe
, (19)

I
(0)
d (θ, φ, z) = IT d(θ, φ)

1− e−(d1−z) sec θκe

κe

+IA
d (θ, φ, d1)e−(d1−z) sec θκe . (20)

The first order RT solution
Plugging the zeroth order solutions (19) and (20) into the RT

equations (9) and (10), and defining the terms from the zeroth order
solutions as follows:

I
(1)
Tu(θ, φ, z) =

∫
upper 2π

dΩ′ P (θ, φ, θ′, φ′) · I(0)
u (θ′, φ′, z)

+
∫

lower 2π

dΩ′ P (θ, φ, π − θ′, φ′) · I(0)
d (θ′, φ′, z)

+IT u(θ, φ), (21)

I
(1)
T d(θ, φ, z) =

∫
upper 2π

dΩ′ P (π − θ, φ, θ′, φ′) · I(0)
u (θ′, φ′, z)

+
∫

lower 2π

dΩ′ P (π − θ, φ, π − θ′, φ′) · I(0)
d (θ′, φ′, z)

+IT d(θ, φ), (22)

we set up the first order RT equations as

cos θ
d

dz
I

(1)
u (θ, φ, z) = −κeI

(1)
u (θ, φ, z) + I

(1)
Tu(θ, φ, z), (23)

− cos θ
d

dz
I

(1)
d (θ, φ, z) = −κeI

(1)
d (θ, φ, z) + I

(1)
Td(θ, φ, z), (24)

with the boundary conditions

I
(1)
d (θ, φ, d1) = I

A
d (θ, φ, d1), (25)

I
(1)
u (θ, φ, 0) = 0. (26)
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Again by using the general solution (14) of the ODE, the solutions of
the first order RT equations are obtained as

I
(1)
u (θ, φ, z) =


 z∫

0

sec θ I(1)
T u(θ, φ, z′) ez′ sec θκe dz′


 e−z sec θκe , (27)

I
(1)
d (θ, φ, z) =

[
− sec θ

z∫
d1

I
(1)
Td(θ, φ, z′)e−z′ sec θκedz′

+IA
d (θ, φ, d1)e−d1 sec θκe

]
ez sec θκe . (28)

The specific intensity in the foam layer we are interested in is the up-
going intensity at z = d1. By integrating over the elevation in Eq. (27),
the first order intensity of the up-going wave at the top of the foam
layer can be written as

I
(1)
u (θ, φ, d1) = IT u(θ, φ)

1− e−d1 sec θκe

κe

+ sec θ
∫

upper 2π

dΩ′ P (θ, φ, θ′, φ′) · ITu(θ′, φ′)
1
κ2

e(
1− e−d1 sec θκe

sec θ
− e−d1 sec θ′κe − e−d1 sec θκe

sec θ − sec θ′

)

+ sec θ
∫

lower 2π

dΩ′ P (θ, φ, π − θ′, φ′) · ITd(θ′, φ′)
1
κ2

e(
1− e−d1 sec θκe

sec θ
− 1− e−d1(sec θ+sec θ′)κe

sec θ + sec θ′

)

+ sec θ
∫

lower 2π

dΩ′ P (θ, φ, π − θ′, φ′) · IA
d (θ′, φ′, d1)

1− e−d1(sec θ+sec θ′)κe

(sec θ + sec θ′)κe
. (29)

Assuming d1κe � 1, the Stokes vector of the thick foam layer is given
as follows

I
AF
u (θ, φ, d1) ≈ I

(1)
u (θ, φ, d1)

≈ IT u(θ, φ)
1
κe

+
∫

upper 2π

dΩ′ P (θ, φ, θ′, φ′) · IT u(θ′, φ′)
1
κ2

e
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+
∫

lower 2π

dΩ′ P (θ, φ, π − θ′, φ′)

·IT d(θ′, φ′)
1
κ2

e

(
1− sec θ

sec θ + sec θ′

)

+
∫

lower 2π

dΩ′ P (θ, φ, π − θ′, φ′)

·IA
d (θ′, φ′, d1)

sec θ
(sec θ + sec θ′)κe

, (30)

where the first term denotes the direct emission due to the physical
temperature of the foam layer, the second and the third term are the
scattering of emission by the scatterers in the foam layer, and the
fourth term is the scattering of the atmospheric emission. Notice that
the up-going and down-going specific intensities due to the physical
temperature in the foam layer are direction independent and they are
given by

IT u(θ, φ) = IT d(θ, φ) = κ̄aCTo = κaCTo




1

1

0

0



. (31)

2.3. Foam Coverage

Let the foam coverage be F , thus the total brightness temperature
is [8]

T
T
u (θ, φ, d1) = F · TAF

u (θ, φ, 0) + (1− F ) · TAS
u (θ, φ, 0), (32)

where T
AF
u (θ, φ, d1) is the emission of the 100% foam as in Eq. (30),

and T
AS
u (θ, φ, 0) is the emission of the plain ocean surface with the

consideration of the reflection of atmospheric emission that will be
discussed in the following sections. Notice that, at this stage, we only
consider the emission at the zero elevation height (z = 0). We need
to consider atmospheric attenuation and radiation if we calculate the
total brightness temperature at the height of the radiometer (z = d2).
The empirical formula of the foam coverage F as the function of the
wind speed Uw, the polar angle θ, and the operating frequency f was
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provided by Stogryn [8] and later used by Pandey [9] among others.
The foam coverage is expressed as [8]

F = b0 + b1Uw + b2U
2
w, (33)

where the coefficients b0, b1 and b2 are frequency dependent, and they
are given by

b0 = 1.707× 10−2 + 8.560× 10−4f + 1.120× 10−5f2,

b1 = −1.501× 10−2 + 1.821× 10−3f − 4.634× 10−5f2,

b2 = 2.442× 10−4 − 2.282× 10−6f + 4.194× 10−7f2. (34)

In (33) and (34), the units of the wind speed and the frequency are
m/s and GHz, respectively.

3. THERMAL EMISSION FROM PLAIN OCEAN
SURFACE

In local regions without foam, the thermal emission from the ocean
surface is the sum of the reflection of the atmospheric emission and
the thermal emission from the plain ocean surface, i.e.,

I
AS
u (θ, φ, 0) =

∫
lower 2π

dΩ′R(θ, φ, π−θ′, φ′)·IA
d (θ′, φ′, 0)+I

S
u(θ, φ, 0), (35)

where R is the reflection matrix of the rough sea surface, IA
d (θ′, φ′, 0) is

the thermal emission of the atmosphere, and I
S
u is the thermal emission

of the plain ocean surface. The details of calculating the atmospheric
emission I

A
d (θ′, φ′, 0) will be discussed in Section 3.2.

Considering that the ocean water is in thermal equilibrium, the
Stokes vector is related to the emissivity ē by

I
S
u(θ, φ, 0) =

KB

λ2
ē(θ, φ)Ts, (36)

where Ts is the physical temperature of the rough ocean surface. By
Kirchhoff’s law, the emissivity vector ē(θ, φ) is the intensity of incident
wave with unit amplitude minus the total intensity of the reflected
waves,

ē(θ, φ) = Ii −
∫
Ir(θ, φ; θi, φi; 0)dΩi, (37)
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where

Ii =
1
η




〈
|Evi|2

〉
〈
|Ehi|2

〉
2Re〈EviE

∗
hi〉

2Im〈EviE
∗
hi〉




=




1

1

0

0



. (38)

The amplitude of the v and h-polarized incident electric fields is unity,
and Ir is the reflection Stokes vector of the plane wave with incident
angles θi and φi.

3.1. Stokes Vector of Reflected Wave

We apply the small perturbation method (SPM) to calculate the
reflection matrix R of the rough surface and then calculate the
reflection Stokes vector Ir. The reflection Stokes vector can be written
as

Ir(θ, φ, θi, φi; 0) = R(θ, φ, θi, φi) · Ii(θi, φi; 0), (39)

where R is the reflection matrix for the Stokes vector.
In the zeroth order SPM solution, the scattered field is specular

and is equivalent to the flat-surface scattering problem; thus the
reflection coefficients of the zeroth order solution are the Fresnel
reflection coefficients. Using the ensemble average, the second order
solution from SPM is also specular. Therefore we call both the zeroth
and second-order terms coherent. The averaged field of the first order
solution by SPM is zero, hence it is incoherent. By including solutions
up to the second order using SPM, the reflection matrix is the sum of

coherent and incoherent parts, R
c

and R
i
, respectively, so that

R = R
c
+R

i
. (40)

Since the scattered field from the zeroth and second order SPM
solutions is specular, the coherent reflection matrix of the Stokes vector
can be written as

R
c
(θ, φ, π − θi, φi) =

[
Rc

ij

]
δ(cos θ − cos θi)δ(φ− φi)
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=




Rc
11 Rc

12 Rc
13 Rc

14

Rc
21 Rc

22 Rc
23 Rc

24

Rc
31 Rc

32 Rc
33 Rc

34

Rc
41 Rc

42 Rc
43 Rc

44



δ(cos θ − cos θi)δ(φ− φi). (41)

Note that the subscripts i and j are associated with the scattered and
incident components of the Stokes vector, respectively. The element
Rc

ij (i, j = 1, 2, 3, 4) is related to the reflection coefficient Rαβ with
subscripts α, β = v, h, where

 Ec
vs

Ec
hs


 =


 Rc

vv(θi, φi) Rc
vh(θi, φi)

Rc
hv(θi, φi) Rc

hh(θi, φi)





 Evi

Ehi


 , (42)

and the subscripts v and h represent vertically and horizontally po-
larized waves, respectively. By writing

I
c
u =

1
η




|Ec
vs|2

|Ec
hs|2

2Re{Ec
vsE

c∗
hs}

2Im{Ec
vsE

c∗
hs}




and expressing Ec
vs and Ec

hs in terms of Ec
vi and Ec

hi using Eq. (42), it
can be shown that

I
c
u =

[
Rc

ij

]
· Ii, (43)

where[
Rc

ij

]
=


|Rcvv|2 |Rcvh|2 Re(RcvvR

∗c
vh) −Im(RcvvR

∗c
vh)

|Rchv|2 |Rchh|2 Re(RchvR
∗c
hh) −Im(RchvR

∗c
hh)

2Re(RcvvR
∗c
hv) 2Re(RcvhR

∗c
hh) Re(RcvvR

∗c
hh + RcvhR

∗c
hv) −Im(RcvvR

∗c
hh − RcvhR∗c

hv)

2Im(RcvvR
∗c
hv) 2Im(RcvhR

∗c
hh) Im(RcvvR

∗c
hh + RcvhR

∗c
hv) Re(RcvvR

∗c
hh − RcvhR∗c

hv)




(44)
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and the incident Stokes vector Ii is defined as in Eq. (38). Using SPM,
Rc

αβ (α, β = v, h) can be obtained as

Rc
αβ =


 R

(0)
vv +R

(2)
vv R

(0)
vh +R

(2)
vh

R
(0)
hv +R

(2)
hv R

(0)
hh +R

(2)
hh


 , (45)

where the zeroth order R(0)
αβ is the Fresnel reflection coefficient of a flat

surface, which is given by



R
(0)
vv =

ε2k1z − ε1k2z

ε2k1z + ε1k2z
,

R
(0)
hh =

k1z − k2z

k1z + k2z
,

R
(0)
vh = R

(0)
hv = 0.

(46)

The second order reflection coefficient R(2)
αβ is given by

R
(2)
αβ =

∞∫
−∞

∞∫
−∞

dkxdkyW (kxi − kx, kyi − ky)f
(2)
αβ , (47)

where W (kxi − kx, kyi − ky) is the spectral density function of the
rough ocean surface, and f

(2)
αβ is the second-order scattering coefficient

as in [1].

The incoherent reflection matrix R
i
(θ, φ; θi, φi) can be calculated

by considering the first order SPM solution. By expressing the
scattering fields as

 Evs

Ehs


 =

eik1r

r


 fvv(θ, φ; θi, φi) fvh(θ, φ; θi, φi)

fhv(θ, φ; θi, φi) fhh(θ, φ; θi, φi)





 Evi

Ehi


 , (48)

where fαβ(θ, φ; θi, φi) is the polarimetric scattering coefficient (α, β =
h, v), the reflection matrix can be calculated by [16]

R
i
=

1
A cos θ

L
i
, (49)

where
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L
i
(θ, φ; θi, φi) =



〈
|fvv|2

〉 〈
|fvh|2

〉
Re〈(fvvf∗

vh)〉 −Im〈(fvvf∗
vh)〉〈

|fhv|2
〉 〈

|fhh|2
〉

Re〈(fhvf∗
hh)〉 −Im〈(fhvf∗

hh)〉

2Re〈(fvvf∗
hv)〉 2Re〈(fvhf∗

hh)〉 Re〈(fvvf∗
hh + fvhf

∗
hv)〉 −Im〈(fvvf∗

hh − fvhf∗
hv)〉

2Im〈(fvvf∗
hv)〉 2Im〈(fvhf∗

hh)〉 Im〈(fvvf∗
hh + fvhf

∗
hv)〉 Re〈(fvvf∗

hh − fvhf∗
hv)〉


 .

(50)

and A is the illuminated area. The ensemble averaged product of the
scattering coefficients is related to the polarimetric bistatic scattering
coefficient as following:

γi
αβµν(θ, φ; θi, φi) =

4π
〈
fαβ(θ, φ; θi, φi)f∗µν(θ, φ; θi, φi)

〉
A cos θi

. (51)

From expression (49), (50) and (51), it can be easily derived that

R
i

=

cos θi

4π cos θ




γivvvv γivhvh Reγivvvh −Imγivvvh

γihvhv γihhhh Reγihvhh −Imγihvhh

2Reγivvhv 2Reγivhhh Re
(
γivvhh + γivhhv

)
−Im

(
γi∗vvhh − γivhhv

)
2Imγivvhv 2Imγivhhh Im

(
γivvhh + γivhhv

)
Re

(
γi∗vvhh − γivhhv

)




(52)

with

γi
αβµν(θ, φ; θi, φi) =

4πk2
1 cos2 θΓαβµν(θ, φ; θi, φi)W (θ, φ; θi, φi)

cos θi
, (53)

where Γαβµν is the coefficient with explicit form given in [1]. Finally,
by knowing the coherent reflection matrix R

c
from Eq. (41) and the

incoherent reflection matrix R
i

from Eq. (52), we obtain the total

reflection R = R
c

+ R
i

[Eq. (40)]. Therefore the reflection Stokes
vector Ir is obtained as

Ir(θ, φ, θi, φi; 0) =
(
R

c
+R

i
)
· Ii, (54)
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and the emissivity can be calculated from Eq. (37) as

ē(θ, φ) = Ii −
∫ (

R
c
+R

i
)
· IidΩi

= Ii −
π/2∫
0

sin θidθi

2π∫
0

dφi

(
R

c
+R

i
)
· Ii. (55)

3.2. Reflection of Atmospheric Thermal Emission

We write the term representing the reflection of the atmospheric
thermal emission from the rough surface as

I
A
r (θ, φ; 0) =

∫
dΩ′R(θ, φ, π − θ′, φ′)·IA

d (θ′, φ′; 0). (56)

From Eq. (40) we know that the reflection of the rough surface can be
written as the sum of the coherent and incoherent parts, therefore

I
A
r (θ, φ; 0) =

∫
dΩ′

(
R

c
+R

i
)
·IA

d (θ′, φ′; 0). (57)

Thus the total Stokes vector in Eq. (35) can be written as

I
AS
u (θ, φ; 0) =

∫
dΩ′

(
R

c
+R

i
)
·IA

d (θ′, φ′; 0)

+
KB

λ2
Ts

[
Ii −

∫
dΩi

(
R

c
+R

i
)
· Ii

]
. (58)

Noticing that dΩ′ = dΩi for the down-going Stokes vector from the
atmospheric layer, therefore it can be shown that

I
AS
u (θ, φ; 0) =

KB

λ2
TsIi −

KB

λ2
Ts

∫
dΩi

(
R

c
+R

i
)

·
[
Ii −

λ2

KBTs
I

A
d (θi, φi; 0)

]
. (59)

Converting the Stokes vector to the brightness temperature, the
brightness temperature of the plain ocean surface can be written as

T
AS
u (θ, φ; 0) =

λ2

KB
I

AS
u (θ, φ; 0)

= T i −
∫
dΩi

(
R

c
+R

i
)
·
[
T i − T

A
d (θi, φi; 0)

]
, (60)
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where T i = TsIi, and T
A
d (θi, φi; 0) =

λ2

KB
I

A
d (θi, φi; 0) is the down-going

brightness temperature of the atmosphere at the ocean surface. The
down-going specific intensity I

A
d (θi, φi; 0) from the atmosphere can be

found from Eq. (77) and its approximation can be found in Eq. (89) as

I
A
d (θ, φ, d1) = sec θ

d2∫
d1

κ̄a(z′)CT (z′)e
− sec θ

z′∫
d1

κa(z′′)dz′′

dz′

≈ CT (zo)
κ̄a

κa


1− e

− sec θ

d2∫
d1

κa(z′′)dz′′

 , (61)

where T (z′) is the temperature profile of the atmosphere, and κa is the
absorption coefficient. The median elevation zo can be calculated by
solving the following equation:

zo∫
d1

κa(z′)dz′ =
1
2

d2∫
d1

κa(z′)dz′. (62)

3.3. Power Spectrum of Rough Ocean Surface

The ocean surface spectrum applied in this thesis was proposed
by Durden and Vesecky [17]. This surface spectrum is based on
experimental data fitting and thus it is an empirical model. The
Durden-Vesecky surface spectrum is given by

W (k, φ) =
a0

2πk4
Φ(k, φ)S(k), (63)

where

Φ(k, φ) =
(
1 + c(1− e−sk2

) cos 2φ
)
, (64)

S(k) =



e
−0.74

(
g

U2
19.5

k

)2

if 0 < k < 2,(
bku2
∗

g+γk2

)a log10(k/2)
if k > 2.

(65)

The wind friction velocity u∗ can be found from the following equation

Uh =
u∗
0.4

log
h

6.84× 10−5/u∗ + 4.28× 10−3u2∗ − 4.43× 10−4
, (66)
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where Uh is the wind speed in the unit of m/s at the elevation height
h in meters above the mean ocean surface. k is the ocean surface
spatial wavenumber, φ is the azimuthal angle with respect to wind
direction, a0, a, b, g, γ, and s are constants with the values of a0 =
0.008, a = 0.225, b = 1.25, g = 9.81, γ = 7.25 × 10−5, s = 1.5 × 10−4.
The parameter c, which serves as the coefficient for the azimuthal-
dependent term in the spectrum, is given by

c =
2(1−R)/(1 +R)

1−D
, (67)

where

R =
0.003 + 1.92× 10−3U12.5

3.16× 10−3U12.5,
(68)

D =

∞∫
0
dk k2 S(k) e−(k/89.44)2

∞∫
0
dk k2 S(k)

. (69)

For example, for the wind speed Uh = 12 m/s at height h = 19.5 m, it
can be calculated that u∗ = 0.46388 and c = 0.65139. To consider
certain hydrodynamic effects of the ocean waves, we multiply the
parameter c in the spectrum density function W (k, φ) by (1−d0 cosφ),
where the parameter d0 is determined by data matching. The
hydrodynamic modulation was also modeled differently by multiplying
the ocean surface spectrum with a parameter h′ based on the slope of
the long waves [17,18]. The modulated spectrum is written as

W (k, φ, Sx) = h′W (k, φ), (70)

where Sx is the slope of the large-scale waves on the ocean surface and
h′ is calculated as

h′ =




1− 0.5 sgn(Sx) if |Sx/Su| > 1.25,

1− 0.4Sx/Su if |Sx/Su| ≤ 1.25,
(71)

where Su is the rms upwind surface slope which can be calculated by
using Eq. (110). The hydrodynamic modulation of the ocean surface
spectrum using the parameter h′ is useful for the two-scale model of
the ocean surface. A detailed study can be found in Section 5.
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4. RADIATIVE TRANSFER EQUATIONS FOR
ATMOSPHERE

The atmospheric contribution to the brightness temperature of the
ocean surface must be taken into account since (1) the airborne
radiometer is usually at a very high altitude, hence the accumulated
thermal emission along the path from the ocean surface to the
radiometer may be significant, and/or the attenuation for the bright-
ness temperature propagating from the ocean surface up to the
radiometer cannot be negligible, and (2) there may be a significant
amount of down-going thermal emission from the atmosphere being
reflected by the ocean surface. In clear air conditions, the main
concerns about the atmosphere for passive remote sensing are the
atmospheric emission and attenuation due to the contributions from
gaseous oxygen (O2), water vapor (H2O), and suspended water
droplets (hydrosols) [19]. In the adverse conditions, cloud and rainfall
need to be addressed [19,20]. In clear air and at microwave frequencies,
the electromagnetic wave scattering by atmospheric gases can be
ignored [21], thus the radiative transfer (RT) equations that are used
to model the wave propagation in the atmosphere reduce to uncoupled
first-order differential equations.

The atmosphere can be modeled as an inhomogeneous layer with
the extinction coefficient κe(z), the absorption coefficient κa(z), and
the temperature profile T (z) in terms of the height z as shown in
Fig. 3. We assume that the scatterers such as water vapor, droplets and
gaseous oxygen are small thus the scattering is ignored (κe = κs +κa ≈
κa). Therefore the radiative transfer equations for the specific intensity
I

A
u and I

A
d have the following simple form [15,22]

cos θ
∂

∂z
I

A
u (θ, φ, z) = −κa(z)I

A
u (θ, φ, z) + κ̄aCT (z), (72)

− cos θ
∂

∂z
I

A
d (θ, φ, z) = −κa(z)I

A
d (θ, φ, z) + κ̄aCT (z), (73)

where C = KB/λ
2, KB is Boltzmann constant and λ is the electro-

magnetic wavelength.
Assuming that there is no thermal emission from the upper space

at z = d2, the boundary conditions for Eqs. (72) and (73) are given by

I
A
u (θ, φ, d1) = I

T
u (θ, φ, d1), (74)

I
A
d (θ, φ, d2) = 0, (75)

where I
T
u (θ, φ, d1) denotes the emission from the lower boundary at

z = d1 (the foam-covered ocean surface). From Eq. (14), the solution
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Figure 3. The atmospheric layer above a foam-covered ocean surface.

of the RT equations (72) and (73) are obtained as

I
A
u (θ, φ, d2) = sec θ

d2∫
d1

κ̄a(z′)CT (z′) e
− sec θ

d2∫
z′
κa(z′′)dz′′

dz′

+ITu (θ, φ, d1) e
− sec θ

d2∫
d1

κa(z′)dz′

, (76)

I
A
d (θ, φ, d1) = sec θ

d2∫
d1

κ̄a(z′)CT (z′) e
− sec θ

z′∫
d1

κa(z′′)dz′′

dz′. (77)

The specific intensity of the down-going wave in Eq. (77) can be
calculated for any polar angle θ from the absorption and temperature
profiles. From the equation of the down-going wave in Eq. (77) we
find that the assumption that down-going wave at height d2 is zero
as in Eq. (75) is due to the fact that the absorption coefficient κa
at z = d2 is very small. In the next sections, we will see from the
numerical results for the US Standard Atmosphere [23] that the value
of the absorption coefficient is negligible for altitude larger than 10 km.
In the RT theory, if the scattering is ignored for the propagating wave,
the absorption coefficient κa is two times the imaginary part of the
complex wavenumber,

κa = 2Im{k} = 2Im
{
(10−6N + 1)ko

}
, (78)
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where ko is the wavenumber in free space, and N is the complex re-
fractivity. In the following sections, we will use Liebe’s millimeter-wave
propagation model (MPM) [24] to calculate the complex refractivity
in the atmosphere.

The extinction coefficient κe is the sum of the scattering coefficient
κs and the absorption coefficient of the background κa. Quantitatively,
we find that κs � κa,therefore we use κa to approximate κe. The
dominant scattering in the atmosphere is due to water vapor and
suspended water droplets (hydrosols). The scattering and absorption
coefficient are given by [15, page 157–158]

κs = 2fvk
4a3|y|2, (79)

κa = fvk
ε′′s
ε

∣∣∣∣ 3ε
εs + 2ε

∣∣∣∣2 , (80)

where fv is the fractional volume occupied by the water particles, a is
the radius of a water particle, and

y =
εs − ε

εs + 2ε
. (81)

For water droplets in the atmosphere, the typical values are a ∼ 5 µm,
fv ∼ 5 × 10−7, and εs ∼ 30 + i40 for f = 20 GHz. Therefore
κs ∼ 10−12 m−1 and κa ∼ 10−5 m−1, thus κs � κa and we can ignore
κs and let κe ≈ κa. The gaseous oxygen (O2), water vapor (H2O),
and suspended water droplets in the atmosphere are considered as the
principal absorbers in moist air [19].

4.1. The Millimeter-Wave Propagation Model

The millimeter-wave propagation model (MPM) model developed by
Liebe [24] can be used to calculate the complex refractivity N that
is related to the complex refractive index n by N = 106(n − 1). By
writing the refractive index as n = n′ + in′′, the effective permittivity
of moist air is found as following:

εe = (n′ + in′′)2 =
(
n′2 − n′′2

)
+ i(2n′n′′), (82)

where ko is the wavenumber in free space. Thus the complex wave-
number is given by

k = ω
√
µeεe = kon, (83)

assuming µe = µo. The measurable parameters of atmosphere are (1)
barometric pressure P in kilopascal (1 kPa = 10 mbar), (2) temp-
erature T in degrees Kelvin (K), (3) relative humidity RH, and (4)
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Figure 4. Temperature and barometric pressure profiles in the US
Standard Atmosphere 1976.

mass concentration in grams per cubic meter. The four measurable
parameters can be converted to the internal variables which are useful
in the MPM model as shown in Appendix B.

The typical barometric pressure profile is given in [23] and it is
plotted in Fig. 4. As an example, we consider the frequency f =
19.35 GHz and use the US Standard Atmosphere 1976 temperature,
barometric pressure and humidity profiles to calculate the complex
wavenumber k for an electromagnetic wave propagating in the atmo-
sphere. The numerical result of the absorption coefficient is plotted in
Fig. 5, where the real and imaginary parts are plotted separately in
terms of the wavenumber in free space ko.

4.2. Attenuation and Emission of Atmosphere

Once we obtained the key parameter — the absorption coefficient
κa from the MPM model, the thermal emission of the standard
atmosphere and its attenuation for the propagating waves can be
calculated by using the RT solutions (76) and (77). The first term in



164 Zhang, Yang, and Kong

0 1 2 3 4 x 10
-40

5

10

15

20

25

30
Real Part of k-1

Re[k-1] [ko]

A
lti

tu
de

 [k
m

]

0 0.5 1 1.5 2 x 10
-80

5

10

15

20

25

30
Imaginary Part of k

Im[k] [ko]

A
lti

tu
de

 [k
m

]

Radiometer

Figure 5. The complex wavenumber of electromagnetic wave with
f = 19.35 GHz propagating in the atmosphere in terms of the
wavenumber in free space.

Eq. (76) represents the up-going thermal emission of the atmosphere
and can be written as

I
A
u1(θ, φ, d2) = sec θ

d2∫
d1

κ̄a(z′)CT (z′)e
− sec θ

d2∫
z′

κa(z′′)dz′′

dz′. (84)

The down-going wave in Eq. (77) represents the down-going thermal
emission of the atmosphere,

I
A
d (θ, φ, d1) = sec θ

d2∫
d1

κ̄a(z′)CT (z′)e
− sec θ

z′∫
d1

κa(z′′)dz′′

dz′. (85)

The up and down-going thermal emissions can be calculated using the
result of absorption and temperature profiles from the MPM. We can
show numerically that they are very close to each other quantitatively.
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The up-going thermal emission as in Eq. (84) can be written as

I
A
u1(θ, φ, d2) = CT (zo) sec θ

d2∫
d1

κ̄a(z′)e
− sec θ

d2∫
z′

κa(z′′)dz′′

dz′, (86)

where zo is between d1 and d2. The down-going wave as in Eq. (85)
can also be written as

I
A
d (θ, φ, d1) = CT (z′o) sec θ

d2∫
d1

κ̄a(z′)e
− sec θ

z′∫
d1

κa(z′′)dz′′

dz′, (87)

where z′o is between d1 and d2 but different from zo. It can be shown
that

d2∫
d1

κa(z′)e
− sec θ

d2∫
z′

κa(z′′)dz′′

dz′ =
d2∫

d1

κa(z′)e
− sec θ

z′∫
d1

κa(z′′)dz′′

dz′

= cos θ


1− e

− sec θ

d2∫
d1

κa(z′′)dz′′

 . (88)

Since the temperature profile T (z) does not change much for the entire
integral path, i.e., T (zo) ≈ T (z′o),

I
A
u1(θ, φ, d2) ≈ I

A
d (θ, φ, d1) ≈ CT (zo)

κ̄a

κa


1− e

− sec θ

d2∫
d1

κa(z′′)dz′′

 ,
(89)

where zo is the median elevation as defined in Eq. (62). Figure 6 shows
the numerical result of the down-going, up-going and approximated
brightness temperatures by carrying out the integration for Eqs. (84)
and (85) numerically or using approximation formula Eq. (89) for the
standard atmosphere at f = 19.35 GHz, d2 = 30 km and d1 = 0.

In the second term of the up-going wave in Eq. (76), the factor

exp


− sec θ

d2∫
d1

κa(z′)dz′



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Figure 6. The brightness temperature of down-going and up-going
waves and their comparison with the approximation formula for f =
19.35 GHz.

is the attenuation for the thermal emission from the foam-covered
ocean surface. For the US standard atmosphere at f = 19.35 GHz,
d2 = 30 km and d1 = 0, we can calculate the attenuation using the
numerical κa from the MPM. Fig. 7 shows the attenuation in terms of
the polar angle.

After the total brightness temperature on the ocean surface is
calculated by [also from Eq. (32)]

T
T
u (θ, φ, d1) = F · TAF

u (θ, φ, d1) + (1− F ) · TAS
u (θ, φ, 0), (90)

we can calculate the brightness temperature at the height of the
radiometer. Between the ocean surface and the radiometer, the
atmospheric emission and the attenuation must be taken into account.
At the radiometer height z = d2, by dividing the constant C = KB/λ

2

on both sides of Eq. (76), the total brightness temperature can be
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Figure 7. The attenuation of the standard atmosphere for f =
19.35 GHz, d2 = 30 km and d1 = 0.

written as

T
A
u (θ, φ, d2) = sec θ

d2∫
d1

κ̄a(z′)T (z′)e
− sec θ

d2∫
z′

κa(z′′)dz′′

dz′

+T T
u (θ, φ, d1)e

− sec θ

d2∫
d1

κa(z′)dz′

, (91)

where the first term is the thermal emission of the atmosphere and the
exponential factor in the second term is the atmospheric attenuation
for the wave traveling from the ocean surface to the radiometer. In
order to study individually the contributions from the plain ocean
surface, the foam and the atmosphere, we re-label the terms in Eq. (90)
and Eq. (91) as

TS = (1− F ) · TAS
u (θ, φ, 0)e

− sec θ

d2∫
0

κa(z′)dz′

, (92)
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TF = F · TAF
u (θ, φ, d1)e

− sec θ

d2∫
d1

κa(z′)dz′

, (93)

TA = sec θ
d2∫

d1

κ̄a(z′)T (z′)e
− sec θ

d2∫
z′

κa(z′′)dz′′

dz′. (94)

In the above expressions, TS is the brightness temperature of the
plain ocean surface with the consideration of reflection of atmospheric
emission by water bubbles and the attenuation when the wave travels
from the ocean surface to the radiometer. TF is the brightness
temperature of the foam layer with the consideration of scattering of
atmospheric emission and attenuation. TA is the brightness tempera-
ture due to the thermal emission of the atmosphere.

4.3. Equivalent Polar Angle of the Spherical Atmospheric
Layer

Consider a radiometer placed at point A with zenith height H as
shown in Fig. 8. We create a flat atmospheric layer to approximate
the spherical layer so that it is easier to apply the geometry for the
RT theory. On the flat layer, the equivalent position of the radiometer
is at point C, where we assume AB = BC. It can be found that in
the equivalent flat-layer model of the atmosphere, the polar angle θ′

is different from θ in the spherical model. By projecting the lines AO
and AB on the x- and z-axis, respectively, we find

AB · sin θ = (R +H) sin θo, (95)
R +AB · cos θ = (R +H) cos θo. (96)

By eliminating the angle θo from Eqs. (95) and (96), it yields

AB =
√
R2 cos2 θ + 2RH +H2 −R cos θ. (97)

Considering the triangle BCD, it can be shown that

cos θ′ = H
/
AB. (98)

Therefore the modified polar angle in the equivalent flat atmospheric
layer is

θ′ = cos−1 H√
R2 cos2 θ + 2RH +H2 −R cos θ

. (99)
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Figure 8. Geometry of the spherical atmospheric layer.

For example, let the radiometer height H = 30, 000 m, and the earth
radius R = 6.37 × 106 m. For the zero grazing angle (θ = 90◦), the
modified polar angle can be calculated as

θ′ = cos−1 H√
2RH +H2

= cos−1 3√
2× 637× 3 + 32

= 87.2◦. (100)

5. TWO-SCALE MODEL OF ROUGH OCEAN SURFACE

In the previous section, we only considered the rough ocean surface
with wavenumber less than 5 times the electromagnetic wavelength
by defining the cutoff wavenumber kd = ko/5, where ko is the
electromagnetic wavenumber. For numerical purposes, the variable
l is defined as l = 1/k so that the integration for l is from 0 to 1/kd

instead of from 0 to∞ for k. Therefore numerically kd cannot be zero,
and the waves are separated into large-scale (k < kd) and small-scale
(k > kd) categories. If we only consider the small-scale waves, the total
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brightness temperature is not sensitive to the value of kd (kd around
ko/5) that will be demonstrated in Fig. 14 in the numerical simulation
section. The large-scale wave operates as tilted facet. The two-scale
model takes care of the tilted polar angle on the local facet due to the
large scale or long waves of the ocean surface. In the two-scale model,
the brightness temperature vector is calculated by averaging the local
values over the slope distribution of the large scale waves [25,18]. The
averaged brightness temperature at the ocean surface is written as

T (θ, φ, 0) =
∞∫
−∞

dSx

∞∫
− cot θ

dSyT l(θ′, φ)Ps

(
S′x, S

′
y, θ

)
, (101)

where T l(θ′, φ) is the brightness temperature of the local facet at the
local looking angle θ′, Ps is the slope distribution of the large-scale
waves as viewed at the local looking angle θ′, Sx and Sy are the surface
slopes along the global x and y axis, respectively, while S′x and S′y are
the surface slopes with respect to the radiometer observation direction
(θ′, φ). Notice that Sx is limited to − cot θ due to shadowing by large-
scale waves [18]. The transformation of the global slopes to the slopes
with respect to the radiometer observation direction is given by

S′x = Sx cosφ+ Sy sinφ, (102)
S′y = −Sx sinφ+ Sy cosφ. (103)

To calculate the polar angle θ′ with respect to the local facet Π for
a given looking angle θ with respect to the global coordinate (x, y, z)
as shown in Fig. 9, we write the unit normal vector of the local facet
as

n̂ =
ẑ − Sxx̂− Syŷ√

1 + S2
x + S2

y

, (104)

and the unit wave vector with the orientation angles θ and φ as

k̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ. (105)

Thus the polar angle with respect to the local facet is

θ′ = cos−1 k̂ · n̂ = cos−1 −Sx sin θ cosφ− Sy sin θ sinφ+ cos θ√
1 + S2

x + S2
y

. (106)

The slope distribution Ps was studied by Cox and Munk [26] by
measuring the ocean surface, and it can be written as

Ps

(
S′x, S

′
y, θ

)
= (1 + Sx tan θ)P

(
S′x, S

′
y

)
, (107)
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n̂k̂

Figure 9. The local polar angle with respect to the global looking
angle and the slope of the facet.

where P (S′x, S
′
y) is assumed to be a Gaussian distribution function

P
(
S′x, S

′
y

)
=

F
(
S′x, S

′
y

)
2πSuSc

exp

[
−

(
S′x

2

2S2
u

+
S′y

2

2S2
c

)]
(108)

with the function F (S′x, S
′
y) defined as

F
(
S′x, S

′
y

)
= 1− C21

2

(
S′y

2

S2
c

− 1

)
S′x
Su
− C03

6

(
S′x

3

S3
u

− 3
S′x
Su

)

+
C40

24

(
S′y

4

S4
c

− 6
S′y

3

S3
c

+ 3

)

+
C22

4

(
S′y

2

S2
c

− 1

) (
S′x

2

S2
u

− 1

)

+
C04

24

(
S′x

4

S4
u

− 6
S′3u
S3

u

+ 3

)
. (109)

In the above expression, the coefficients are C40 = 0.4, C22 = 0.12,
C04 = 0.23, C21 = 0.01− 0.0086Uw, and C03 = 0.04− 0.033Uw, where
Uw is the wind speed in m/s.

The upwind and crosswind slope variances are calculated as
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Sx

Sy

Sx = − cot θ

S2
x + S2

y ≤ S2
td

Std

Figure 10. The integration area for determining the slope threshold.

follows:

S2
u =

kd∫
0

dk

2π∫
0

dφk3 cos2 φW (k, φ) , (110)

S2
c =

kd∫
0

dk

2π∫
0

dφk3 sin2 φW (k, φ) . (111)

In the numerical evaluation of Eq. (101), the integration limits of Sx

and Sy are truncated as 5Su and 5Sc, respectively. The local brightness
temperature T l is assigned to be the one of the plain ocean surface TAS

u

as in Eq. (60) or of the foam T
F
u as in Eq. (30) based on the slope of

the surface S =
√
S2

x + S2
y . To the best of our knowledge, there is

presently no literature on the study of the foam assignment according
to the slope of the ocean surface. In this thesis, we assume a threshold
Std and assign the foam brightness temperature T

F
u to the local T l

if the slope
√
S2

x + S2
y ≥ Std. The slope threshold Std can be found

by calculating the integral within the area [as shown in Fig. 10] of{
(Sx, Sy) : S2

x + S2
y ≤ S2

td, Sx ≥ − cot θ
}
, so that the integral value is

equal to the foam coverage F in Eq. (33), i.e.,

F =
∫
dSy

∫
dSxPs

(
S′x, S

′
x

)
. (112)
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Figure 11. The brightness temperature of wind-driven ocean surface
for nadir looking angle θ = 30◦ and the lower cutoff wavenumber
kd = 80 m−1.

6. NUMERICAL RESULTS

In this section, we calculate the brightness temperature of the wind-
driven ocean surface and compare the simulation results with the
data from JPL’s WINDRAD experiment [14]. In the experiment, a
K-band (19.35 GHz) radiometer was mounted on the NASA DC-8
aircraft flying in a circle at the height of 30,000 ft (9,144 m). The
data was collected in November 1993 near the northern Californian
coast. During the experiment, weather was clear and there was a
wind speed of 12 m/s. The brightness temperatures were measured
for the Stokes parameters Tv, Th, and U with the polar angles of 30,
40, and 50 degrees. In the simulation, the frequency of the brightness
temperatures is f = 19.35 MHz, the ocean wind speed is Uw = 12 m/s
at height h = 19.5 m. The physical temperature of the sea water is
To = 12 ◦C, and the salinity is S = 3.5%.

Figs. 11, 12 and 13 show the simulation results of the brightness
temperatures by varying the azimuth angle φ of the observation with
nadir looking angle θ = 30◦, 40◦ and 50◦, respectively. The ocean
surface spectrum is the empirical formula proposed by Durden and
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Figure 12. The brightness temperature of wind-driven ocean surface
for nadir looking angle θ = 40◦ and the lower cutoff wavenumber
kd = 80 m−1.
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Figure 13. The brightness temperature of wind-driven ocean surface
for nadir looking angle θ = 50◦ and the lower cutoff wavenumber
kd = 80 m−1.
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Figure 14. The brightness temperature of wind-driven ocean surface
for nadir looking angle θ = 40◦ and the lower cutoff wavenumber
kd = 120 m−1.

Vesecky [17]. For the foam layer, the internal radius of water bubble
is R = 4.3 mm, the bubble film thickness is d = 0.13 mm and the
fractional volume of water bubbles is fv = 0.01. The extinction
and absorption coefficients are calculated as κe = 8.298 m−1 and
κa = 2.273 m−1. The permittivity of the bubble film is the same
as of the ocean water, and the permittivity of the background is
εo. The elevation height of the radiometer is 30,000 ft (9,144 m).
In these figures, the open circles are the WINDRAD experimental
data. In the plots of the first and second Stokes parameters Tv and
Th, the lines (from bottom to top) are the plots for the numerical
simulation considering (1) only the plain ocean surface [TS in Eq. (92)],
(2) plain ocean surface plus the foam emission [TS +TF in Eq. (92) and
(93)], and (3) plain ocean surface plus the foam and the atmospheric
emissions [TS + TF + TA in Eq. (92), (93) and (94)]. In the plots for
the third and fourth Stokes parameters U and V , the total emissions
are considered. In comparison with experiment data, we notice that
both the foam and the atmospheric emission are significant to correct
the emission of the plain ocean surface for Tv and Th.
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Figure 15. The comparison of the one-scale and two-scale models at
θ = 30◦.

The Durden-Vesecky spectrum is similar to the power law W (k) =
a0/k

4 that describes the relative portion of the large scale and small
scale roughness of the ocean surface by specifying the lower cutoff
wavenumber kd. The smaller kd is, the higher the long waves. However,
in the simulation for the thermal emission from the ocean surface, the
brightness temperatures are obtained by integrating over the entire
reflected waves due to Kirchhoff’s law. Therefore there is no significant
difference between the collection of reflected waves from very long
ocean waves or from a flat surface. In SPM, the zeroth and the second
order reflected waves are specular, thus they include the dominant
reflections from the long waves. The bistatic pattern of the field
scattered by rough ocean surface is dominated by small scale roughness
(Bragg scattering) which is included in the first order solution in SPM.
Therefore the value of the lower cutoff wavenumber kd is not sensitive
to the calculation of the emissivity from the rough ocean surface. This
can be demonstrated by re-calculating the brightness temperatures
shown in Figs. 11, 12 and 13 with lower cutoff wavenumbers. In
Figs. 11, 12 and 13, the lower cutoff wavenumber is kd = 80 m−1

which is about 5λ of the electromagnetic wave. Fig. 14 shows the
brightness temperatures for the polar angle θ = 40◦ and the lower
cutoff wavenumber kd = 120 m−1. Not much change is observed for
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Figure 16. The comparison of the one-scale and two-scale models at
θ = 40◦.
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θ = 50◦.
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the result in comparison with Fig. 12 for kd = 80 m−1.
With the same simulation conditions as in Figs. 11–13, we compare

the numerical results obtained by using the one-scale and two-scale
models as shown in Figs. 15–17. Notice that the Tv and Th terms in
these figures match better with the measurement data in the two-scale
model for θ = 30◦ and 40◦, but there is an irregular offset in Fig. 17,
which may be due to the shadowing effect at large polar angles.

7. CONCLUSIONS

In this paper, one-scale and two-scale electromagnetic models to
calculate the brightness temperature of wind-driven ocean with foam
coverage have been presented. The one-scale emissivity model is the
local thermal contribution by small roughness of the foam-covered
ocean surface, while the two-scale model is the average of one-scale
emissivity over large-scale slope of the rough ocean surface with the
weight described by the slope distribution function. The overall
brightness temperature is contributed by three portions — plain ocean
surface, foam, and atmospheric layer. The interactions between the
different regions are described by boundary conditions. For the plain
ocean surface, the emissivity has been calculated using Kirchhoff’s law
by calculating the reflectivity of rough ocean surface. The coupling
to the wind speed is through the power spectrum of ocean surface by
which the ocean rough surface is described. The radiative transfer
theory (RT) is used to model the foam layer in which we assume
the scatterers are spherical thin-film water bubbles. The closed form
solution of the RT equations for the foam layer is obtained using the
iterative approach up to the first order. In the RT equations for the
atmospheric layer, the scattering due to the water vapor and other
gases in the air is ignored, hence a closed form of the RT solution is
obtained. The simulation results, both from one-scale and two-scale
models, are compared with the WINDRAD experimental data with
good agreements. The results show that both the one-scale and two-
scale models agree well with the WINDRAD data. However the one-
scale model is much faster in computation than the two-scale model,
since few integrals are involved in the one-scale model.

It has to be pointed out that, although the foam model with water
bubbles is more realistic than water particles, more studies need to be
conducted to model the foam layer more accurately. For example,
it is suggested the multiple scattering among water bubbles to be
considered by using the dense medium radiative transfer theory [15],
and the top foam surface to be rough instead of flat as considered in
this paper for simplification.
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Figure A1. EM scattering by a bubble in (x′, y′, z′) coordinates.

APPENDIX A. PHASE MATRIX FOR WATER BUBBLES

Consider an electromagnetic plane wave propagating in +ẑ′ direction
and incident upon a thin-film water bubble in (x′, y′, z′) coordinates
with inner radius R and film thickness d as shown in Fig. A1. Let the
wavenumber in the core and outside be k, the wavenumber in the film
be k1, and the polarization angle be β.

On y′z′ plane, the scattered field with scattering angles θ′ and
φ′ = 90◦ in radiation zone is given in a closed form as follows [27]:

Eφ′ =
ieikr

kr
S1 cosβ, (A1)

Eθ′ = − ie
ikr

kr
S2 sinβ, (A2)

where

S1 = iδ(m2 − 1)α2

[
jo(x)− m2 − 1

m2

j1(x)
x

]
, (A3)

S2 = iδ(m2 − 1)α2

{
jo(x) cos θ′

+
m2 − 1
m2

[
j1(x)
x

+
1 + cos θ′

2

(
j1(x)
x
− jo(x)

)]}
, (A4)

in which m = k1/k, x =
4π
λ
R sin(θ′/2), δ = 2πd/λ, α = 2πR/λ, jo(x)

and j1(x) are the zeroth and first order spherical Bessel’s functions,
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Figure A2. The transformation of coordinates.

respectively. The geometry of the wave scattering in (x′, y′, z′)
coordinates is general because of the symmetrical property of the
spherical water bubble.

In the (x, y, z) coordinate system, the incident wave is written as

Ei = êiEoe
ik̄i·r̄, (A5)

where êi = v̂i or ĥi, Eei = Evi or Ehi , and

k̄i = kk̂i = k(x̂ sin θi cosφi + ŷ sin θi sinφi + ẑ cos θi),

and the incident angles θi and φi are with respect to the (x, y, z)
coordinates as shown in Fig. A2. The polarization vectors are defined
as 


v̂i = ĥi × k̂i = x̂ cos θi cosφi + ŷ cos θi sinφi − ẑ sin θi,

ĥi =
ẑ × k̂i∣∣∣ẑ × k̂i

∣∣∣ = −x̂ sinφi + ŷ cosφi.
(A6)

In the (x, y, z) coordinate system, we set up the coordinates (x′, y′, z′)
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so that 


x̂′ =
k̂i × k̂s∣∣∣k̂i × k̂s

∣∣∣ ,

ŷ′ =
k̂i × k̂i × k̂s∣∣∣k̂i × k̂i × k̂s

∣∣∣ =
k̂i

(
k̂i · k̂s

)
− k̂s∣∣∣k̂i

(
k̂i · k̂s

)
− k̂s

∣∣∣ ,
ẑ′ = k̂i,

(A7)

where
k̂s = x̂ sin θs cosφs + ŷ sin θs sinφs + ẑ cos θs

is the wave vector of the scattered field. Therefore the transformation
relation of the two coordinate systems is



x̂′ = x̂a11 + ŷa12 + ẑa13

ŷ′ = x̂a21 + ŷa22 + ẑa23

ẑ′ = x̂a31 + ŷa32 + ẑa33

(A8)

or 

x̂′

ŷ′

ẑ′




= A



x̂

ŷ

ẑ




(A9)

where 


a11 =

∣∣∣∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣∣∣∣
a12 =

∣∣∣∣∣∣∣∣
a31 a33

a21 a23

∣∣∣∣∣∣∣∣
a13 =

∣∣∣∣∣∣∣∣
a21 a31

a22 a32

∣∣∣∣∣∣∣∣

(A10)
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

a21 =
A21√

A2
21 +A2

22 +A2
23

a22 =
A22√

A2
21 +A2

22 +A2
23

a23 =
A23√

A2
21 +A2

22 +A2
23

(A11)




a31 = sin θi cosφi

a32 = sin θi sinφi

a33 = cos θi

(A12)




A = sin θi sin θs cos(φi − φs) + cos θi cos θs

A21 = A sin θi cosφi − sin θs cosφs

A22 = A sin θi sinφi − sin θs sinφs

A23 = A cos θi − cos θs

(A13)

By using the identity A
−1

= A
T
, the transformation of a vector from

one coordinate system to another can the expressed as

E
′ = E′T



x̂′

ŷ′

ẑ′




= E′TA



x̂

ŷ

ẑ



≡ E. (A14)

Thus E = A
T
E′ and E′ = AE.

By writing the incident field in (x, y, z) coordinates as

Ei = êiEoe
ik̄i·r̄ = Eo[(êi · x̂)x̂+ (êi · ŷ)ŷ + (êi · ẑ)ẑ]eik̄i·r̄, (A15)
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thus the transformation of the incident field is

E
′
i =



Ei

x′

Ei
y′

Ei
z′




= A




(êi · x̂)

(êi · ŷ)

(êi · ẑ)



Eo =



a11 a12 a13

a21 a22 a23

a31 a32 a33







(êi · x̂)

(êi · ŷ)

(êi · ẑ)



Eo,

(A16)
we can calculate the polarization angle β and scattering angle θ′ in the
(x′, y′, z′) coordinates as follows:

β = cos−1 E
′
i · ŷ′∣∣∣E′i∣∣∣ = cos−1 b2

C
, (A17)

θ′ = cos−1 k̂s · ẑ′ = cos−1[sin θi sin θs cos(φs − φi) + cos θi cos θs],
(A18)

where

b1 = a11(êi · x̂) + a12(êi · ŷ) + a13(êi · ẑ), (A19)
b2 = a21(êi · x̂) + a22(êi · ŷ) + a23(êi · ẑ), (A20)
b3 = a31(êi · x̂) + a32(êi · ŷ) + a33(êi · ẑ), (A21)

C =
√
b21 + b22 + b23. (A22)

In the (x′, y′, z′) coordinate system, we write the scattered field as

E
′
s = Eθ′ θ̂

′ + Eφ′ φ̂
′ = Eθ′(ŷ′ cos θ′ − ẑ′ sin θ′)− Eφ′ x̂

′

=




−Eφ′

Eθ′ cos θ′

−Eθ′ sin θ′



, (A23)

where, by dropping out the factor
eikr

r
for scattering coefficient calcu-

lation,

Eφ′ =
i

k
S1 cosβ, (A24)

Eθ′ = − i

k
S2 sinβ. (A25)
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The scattered field in the (x, y, z) coordinate system is thus

Es = A
T
E
′
s =



a11 a21 a31

a12 a22 a32

a13 a23 a33







−Eφ′

Eθ′ cos θ′

−Eθ′ sin θ′




=



−Eφ′a11 + Eθ′ cos θ′a21 − Eθ′ sin θ′a31

−Eφ′a12 + Eθ′ cos θ′a22 − Eθ′ sin θ′a32

−Eφ′a13 + Eθ′ cos θ′a23 − Eθ′ sin θ′a33



. (A26)

By writing the polarization vectors of the scattered field as


v̂s = ĥs × k̂s = x̂ cos θs cosφs + ŷ cos θs sinφs − ẑ sin θs,

ĥs =
ẑ × k̂s∣∣∣ẑ × k̂s

∣∣∣ = −x̂ sinφs + ŷ cosφs,
(A27)

the v and h-components are obtained as follows:

Es
v = Es · v̂s =

(
−Eφ′a11 + Eθ′ cos θ′a21 − Eθ′ sin θ′a31

)
cos θs cosφs

+
(
−Eφ′a12 + Eθ′ cos θ′a22 − Eθ′ sin θ′a32

)
cos θs sinφs

+
(
Eφ′a13 − Eθ′ cos θ′a23 + Eθ′ sin θ′a33

)
sin θs, (A28)

Es
h = Es · ĥs =

(
Eφ′a11 − Eθ′ cos θ′a21 + Eθ′ sin θ′a31

)
sinφs

−
(
Eφ′a12 − Eθ′ cos θ′a22 + Eθ′ sin θ′a32

)
cosφs. (A29)

Therefore the scattering coefficients are fvv = Es
v , fhv = Es

h for êi = v̂i

and Eo = 1; fvh = Es
v , fhh = Es

h for êi = ĥi and Eo = 1. Define the
matrix

L(θs, φs; θi, φi) =


|fvv|2 |fvh|2 Re(fvvf
∗
vh) −Im(fvvf

∗
vh)

|fhv|2 |fhh|2 Re(fhvf
∗
hh) −Im(fhvf

∗
hh)

2Re(fvvf
∗
hv) 2Re(fvhf

∗
hh) Re(fvvf

∗
hh + fvhf

∗
hv) −Im(fvvf

∗
hh − fvhf∗

hv)

2Im(fvvf
∗
hv) 2Im(fvhf

∗
hh) Im(fvvf

∗
hh + fvhf

∗
hv) Re(fvvf

∗
hh − fvhf∗

hv)


 ,

(A30)
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the phase matrix can be calculated as

P (θs, φs; θi, φi) = no L(θs, φs; θi, φi), (A31)

where no is the number of bubbles per unit volume.
The extinction coefficient is derived as following [15, page 147]:

κe = no
4π
k

Im{fvv(θi, φi; θi, φi)} = −no
4π
k2

Im{iS1}

= no
4π
k2

Im

{
δ(m2 − 1)α2

[
jo(x)− m2 − 1

m2

j1(x)
x

]
x→0

}

= no
4π
k2

δα2Im

{
(m2 − 1)

(
2m2 + 1

3m2

)}
. (A32)

The absorption coefficient is

κs = no

∫
dΩs

[
|fvv(θs, φs; θi, φi)|2 + |fhv(θs, φs; θi, φi)|2

]
, (A33)

which can be evaluated numerically. Due to the symmetry property of
the bubble, κs is independent on the angles θi and φi. The absorption
coefficient is calculated as

κa = κe − κs. (A34)

APPENDIX B. PARAMETERS IN THE
MILLIMETER-WAVE PROPAGATION MODEL

The parameters used in the MPM [24] are as follows:

Barometric pressure
P = p+ e, (B1)

where p is dry air pressure and e is partial water vapor pressure. The
unit of the barometric pressure is kPa.

Temperature
T = 300/t, (B2)

where the unit of the temperature is Kelvin (K), and t is the inverse
temperature parameter. The typical temperature profile is given in [23]
and plotted in Fig. 4.

Relative humidity

RH =
e

es
× 100 = 41.51

e

t5
× 10

9.834
t10 , (B3)
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where es is the saturation pressure over liquid phase.

Dry air and vapor densities

u = 11.612pt,
v = 7.217et, (B4)

where the unit of the densities is g/m3.

Complex refractivity

N = N0 +N ′(f) + iN ′′(f), (B5)

where N0, N ′(f) and N ′′(f) are real and called the frequency-
independent term, refractive dispersion and absorption, respectively.
f is frequency in gigahertz (GHz).

Frequency-independent term

N0 = (2.588p+ 2.39e)t+Nv, (B6)

where Nv = 41.6et2 is the contribution from the rotational spectrum
of water vapor.

Dispersion term

N ′(f) =
na∑
i=1

(SaF
′
a)i +N ′p +

nb∑
i=1

(SbF
′
b)i +N ′e +N ′w, (B7)

Absorption term

N ′′(f) =
na∑
i=1

(SaF
′′
a )i +N ′′p +

nb∑
i=1

(SbF
′′
b )i +N ′′e +N ′′w, (B8)

where Sa = a1pt
3ea2(1−t) and Sb = b1et

3.5eb2(1−t) are the line strength
in kilohertz for oxygen and water, respectively. F ′a and F ′b are the real
parts of a line shape function in GHz−1 which can be written explicitly
as

F ′α(f) =
Zα − f

Xα
+
Zα + f

Yα
− 2
υαo

+ δα

(
1
Xα
− 1
Yα

)
γαf

υαo
, (B9)

F ′′α(f) = −δα

[
υαo − f

Xα
+
υαo + f

Yα

]
f

υαo
+

(
1
Xα

+
1
Yα

)
γαf

υαo
, (B10)
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where α = a, b, and

Xα = (υαo − f)2 + γ2
α,

Yα = (υαo + f)2 + γ2
α,

Zα = (υ2
αo + γ2

α)/υαo,

γa = a3

(
pt0.8−a4 + 1.1et

)
,

γb = b3
(
pt0.8 + 4.8et

)
,

δa = a5pt
a6 ,

δb = 0.

In the above expressions, υoa and ai (i = 1, 2, . . . , 6) are oxygen line
parameters, υob, and bi (i = 1, 2, 3) are water vapor line parameters.

Dry air continuum

N ′p(f) = a0

{[
1 + (f/γ0)2

]−1
− 1

}
pt2, (B11)

N ′′p (f) =
{

2a0

[
γ0

(
1 + (f/γ0)2

) (
1 + (f/60)2

)]−1
+ appt

2.5
}
fpt2,

(B12)

where a0 = 3.07 × 10−4, ap = 1.40(1 − 1.2f1.510−5)10−10, and
γ0 = 5.6× 10−3(p+ 1.1e)t0.8 GHz.

Water vapor continuum

N ′e(f) = b0f
2.05et2.4, (B13)

N ′′e (f) =
(
bfp+ beet

3
)
fet2.5, (B14)

where b0 = 6.47× 10−6, bf = 1.40× 10−6 and be = 5.41× 10−5.

Hydrosol continuum

N ′w(f) = 2.4× 10−3wε′, (B15)
N ′′w(f) = 4.50w/ε′′(1 + η2), (B16)

where η = (2 + ε′)/ε′′ and τ = 4.17× 10−5te(7.13t) ns. ε′ and ε′′ are the
real and imaginary parts of the dielectric constant of water. They can
be calculated using the following empirical formulas

ε′ = 4.9 +
185− 113/t
1 + (fτ)2

, (B17)

ε′′ =
(185− 113/t)fτ

1 + (fτ)2
. (B18)
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