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Abstract—A study of the diffraction and scattering of a transverse
electric X-wave by conducting bodies is presented based on the time-
domain, uniform theory of diffraction method and the pulsed plane
wave representation of an X-wave. The latter allows the calculation
of the diffraction and scattering of each pulsed plane wave component
of the incident X-wave at the observation point. The superposition of
the individual diffracted and scattered pulsed plane wave components
yields the diffracted and scattered field due to an incident X-wave.
First, the scattering from a perfectly conducting infinite wedge is
studied. Then, the case of a circular conducting disk is considered
as an example of a finite scatterer. Numerical results illustrating the
effectiveness of the approach, as well as an estimate of the limits of its
applicability, are provided.

† On leave from the Department of Engineering Physics and Mathematics, Faculty of
Engineering, Cairo University, Giza 12211, Egypt.



168 Attiya et al.

1 Introduction

2 Formulation

3 X-Wave Scattering by a Perfectly Conducting Wedge
3.1 The Direct Field
3.2 The Reflected Field
3.3 The Diffracted Field

4 Numerical Examples
4.1 Scattering of a TE X-wave Incident on a Perfectly

Conducting Wedge
4.2 Scattering of a TE X-wave Incident on a Perfectly

Conducting Circular Disk

5 Concluding Remarks

Appendix A.

References

1. INTRODUCTION

Localized waves (LWs) are ultra-wideband, slowly dispersing fields that
have extended focused depths [1–4]. Such properties make them worthy
candidates for applications involving detection and identifications of
buried objects. In previous work, the transmission of one type of LW,
the X-wave, through a planar interface separating two different media
has been investigated [5–7]. This has been undertaken for acoustic as
well as electromagnetic waves. Furthermore, the case of a dispersive
lossy half space has been studied using a new technique based on
Prony’s method [8, 9]. These investigations have been facilitated by
a useful representation of the X-wave solution as a superposition over
pulsed plane waves the propagation vectors of which form a conic
surface. This pulsed plane wave representation has been formally
introduced in Refs. [10] and [11] and has been applied to the reflection
and transmission of X-waves at a planar interface separating two
different media [5, 6]. Earlier attempts to investigate the planar
interface problem include the graphical approach by Donnelly et al.
[12] applied to the transmission and reflection of 2-D Focus Wave
Modes (FWMs). In their work, Donnelly et al. criticize conclusions
reached by Hillion [13] who argued that FWMs are transmitted across a
discontinuity surface only if they are normally incident on that surface,
while for oblique incidence only reflection takes place.
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To study the application of LWs to the detection and identification
of buried objects, one needs to carry out a systematic investigation of
the scattering of acoustic and electromagnetic LW pulses from various
objects. Comprehensive investigations of the scattering of LW pulses
are very few. One such study deals with the scattering of acoustic
Modified Power Spectrum (MPS) pulses from spheres [14]. In that
study, Power et al. used a spectral approach to demonstrate that
backscattered acoustic MPS pulses could be used to identify the sizes
as well as the material properties of the scattering spheres. A few
other scattering problems of LW pulses have been considered. These
include the diffraction of a 2-D FWM by a perfectly conducting half
plane [15, 16]. Hillion showed that the reflected FWM pulses preserved
their shape in the illuminated region, i.e., the reflected pulses were
basically FWMs. However, outside that region, Hillion pointed out
that it becomes very difficult to analyze the behavior of the diffracted
field.

Numerical approaches used for solving the time domain differential
Maxwell’s equations are usually based on the discretization of space
and the stepping in time. Thus, these approaches are mainly limited by
the computational resources. The size of the spatial grid is limited by
the minimum wavelength of the field and the features of the scattering
structure. The time step that assures stability of the solution is limited
by the minimum spatial discretization. Large computational resources
are required to simulate three-dimensional problems involving the
scattering of pulsed fields using the finite-difference, time-domain
(FDTD) technique. This view applies to conventional situations
involving either pulsed plane or spherical waves. For the case of
localized waves, the problem becomes more severe. To make full use
of the advantages of localization, the lateral waist of the localization
region should be comparable to or smaller than the dimension of the
scattering structure. Furthermore, the scanning region around the
scattering structure should also be of the same order. What makes the
problem more complicated is the indirect calculation of the scattered
fields in the far-field region, which is based on calculating the scattered
field due to each frequency component of the pulse spectrum and
then inverting these spectral components to the time domain via a
discrete Fourier transform. For an electrically large problem, this
scheme requires a huge amount of computational time, in addition to
significant storage capabilities. Such requirements pose restrictions on
studying the problem of scattering and diffraction of electromagnetic
X-wave using one of the marching-in-time techniques dedicated to
solving Maxwell’s equations.

In this work, we investigate the effectiveness of using high
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frequency techniques in studying the scattering and diffraction of
transverse electric (TE) X-waves from conducting bodies, such as
wedges and disks. Our approach is based on the pulsed plane wave
representation. In earlier publications, we have shown that X-waves
can be represented as an azimuthal angular superposition over pulsed
plane waves [5, 6]. Such pulsed plane wave components are propagating
along wave vectors restricted to a circular conic surface characterized
by the apex angle θ0 [17]. The advantage of the pulsed plane wave
representation is that it allows the direct application of known results
for the diffraction of individual pulsed plane waves. This is done by
calculating the diffracted field for each pulsed plane wave component
and then superimposing them by integrating over the azimuthal angle.
In the present investigation, we make use of the fact that the spectra of
the higher order TE X-waves are concentrated at higher frequencies.
For this reason, the scattering and diffraction of the first order X-wave
is studied in our work using the time domain versions of high frequency
techniques. In particular, the uniform theory of diffraction [18, 19]
is used for determining the diffracted field of an X-wave incident on
an infinite conducting wedge. In addition, results are presented for
the diffraction of a first-order X-wave by a circular metallic disk.
It is demonstrated that the main difficulty with our approach arises
from the infinite field amplitudes appearing at caustics, and that the
diffracted field cannot be calculated outside Keller’s diffraction cone
[20, 21].

The analysis used to study the scattering of a TE X-wave from a
perfectly conducting infinite wedge is presented in Sec. 2. Numerical
results illustrating the effectiveness of our method are provided in Sec 3.
The method introduced in Sec. 2 is then extended to the case of a finite
circular disk, and numerical examples illustrating the behavior of the
scattered X-wave are presented. Although the method advocated in
this paper seems to be quite effective in the near-field range, it is
expected that the evaluation of the fields at farther distances from
the scattering disk may be inaccurate. An estimate of the limits of
applicability of our method is deduced in Sec. 3. Finally, discussions
and concluding remarks are provided in Sec. 4.

2. FORMULATION

The geometry of a perfectly conducting wedge is shown in Fig. 1. The
edge is located along the y-axis. The two faces of the wedge are at
angles α0 and −α1 from the x-axis on the x-z plane. The wedge
is located in the positive x half space. The normal and tangential
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Figure 1. Geometry of the perfectly conducting wedge.

directions to the faces and the direction of the edge are given by

�n0 = −�ax sinα0 + �az cosα0, (1a)
�nn = −�ax sinα1 − �az cosα1, (1b)
�t0 = �ax cosα0 + �az sinα0, (1c)
�tn = �ax cosα1 − �az sinα1, (1d)

and

�e = �ay. (1e)

The total field at any observation point consists generally of three
parts, as shown in Fig. 1; namely, the direct field, the reflected field and
the diffracted field. The incident field is chosen to be the first-order
X-wave. It has been selected because most its spectral components
are in the higher frequency range. This allows one to use the Uniform
Theory of Diffraction (UTD) method for the asymptotic evaluation of
the diffracted field. The incident TE field component of the first order
X-wave can be expressed as

Eφ(ρ, z, t) = Re


Z0 sin θ0

4π2c2

2π∫
0

dφinc�aφ · �ei(φinc)
∞∫
0

dωω3
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e−ωa0/cejω((t−t0)−(�R−�R0)·�si(φinc)/c)
)
, (2a)

or

Eφ(ρ, z, t) = Re

(
6Z0 sin θ0

4π2c2

2π∫
0

dφinc

cos(φinc − φ0)[
(a0/c)− j

(
(t− t0)−(�R− �R0) · �si(φinc)/c

)]4

)
,

(2b)

where Z0 denotes the intrinsic impedance of free space; furthermore,

ρ =
√

(x− x0)
2 + (y − y0)

2, �ρ0 = x0�ax + y0�ay and φ0 = tan−1((y −
y0)/(x − x0)). The vectors �R = x�ax + y�ay + z�az and �R0 = x0�ax +
y0�ay + z0�az correspond to the observation point and a reference point
on the wavefront of the incident pulsed plane wave component at the
initial time t = t0, respectively.

The azimuthal superposition given in Eq. (2b) yields the following
closed-form expression for the electric field of the incident pulse

Eφ(ρ, z, t)

=
Z0 sin2 θ0

2πc3
Re

 3jρ(
(ρ sin θ0/c)

2 + ((a0/c)− j((t− t0) + (z − z0) cos θ0/c))
2
)5/2

− 15jρ((a0/c)− j((t− t0) + (z − z0) cos θ0/c))
2(

(ρ sin θ0/c)
2+ ((a0/c)− j((t− t0) + (z − z0) cos θ0/c))

2
)7/2


 .

(2c)

The above closed form expression represents a pulse moving in the
negative z-direction and is polarized in the φ-direction. In Eq. (2a),
the polarization vector �ei(φinc) and the propagation direction vector
�si(φinc) of each azimuthal component have been chosen to be equal to

�ei(φinc) = − sinφinc�ax + cosφinc�ay, (3a)
�si(φinc) = − cosφinc sin θ0�ax − sinφinc sin θ0�ay − cos θ0�az, (3b)

�aφ = − sinφ0�ax + cosφ0�ay. (3c)
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It should be noted that the incident X-wave field given in Eq. (2a) is
constructed as an azimuthal angular superposition over pulsed plane
waves having the following form:

�Einc(�R, t;φinc)

=
1
π

Re


 ∞∫

0

dωE0(ω)�ei(φinc) exp
(
jω

{
(t− t0)− (�R− �R0) · �si/c

})
 .

(4)

The spectral amplitude of each azimuthally dependent pulsed
component has the form E0(ω) ∝ ω3 exp(−ωa0/c). This spectral
dependence has the advantage of allowing the derivation of closed
form TD-UTD expressions for the diffracted pulsed wave components
[cf. Eq. (A2)].

3. X-WAVE SCATTERING BY A PERFECTLY
CONDUCTING WEDGE

A well-established technique for solving the problem of diffraction from
a perfectly conducting wedge is the UTD. The aim of this section is
to use the UTD to study the scattering of the first-order TE X-wave
from a perfectly conducting wedge. As indicated earlier, the X-wave is
a superposition of pulsed plane waves propagating at a tilted angle θ0

with respect to the direction of propagation of the peak of the pulse.
The results of the UTD method derived for each pulsed plane wave
component is superimposed to yield the scattered field for the first
order X-wave.

3.1. The Direct Field

If the observation point (x, y, z) and the reference point (x0, y0, z0)
of an incident pulsed plane wave component lie on the same side of
the plane z = 0, the corresponding direct field component is given by
Eq. (4). However, if they lie on two different sides of the plane z = 0,
the intersection point xt through this plane for each ray of the incident
pulsed plane waves is given by

xt = x0 −
six
siz

z0. (5)

If the transmission point lies on the positive x-axis, the observation
point lies in the shadow region. Consequently, the directly transmitted
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part of the total field vanishes. The above conditions can be formulated
in a systematic form as follows:

�Edir(�R, t;φinc) = [U(−xt)U(−zz0) + U(zz0)] �Einc(�R, t;φinc). (6)

Here, U(x) is the unit step function.
Applying the result expressed in Eq. (6) to the azimuthal

superposition, given in (2b), the directly transmitted part of the X-
wave is given by

�Eφdir(�R, t) = Re


6Z0 sin θ0

4π2c2

2π∫
0

dφinc

cos(φinc − φ0) [U(−xt(φinc))U(−zz0) + U(zz0)][
(a0/c)− j

(
(t− t0)− (�R− �R0) · �si(φinc)/c

)]4



(7)

In this case, the transmission point xt is a function of φinc and depends
on the propagation direction of the incident ray as given by Eq. (5).

3.2. The Reflected Field

The second part of the total field is the reflected part. The reflection
may occur due to the face 0 or face n. Reflection occurs only if the
angle between the direction of the incident ray and the normal direction
to the face of the wedge is greater than π/2, i.e.,

�nv · �si(φinc) < 0, (8)

where �nv is either �n0 or �nn. The location of the reflection point is
determined by the reflection propagation direction and the location of
the observation point. The direction of the reflected ray is given by
[19]

�srv(φinc) = �si(φinc)− 2 (�nv · �si(φinc))�nv. (9)

The locations of the reflection points on the two faces, in terms of
the location of the observation point (x, y, z) and the direction of the
reflected ray, are given by

(xref 0, yref 0, zref 0)

=
(

srz 0x− srx 0z

srz 0 − srx 0 tanα0
, y − sry 0

srx 0

(
x− srz 0x− srx 0z

srz 0 − srx 0 tanα0

)
,

srz 0x− srx 0z

srz 0 − srx 0 tanα0
tanα0

)
(10a)
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(xrefn, yrefn, zrefn)

=
(

srznx− srxnz

srzn − srxn tanα1
, y − sryn

srxn

(
x− srznx− srxnz

srzn + srxn tanα1

)
,

−(srznx− srxnz)
srzn + srxn tanα1

tanα1

)
(10b)

For the configuration shown in Fig. 1, a sufficient condition ensuring
that a reflection point exists is that xrefv > 0.

The polarization of the incident field should be decomposed
into TE and TM components with respect to the normal direction
on the surface. Such polarization directions are determined by the
propagation direction of the incident field and the normal direction at
the reflection point; specifically [19],

�aiTMv(φinc) =
�si(φinc)× (�nv × �si(φinc))
|�si(φinc)× (�nv × �si(φinc))|

, (11a)

�aiTEv(φinc) = �si(φinc)× �aiTMv(φinc) = − (�nv × �si(φinc))
|(�nv × �si(φinc))|

. (11b)

Each polarization component is reflected by the corresponding
reflection coefficient evaluated in the appropriate reflection direction.
The unit vectors for the polarization directions of the reflected TE and
TM components are given by [19]

�arTMv(φinc) =
�srv(φinc)× (�nv × �srv(φinc))
|�srv(φinc)× (�nv × �srv(φinc))|

, (12a)

�arTEv(φinc) = �srv(φinc)× �arTMv(φinc) = − (�nv × �srv(φinc))
|(�nv × �srv(φinc))|

.

(12b)

Combining the above conditions and noting that none of the above
factors is frequency dependent, the reflected X-wave reduces to the
azimuthal superposition

�Eref (�R, t)

= Re


6Z0 sin θ0

4π2c2

∑
v=0,n

2π∫
0

d(φinc)
(
�ei(φinc)·

[
�aiTMv(φinc)
�aiTEv(φinc)

])T

×
([

ΓTMv 0
0 ΓTEv

] [
�arTMv(φinc)
�arTEv(φinc)

])
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× U(xrefv(φinc))U(−nv · �si(φinc))
 (a0/c)− j

(
(t− t0)−

((
�R− �Rrefv(φinc)

)
·�srv(φinc) +

(
�Rrefν(φinc)− �R0

)
· �si(φinc)

)
/c

)



4



,

(13)

where ΓTMv = 1 and ΓTEv = −1. The TE and the TM polarization
vectors of the incident and the reflected fields, the direction of the
reflected rays and the location of the reflection point are all functions
of φinc. These quantities can be obtained directly as functions of the
propagation direction using Eqs. (8) to (12). One should also note
that the two sides of the wedge are planar and the incident ray is a
plane wave; as a consequence, the spreading factor of the reflected rays
equals unity.

3.3. The Diffracted Field

The remaining part of the total field at the observation point is the
diffracted field. Fig. 2 shows a schematic diagram for the diffraction
due to a wedge. For an incident plane wave component, the diffraction
field at a certain observation point originates from a point on the
edge of the wedge satisfying the Keller’s cone condition. Specifically,
the incident and diffracted rays make equal angles with the edge.
Since the diffraction point lies on the edge, two of its coordinates are
predetermined; namely, xd = 0 and zd = 0. The third coordinate of
the diffraction point can be obtained in terms of the observation point
and Keller’s cone angle β0 [19]; it is given explicitly as

yd = y − cotβ0

√
(x− xd)

2 + (z − zd)
2 = y − cotβ0

√
x2 + z2, (14a)

The cosine of Keller’s cone angle is determined by the scalar product
of the unit vectors representing the direction of the edge �e and the
direction �si(φinc) of the incident ray; one has, then,

β0 = cos−1(�si(φinc) · �e). (14b)

The incident electric field is decomposed into E (soft) and M (hard)
polarizations. The E and M components are the electric field
components lying on the plane of incidence and on the plane normal to
the plane of incidence, respectively, as shown in Fig. 2. The plane of
incidence here is determined by the incident ray and the edge direction.
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Figure 2. The diffraction due to a wedge. (a) Keller diffraction cone,
(b) the polarization directions used in the diffraction problem.

The E and M polarization directions are given by

�aiM (φinc) =
�e× �si(φinc)
|�e× �si(φinc)|

, (15a)

�aiE(φinc) = �si(φinc)× �aiM (φinc). (15b)

Each component is diffracted, with a corresponding diffraction
coefficient, and is polarized in the appropriate diffraction direction.
The E and M polarization directions of the diffracted ray are similarly
determined from the direction of the diffracted ray and the direction
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of the edge, as illustrated in Fig. 2

�adM (φinc) =
−�e× �sd(φinc)
|�e× �sd(φinc)|

, (16a)

�adE(φinc) = �sd(φinc)× �adM (φinc). (16b)

The diffraction direction �sd entering into these expressions is given as

�sd(φinc) =

(
�R− �Rd(φinc)

)
|�R− �Rd(φinc)|

. (16c)

In the general case of a curved wedge illuminated by a curved
wavefront, the diffracted field decays with the distance from the
diffraction point in accordance to the spreading factor [18, 19]

A
(∣∣∣�R− �Rd(φinc)

∣∣∣)

=

√√√√ ρ1(φinc)∣∣∣�R− �Rd(φinc)
∣∣∣ (
ρ1(φinc) +

∣∣∣�R− �Rd(φinc)
∣∣∣) , (17a)

where the radius of curvature of the diffracted wavefront ρ1 can be
calculated from the relationship

1
ρ1(φinc)

=
1
ρi
− �ne · (�si(φinc)− �sd(φinc))

|ae| sin2 β0(φinc)
. (17b)

Here, ρi is the radius of curvature of the incident wavefront, ae is the
radius of curvature of the edge at the diffraction point and �ne is the
direction normal to the edge away from the center of curvature of the
edge at the diffraction point [18]. For the case of a plane wave, where
ρi = ∞, and a linear edge, for which ae = ∞, the radius of curvature
of the diffracted wavefront is also infinite, i.e., ρi =∞. Consequently,
the spreading factor reduces to

A
(∣∣∣�R− �Rd(φinc)

∣∣∣) =

√√√√ 1∣∣∣�R− �Rd(φinc)
∣∣∣ . (17c)

This is simply the spreading factor of cylindrical waves, i.e., the edge
acts as a line source.

Combining the analysis outlined in the above paragraphs, the
diffracted field of an incident first-order X-wave can be expressed as

�Ediff (�R, t) = Re



Z0 sin θ0

4πc2

2π∫
0

dφinc
1√∣∣∣�R− �Rd(φinc)

∣∣∣
j∂3

π∂t3
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∞∫
0

dω exp(−(ω/c)a0)×
(
�ei(φinc) ·

[
�aiM (φinc)
�aiE(φinc)

])T

×
[
DM (ω, φinc 0

0 DE(ω, φinc)

] [
�adM (φinc)
�adE(φinc)

]

× exp
(
jω

(
(t− t0)−

((
�Rd(φinc)− �R0

)
· �si(φinc)

+
(
�R− �Rd(φinc)

)
· �sd(φinc)

)
/c

))}
(18)

Within the framework of the uniform theory of diffraction, the
coefficients DE and DM can be written as [18, 19]

DE(ϕ,ϕ′, β0;ω, φinc) =

−1
2n
√

2π sinβ0

4∑
�=1

F
(
(ω/c)

∣∣∣�R− �Rd(φinc)
∣∣∣ a�(ϕ,ϕ′) sin2 β0

)
KE
� , (19a)

DM (ϕ,ϕ′, β0;ω, φinc) =

−1
2n
√

2π sinβ0

4∑
�=1

F
(
(ω/c)|�R− �Rd(φinc)|a�(ϕ,ϕ′) sin2 β0

)
KM
� , (19b)

where

KE,M
1 = cot

[
π + (ϕ− ϕ′)

2n

]
, (20a)

KE,M
2 = cot

[
π − (ϕ− ϕ′)

2n

]
, (20b)

KE,M
3 = ∓ cot

[
π + (ϕ + ϕ′)

2n

]
, (20c)

KE,M
4 = ∓ cot

[
π − (ϕ + ϕ′)

2n

]
, (20d)

and

n =
2π − (α0 + α1)

π
. (20e)

Here, nπ is the angle in free space complementing the wedge angle.
The case of n = 2 represents a semi-infinite half-plane and the case
n = 1 represents an infinite half-plane. The functions a�(ϕ,ϕ′) are
given by

a1(ϕ,ϕ′) = a+(ϕ− ϕ′), (21a)
a2(ϕ,ϕ′) = a−(ϕ− ϕ′), (21b)
a3(ϕ,ϕ′) = a+(ϕ + ϕ′), (21c)
a4(ϕ,ϕ′) = a−(ϕ + ϕ′), (21d)
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where

a±(X) = 2 cos2
(

2nπN± −X

2

)
. (21e)

N± is the integer value that nearly satisfies the condition

2nπN± −X ≈ ±π. (21f)

The transition function F ((ω/c)l) is given explicitly by [22]

F ((ω/c)l) = 2
√
jl exp(jωl/c)

∞∫
√

(ω/c)l

exp(−jτ2)dτ

=
√
πl exp(jωl/c)erfc

(√
jωl/c

)
, (22)

in terms of the complementary error function [cf. formula (7.1.1) in
Ref. 23]. The angles ϕ′ and ϕ in Eq. (21) are the inclinations of the
incident and the diffracted field directions in the �n0−�t0 plane measured
from the �t0 direction, as shown in Fig. 2. These angles are given by
[19]

ϕ′ = π−
{
π − cos−1(−�sti(φinc) · �t0)

}
sgn(−�sti(φinc) · �n0), (23a)

ϕ = π−
{
π − cos−1(�std(φinc) · �t0)

}
sgn(�std(φinc) · �n0), (23b)

where �sti and �std, the components of the incident and diffracted wave
vectors normal to the edge of the wedge, are equal to

�sti(φinc) =
�si(φinc)− (�si(φinc) · �e)�e
|�si(φinc)− (�si(φinc) · �e)�e|

, (24a)

�std(φinc) =
�sd(φinc)− (�sd(φinc) · �e)�e
|�sd(φinc)− (�sd(φinc) · �e)�e|

, (24b)

To determine the time domain diffracted field one has to evaluate
the inverse Fourier transform in Eq. (18). Unlike the reflection
coefficients, the diffraction coefficients are frequency dependent. For
this reason, the Fourier inversion cannot be carried out exactly in
general. For the case of the first-order X-wave, however, the incident
field spectrum multiplied by the diffraction coefficients results in
expressions whose inverse Fourier transform can be evaluated in a
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closed form. Specifically, the diffracted field is given by

�Ediff (�R, t)

=
Z0 sin θ0

4πc2
Re




2π∫
0

dφinc
1√∣∣∣�R− �Rd(φinc)

∣∣∣×
(
�ei(φinc)·

[
�aiM (φinc)
�aiE(φinc)

])T

×
[ −GM (t, φinc) 0

0 −GE(t, φinc)

] [
�adM (φinc)
�adE(φinc)

]}
(25a)

where

GTE(t, φinc, �R) =
−1

2n
√

2π sinβ0(φinc)

4∑
�=0

ζ�(t, φinc, �R)KTE
� (φinc),(25b)

GTM (t, φinc, �R) =
−1

2n
√

2π sinβ0(φinc)

4∑
�=0

ζ�(t, φinc, �R)KTM
� (φinc).(25c)

The quantity ζ �(t, φinc, �R) equals

ζ �(t, φinc, �R) = Re


 j∂3

π∂t3


 ∞∫

0

dωF
(
(ω/c)

∣∣∣�R− �Rd
∣∣∣ a �(ϕ,ϕ′) sin2 β0

)

× exp
(
− ω

(
(a0/c)− j

(
(t− t0)−

(
(�Rd − �R0) · �si

+ (�R− �Rd) · �sd
)
/c

))))}
(25d)

This quantity has been evaluated explicitly in the Appendix. The
substitution of Eqs. (A3) and (A4) into Eq. (25) yields an expression
for the diffracted field that can be easily evaluated numerically by
integrating over φinc.

The total field resulting from the diffraction of the X-wave by
the perfectly conducting wedge can now be obtained by combining the
direct, the reflected and the diffracted fields, viz.,

�E(�R, t) = �Edir(�R, t) + �Eref (�R, t) + �Ediff (�R, t). (26)

4. NUMERICAL EXAMPLES

The procedure described above is illustrated numerically in this
section, first for the case of a conducting wedge and then for a
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conducting disk. The numerical examples are chosen to demonstrate
the effectiveness of the azimuthal angular superposition over pulsed
plane waves in the evaluation of the total scattered field due to an
incident TE X-wave field.

4.1. Scattering of a TE X-wave Incident on a Perfectly
Conducting Wedge

In this subsection, we study the diffraction of an incident first-order
TE X-wave from a perfectly conducting wedge. The X-wave is
characterized by the parameters a0 = 10 cm and θ0 = 10◦. At
t = 0, the center of the localized X-wave is initially located at
(y0 = 0, z0 = 110 cm) and x0 varies for the different cases under
consideration. Fig. 3 shows the scattered field Eφ in the xz plane
due to a TE X-wave incident on a perfectly conducting wedge. The
incident X-wave is traveling in the negative z direction and the wedge
makes angles α0 = 5◦ and α1 = 20◦ with the xy plane. The different
plots, evaluated at t = 6 ns correspond to an incident X-wave centered
initially (t = 0) at x0 = 100, 50, 0, −50, and −100 cm. The plots of
the scattered field are based on a sixteen-level gray-scale normalized
to the peak value of the incident X-wave. It should be noted that
the main localized part is nearly completely reflected in the case that
x0 = 100 cm. Also, little distortion is visible near the edge due to the
diffracted part of the total field. Two weak arms are transmitted in the
left-most part of the figure. The peaks of the diffracted field appear as
two light circular wavefronts centered on the edge of the wedge. The
diffracted field allows the continuity of the field at the transmission and
the shadow boundaries. In Fig. 3b, the initial localization point at t = 0
is moved to the point x0 = 50 cm. In this case, the localization region
becomes closer to the edge and the diffracted field is more pronounced.
Furthermore, the two left arms of the reflected X-wave have changed
slightly. In Fig. 3c, the center of the localization region at t = 0 is
moved to x0 = 0 cm, which is just above the edge. In this case, the
X-wave splits into two equal transmitted and reflected parts. The
diffracted field is very weak because the null of the field of the TE
X-wave, lying at the center of the localization region, passes through
the edge. Figs. 3d, 3e display the total field when x0 = −50 cm and
x0 = −100 cm, respectively. They show a behavior similar to that
illustrated in Figs. 3a and 3b, after interchanging the transmitted and
reflected parts of the field.

One should note that the reflected X-wave is rotated by an angle
of 10◦, so that one of the reflected X-wave arms becomes horizontal
and the other is reflected at an angle 20◦. This is the case because
the angle between the two arms of the incident X-wave is equal to
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Figure 3. Total Eφ field at t = 6 ns due to an X-wave normally
incident on a perfectly conducting wedge having α0 = 5◦ and α1 = 20◦
for different locations of the center of the X-wave at t = 0. The
parameters of the incident X-wave are a0 = 10 cm and θ0 = 10◦.

10◦. The transmitted X-wave is not affected by the angular tilts, α0

and α1, in the surface of the wedge and continues to propagate in
the negative z direction. One should also observe that the peaks of
the displayed xz section of the diffracted field form two concentric
circles. The difference in the time of arrival of these two peaks is a
function of the distance x0 from the edge of the wedge and the angle
θ0 characterizing the incident X-wave. This behavior could allow the
use of X-waves for precise determination of the position of the edge of a
conducting object. A straightforward scheme is to vary the transverse
position of a sequence of incident X-waves while monitoring the arrival
time of the peaks of the diffracted fields. In this manner, the initial
transverse location of the X-wave yielding the least difference in the
measured times of arrival of the diffracted peaks indicates the position
of the edge.

4.2. Scattering of a TE X-wave Incident on a Perfectly
Conducting Circular Disk

In this subsection, the diffraction of a first-order TE X-wave from
a circular perfectly conducting disk is considered. Similarly to the
case of diffraction from the wedge, the X-wave is decomposed into
a superposition of oblique pulsed plane waves and the diffraction
from each pulsed plane wave is calculated. Subsequently, the total
diffracted wave is obtained as an azimuthal superposition of the
elementary diffracted waves associated with the various pulsed plane-
wave components. Since the edge of the disk is curved, the general
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Figure 4. Principal points of diffraction from a circular disk.

spreading factor given in Eq. (17) is used. Specifically [18, 19],

A
(∣∣∣�R− �Rd

∣∣∣) =
√√√√ ρ1∣∣∣�R− �Rd

∣∣∣(ρ1 +
∣∣∣�R− �Rd

∣∣∣) , (27a)

where ρ1 is given by

1
ρ1

=
1
ρi
− �ne · (�si(φinc)− �sd(φinc))

|ae| sin2 β0
. (27b)

Here, ρi is the radius of curvature of the incident wavefront, ae is the
radius of curvature of the edge at the diffraction point and �ne is the
unit normal vector to the edge at the diffraction point directed away
from the center of curvature, as shown in Fig. 4. For an incident plane
wave component and a circular edge, one obtains

ρ1 = −L sin2 β0/(�ne · (�si(φinc)− �sd(φinc))), (27c)

where L is the radius of the circular disk and φinc is the azimuthal angle
associated with each pulsed plane wave component of the incident X-
wave.

In the UTD, the diffraction point illuminating a certain
observation point should satisfy the Keller cone condition. Consider a
circular disk, centered at the origin, illuminated by a plane wave with
a propagation vector �si parallel to the x-z plane. In this case, the
main diffracted rays satisfying Keller’s diffraction cone lie on the x-z
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plane due to the diffraction from only the two edge points on the x-
axis as shown in Fig. 4 [24, 25]. The diffracted rays from other points
on the circumference of the edge do not satisfy Keller’s diffraction
cone on the x-z plane, except along the caustic line arising when the
denominator of the spreading factor of Eq. (27a) becomes zero, i.e.,
at ρ1 = −|�R − �Rd|. Otherwise, points not lying on the x-axis diffract
the field in other directions. At the caustic line, many diffracted rays
intersect causing high intensity of the field. For the case of a plane wave
normally incident on a circular disc, the caustic line coincides with the
axis of the disk [24]. Higher order diffraction occurs through multiple
diffractions and creeping waves along the surface of the disk [25–27].
However, such multiple diffractions have appreciable effect in situations
involving diffraction in the grazing plane of the disk, a situation outside
the scope of the present study. For the diffraction from the principal
diffraction points, the angle of incidence with respect to the edge β0 is
equal to 90◦. Consequently, ρ1 as a function of �si and �sd is given by

ρ1 = − L

�ne · (�si(φinc)− �sd(φinc))
. (28)

Thus, for each pulsed plane wave component, the caustic is located at
|�R− �Rd| = −ρ1 = L/(�ne · (�si(φinc)− �sd(φinc))).

Fig. 5 shows the φ component of the total field on the x-z plane
due to a TE X-wave normally incident on a circular disk of radius
L = 50 cm, with its center lying at the origin (x = 0, y = 0, z = 0).
The field is plotted at t = 6 ns. The initial localization point at t = 0
is y0 = 0 and z0 = 110 cm. The various plots show the diffracted field
due to an X-wave the center coordinate x0 of which is varied from 0
to 100 cm. The parameters of the incident X-wave are a0 = 10 cm and
θ0 = 10◦. The total scattered field for x0 = 0 is shown in Fig. 5a.
It is seen that the reflected field is a deformed image of the incident
X-wave. In particular, the front two arms of the reflected X-wave
are shorter than the rear ones. The reflected wave consists of a set of
obliquely traveling wavefronts of finite circular extensions determined
by the finite size of the circular disk. As these oblique wavefronts of
finite extensions move away from the disk, their intersection acquires
the asymmetric form of the reflected X-wave.

On the x-z plane, the reflected waves due to incidence at all angles
contribute to reflection, whereas the diffracted field is mainly due to
plane wave components incident at angles φinc = 0◦ and φinc = 180◦.
The remaining plane wave components of the normally incident X-
wave do not satisfy Keller’s cone condition on the x-z plane, except
along the caustic lines. This explains the weak contribution of the
diffracted part of the field compared to the total field. The transmitted
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Figure 5. The φ component of the total field on the x-z plane for a
normally incident TE X-wave on a perfectly conducting circular disk
of radius L = 50 cm at time t = 6 ns for different reference points at
t = 10 cm. The parameters of the incident X-wave are a0 = 10 cm and
θ0 = 10◦.
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z
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Figure 6. The φ component of the diffracted field corresponding
to Fig. 5a, normalized to the peak value of the incident X-wave and
multiplied by a factor of 80.

part of the field appears to be the complementary part of the reflected
field; when fitted together they form the incident X-wave. Fig. 5b
shows the total field when x0 = 50 cm at t = 6 ns. In this case, the
center of the localization region is just above the edge of the disk.
One should note that the localization region is not symmetrically split
into two equal reflected and transmitted parts as in the case of the
infinite wedge [cf. Fig. 3c]. This is due to the curvature of the edge
that causes a reduction of the diffracted part of the X-wave. Fig. 5c
shows the total field when x0 = 75 cm at t = 0. In this case, the
center of the localization region is situated out of the edge of the
disk. Thus, the arms of the reflected waves do not intersect and the
localization region is formed in the transmission region. In Fig. 5d,
the center of the localization region is located at x0 = 100 cm. Now,
most of the localization region passes undisturbed into the transmission
region. However, a slight deformation is observed in the front arm of
the transmitted X-wave that lies closer to the edge.

To acquire a better view of the caustics, we provide in Fig. 6
the diffracted field due to the edge of the disk, when the localization
point x0 = 0 cm. This case corresponds to the situation considered in
Fig. 5a. To improve the visibility of the plots of the diffracted field,
the amplitude is multiplied by a factor of eighty and normalized to the
peak value of the incident X-wave. The caustics here are not situated
on the axis of rotation of the disk because the incident pulsed plane
wave components of the X-wave are obliquely incident with respect to
the axis of rotation.

The behavior of the reflected and transmitted parts of the X-
wave as they move away from the scattering circular disk is illustrated
in Fig. 7. For parameters identical to those used for Fig. 5a, the total
field is plotted at t = 8 and 10 ns. These two cases correspond to
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Figure 7. Total Eφ field of a normally incident TE X-wave on a
perfectly conducting circular disk corresponding to Fig. 5a at later
times.

the time instants occurring just before the two arms of the scattered
X-wave separate from each other. This time is estimated as td =
(z0 + zd)/(c/ cos θ0), where zd = L/ tan θ0 is the diffraction length
of an X-wave associated with a radiator of radius L [3, 28]. For
the parameters used in our numerical example, td = 12.92 ns. A
comparison of Figs. 7a and 7b with Fig. 5a, shows that the two arms
constituting the localization region of the reflected field separate from
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Figure 8. Total Eφ field of a normally incident TE X-wave on a
perfectly conducting circular disk of radius L = 15 cm at different
observation times. The reference point at t = 0 is (x0 = 0, y0 = 0, z0 =
110 cm). The parameters of the incident X-wave are a0 = 10 cm and
θ0 = 10◦.

each other as the reflected field moves away from the disk. This
separation shortens the intense front arms with respect to the rear
ones. As the reflected field moves away from the disk, the shortening
increases as shown in Fig. 7b. At farther distances from the disk, the
two arms of the reflected X-wave will not intersect with each other.
Thus, the localization region starts to disappear from the reflected
field. On the other hand, as the transmitted field moves away from the
scattering disk, the arms of the transmitted X-wave start to get closer
together forming a localization region below the disk. The reason for
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this behavior is that the localization in the transmission region far from
the disk is generated by the farthest parts of the arms of the incident
X-wave that are essentially unaffected by the presence of the disk.

The separation of the reflected X-wave arms can become clearer
by considering a scattering disk of a smaller radius, as shown in Fig. 8.
In this case, the radius of the disk is decreased to 15 cm and the
field is plotted at times t = 6 and 8 ns. The diffraction length of
the scattered X-wave is approximately equal to 85 cm. The total path
length from the initial localization center to the diffraction limit equals
z0 +zd = 195 cm. Consequently, the time needed for the wave to arrive
at the diffraction limit is nearly 6.5 ns. Figs. 8a, 8b show the total
field for the cases when the wave is nearly at the diffraction length
and beyond it. At t = 6 ns, the reflected wave fronts have a small
radius and the arms of the X-wave are slightly separated, as shown
in Fig. 8a. The separation between the two arms increases in Fig. 8b,
and there is no localization region because the scattered X-wave in this
case exceeds its diffraction length. On the other hand, the localization
behavior appears clearly in the transmission region and is less deformed
as the transmitted X-wave moves away from the circular disk.

Finally, we address the issue of the range of validity of the
approximation used to calculate the X-wave field scattered from a
perfectly conducting circular disk. An estimate of such a range can be
deduced from the analogy between the reflecting circular disk and a
radiator of the same size. It has been argued that a circular aperture
of radius L can be used to reconstruct the original shape of a pulsed
plane wave within the range [9, 29]

R0max ≤
L2 − (cτ)2

2(cτ)
, (29)

where R0max is the maximum normal distance from the center of the
aperture and cτ is the axial width of the initial pulsed plane wave
excitation. Within the range R0max, a replica of the wave is generated.
The same concept applies to the specularly reflected wave of the UTD
solution. At distances larger than R0max, the total wavefront reduces
gradually to the first derivative of the original pulse. The spatial width
(distance between the front and rear nulls) of the pulsed plane wave
components of the first order TE X-wave may be taken to be nearly
equal to 0.8a0. For such a width and a circular disk illuminated by a
first order TE X-wave, it can be shown that the maximum range of
validity of the UTD solution, as a specularly reflected replica of the
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incident wave, is equal to

R0max =
L2 − (0.8a0)

2

2(0.8a0)
. (30)

For a0 = 10 cm and a circular disk of radius L = 50 cm, illustrated in
Figs. 5 and 7, the UTD solution may be valid up to 152.25 cm from
the disk. At a larger distance, the reflected wave should approach the
form of the first derivative of the incident pulse. In Figs. 5 and 7, the
initial localization center is located at z0 = 110 cm; therefore, the total
path becomes 252.25 cm. This corresponds to a time equal to 8.61 ns.
Thus, the result exhibited in Fig. 7b may be less accurate than the
ones shown in Figs. 5 and 7a. On the other hand, the UTD solution
is valid up to only 10 cm from the disk for the case of the circular
disk considered in Fig. 8. For the same X-wave and the same initial
localization center, the maximum time for the UTD solution in this
case is nearly 3.94 ns. Thus, the approximate method used in arriving
at the results of Fig. 8 may need more modification.

5. CONCLUDING REMARKS

In this paper, the diffraction and scattering of a TE X-wave by
conducting bodies has been investigated using the time-domain,
uniform theory of diffraction (TD-UTD) method. The analysis used in
this work has been based on the pulsed plane wave representation of an
X-wave introduced in Refs. [10] and [11]. This allows the calculation
of the diffraction and scattering of each pulsed plane wave component
of the incident X-wave at the observation point. The superposition of
the individual diffracted and scattered pulsed plane wave components
yields the diffracted and scattered field due to an incident X-wave.

The TD-UTD has first been applied to the case of an infinite
perfectly conducting wedge. The scattered field is divided into three
parts; namely, the transmitted, the reflected and the diffracted parts.
The diffracted part of the field is characterized by its cylindrical
wavefront. The total field at the transmission and reflection shadow
boundaries satisfies the continuity conditions. After studying the
canonical problem of an infinite wedge, the TD-UTD has been applied
to a perfectly conducting circular disk, as an example of a finite
scattering structure. This problem has been studied for a normally
incident X-wave. It has been shown that the diffracted part of the total
field is nearly negligible compared to the transmitted and reflected
parts of the total field. This behavior is due to the fact that only
incrementally small parts of the total X-wave satisfy Keller’s cone
condition for the circular edge of the disk. It has also been found that
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the localization region in the reflected part of the field is formed only
when the center of the localization region of the incident X-wave is
close to the center of the scattering disk. The localization region in
the reflected part vanishes as the reflected part moved away from the
circular disk because the two finite arms of the reflected X-wave do
not intersect beyond a certain distance. The TD-UTD solution has
been shown to be incapable of predicting the correct behavior of the
backscattered field beyond a certain distance from a finite scattering
structure. Thus, the domain of applicability of the present approach
is limited within the distance given in Eq. (30).

In conclusion, it has been shown that the TD-UTD can be used to
predict the behavior of the scattered X-wave within a certain range.
When combined with the pulsed plane wave representation of X-waves,
this approach is a time-efficient technique for the calculation of the
scattered field. On the other hand, the limitations of the TD-UTD
for the case of a finite scatterer have been pointed out; specifically, the
formation of caustics and the limited range of applicability. One way to
alleviate these problems is to use other asymptotic techniques, e.g., the
physical theory of diffraction or the incremental theory of diffraction
[30–36].

We are primarily interested in applying X-waves for the detection
and identification of buried objects. Towards this goal, we hope that
the method introduced in this paper together with previous work on
the transmission and reflection of X-waves from semi-infinite media
[5–8] provide the basic tools for studying the scattering of X-waves
from buried structures.

APPENDIX A.

The quantity ζ �(t, φinc, �R) in Eq. (25d) can be written as

ζ �
(
t, φinc, �R

)
= Re

(
j∂3

π∂3
I �(t, φinc, �R)

)
, (A1a)

where

I �(t, φinc) =
∞∫
0

dω F
(
(ω/c)|�R− �Rd|a�(ϕ,ϕ′) sin2 β0

)

× exp
(
−ω

(
(a0/c)− j

(
(t− t0)−

(
(�Rd − �R0) · �si

+(�R− �Rd) · �sd
)
/c

)))
; (A1b)
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F ((ω/c)l) = 2
√
jl exp(jωl/c)

∞∫
√

(ω/c)l

exp(−jτ2)dτ

=
√
πl exp(jωl/c)erfc

(√
jωl/c

)
, (A1c)

The integration in Eq. (A1b) can be performed using the identity [22]

∞∫
0

eωqerfc
(√

ωq
)
e−ωpdω =

1
√
p
(√

p +
√
q
) , (A2)

where −π < arg(p) ≤ π and −π < arg(q) ≤ π. As a result, one has

I �(t, φinc) =

√
−jπcq �(φinc, �R)√

p(t, φinc, �R)
(√

p(t, φinc, �R) +
√
q �(φinc, �R)

) , (A3a)

where

p(t, φinc, �R) = (a0/c)− j
(
(t− t0)−

( (
�Rd(φinc)− �R0

)
· �si(φinc)

+
(
�R− �Rd(φinc)

)
· �sd(φinc)

)
/c

)
, (A3b)

q �(φinc, �R) = j
(∣∣∣�R− �Rd(φinc)

∣∣∣a �(ϕ(φinc), ϕ′(φinc) ) sin2 β0(φinc)
)
/c.

(A3c)

Substituting in Eq. (A1a), the quantity ζ �(t, φinc, �R) acquires the form

ζ �(t, φinc, �R)

= Re


 j∂3

π∂t3

√
−jπcq �(φinc, �R)√

p(t, φinc, �R)
[√

p(t, φinc, �R)+
√
q �(φinc, �R)

]

 ,

(A4a)

or, more explicitly,

ζ �(t, φinc, �R)

=
1
π

Re


15

8

√
−jπcq �(φinc, �R)(

p(t, φinc, �R)
)7/2

[√
p(t, φinc, �R)+

√
q �(φinc, �R)

]
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+
15
8

√
−jπcq �(φinc, �R)(

p(t, φinc, �R)
)3

[√
p(t, φinc, �R)+

√
q �(φinc, �R)

]2

+
3
2

√
−jπcq �(φinc, �R)(

p(t, φinc, �R)
)5/2

[√
p(t, φinc, �R)+

√
q �(φinc, �R)

]3

+
3
4

√
−jπcq �(φinc, �R)(

p(t, φinc, �R)
)2

[√
p(t, φinc, �R)+

√
q �(φinc, �R)

]4


 . (A4b)
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