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Abstract—The usual aim with any waveguide is to operate it with
only the fundamental mode propagating. With fully closed waveguides,
finding the band over which this is possible turns on no more than
knowledge of the cutoff frequencies of the fundamental and first
higher order modes. With open waveguides, the question is not so
simply answered. Such waveguides propagate at most a finite set of
bound modes together with a continuous modal spectrum that has no
counterpart with closed guides. In this paper, for several particular
two-conductor transmission lines, we investigate the circumstances
under which leaky wave modes, though not themselves members of
any orthonormal set of basis functions, can be used to set bounds on
the band over which it is to be expected that the transmitted field is
substantially contained in the fundamental TEM mode. The method
used relies on transverse resonance.
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1. INTRODUCTION

As a first approach to the problem, it is natural to begin from what
is already known about the behaviour of closed waveguides. Thus, for
example, in a coaxial line first to appear is the TEM mode, which
propagates from zero frequency. It remains the only propagating
mode until the onset of the TE11 mode, the first of a denumerably
infinite set of discrete, higher order modes. Normally there is little
interest in operating coaxial lines with other than the TEM mode
present and the bandwidth over which this is possible extends from
zero frequency to the cutoff of the TE11 mode. Furthermore, we can
find this cutoff by making use of transverse resonance, which serves
to show that it corresponds closely to the frequency which makes the
mean circumference of the line a wavelength in the dielectric medium
with which it is filled [1].

Many two-conductor open waveguides are configured to propagate
a TEM mode from zero frequency and one might look to finding
the cutoff of the first higher order mode as an upper bound on the
TEM-mode bandwidth, possibly to be obtained by a suitably devised
version of the transverse resonance technique [2]. However, when this
is attempted, complications appear at once. Open waveguides do
not possess a denumerably infinite set of discrete modes as do closed
waveguides. In general it is found that the normal modes consist of a
finite set of bound modes together with a continuous modal spectrum
bounded at infinity that has no counterpart with closed waveguides
[3].

This follows from the fact that the Helmholtz equation together
with its boundary conditions, which must include one at infinity for
the now unbounded field, is no longer self-adjoint [4]. Moreover, when
transverse resonance is used as a means of finding the eigenvalues,
complex solutions appear corresponding to fields that are not bounded
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at infinity and therefore not part of any proper mode set. It would,
however, be wrong to regard these simply as nuisances to be discarded.
They have a physical interpretation as leaky wave modes per medium
of which power is conveyed away from the open waveguide and have
found practical application in a class of leaky wave antennas in which
the open waveguide is used as the radiating element [5].

For bound modes transporting energy in the direction of the
longitudinal axis of the guide (which we will take as the z-axis of a
cartesian frame in which x, y are the transverse plane coordinates)
without loss by leakage to the external surroundings, it has to be the
case that k2

z ≥ k2, where k is the free space wave number. For the
two-conductor transmission lines to be considered in this paper, only
the fundamental TEM mode is capable of fulfilling this condition and
so is the only member of the finite bound mode set, all that stands in
addition being the continuous mode spectrum.

The classical method for determining the electromagnetic field
excited by a source in a closed waveguide is to use the Lorentz
reciprocity theorem to evaluate the modal amplitudes. As Rozzi
and Mongiardo note [3], the same process can be followed with
open waveguides, with the field distributing itself between the bound
mode and the continuous orthonormal spectrum. By appropriate
deformation of the contour of integration in the complex wavenumber
plane, the total field in the line can be decomposed into a sum of the
residue from the bound mode pole on the real axis and a continuous
spectrum contained in a branch cut integral. If in turn the path of this
branch cut integral is deformed into a path enclosing all the branch
cuts along the negative imaginary axis and a steepest descent path
around the branch point corresponding to the wave number with which
energy is radiated from the structure, the continuous spectrum current
becomes further decomposable into a sum of leaky wave modes and a
residual wave [6, 7].

When the line is operated at low frequencies, the leaky mode
component is not present and the field consists only of the bound and
residual waves. Under this condition the former strongly dominates
the latter and the line can be considered to operate essentially as the
TEM mode transmission line that it is commonly supposed to be. As
the frequency is increased, leaky wave modes contained within the
non-physical spectral gap region are able to make their presence felt
indirectly by influencing a now much stronger residual wave. At higher
frequencies still, the leaky waves become physical, directly influencing
the behaviour of the line by contributing to continuous energy loss as
the wave moves away from the source that produced it. Under these
circumstances the line no longer operates as a TEM mode transmission
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line.
Knowledge of the position in the complex plane of the leaky wave

mode pole which, as frequency is increased, first has an impact thereby
defines a kind of pseudo-cutoff or critical frequency, an upper frequency
limit on essentially TEM mode operation, which sets the bandwidth
over which it is reasonable to treat the waveguide as essentially a TEM
mode transmission line. Since the intent in practice is normally to stay
clear of mode boundaries by a margin, even its fuzzy nature or no more
than an approximate knowledge of where it is will be quite useful.

In the light of the above and considering the ease with which
the equation for transverse resonance can be set up and solved for
many open waveguides, including many with non-separable cross-
sectional geometries, it is natural to want to use it in answering
the question of their essentially TEM-mode bandwidth. As noted in
[3], while with fully closed waveguides transverse resonance is exact,
in open waveguides it is an approximation which to be accurate
requires the leaky mode poles to have a dominant influence in the
complex wavenumber plane integration process. Desirably this implies
leaky modes with a small rate of leakage, which in turn implies that
transverse resonance occurs with a reasonably high Q factor. Finding
the critical frequency then rests on a transverse resonance analysis
of the open waveguide in which a suitable lumped equivalent circuit
is used to connect between the interior of the guide and the space
external to it.

Even before much of what has been pointed out above had been
elucidated, a method which early found favour as a tool for leaky mode
antenna analysis was to treat the open waveguide as a perturbation of
a closely similar but closed waveguide in which ideally the internal
fields could be found by separation. This technique was used by
Rotman in 1949 [8] to study the channel guide antenna, an ordinary
rectangular waveguide having one of its narrow faces removed to
provide an opening between its interior and the surrounding space.
Rotman used a transverse resonance formulation in which the open
face is represented by an equivalent circuit given by Marcuvitz [9] for
the case of a parallel plate line radiating into a half-space through
an infinite baffle. The conductive and susceptive parts of this circuit
take into account respectively leakage by radiation from the open edge
and energy storage in its immediate neighbourhood. Rotman tested
his theoretical results against some published experimental data and
found useful agreement.

Almost certainly independently and in the same year, based
on the same principles, Cullen [10] published a solution to a very
similar problem. Cullen’s problem differs from Rotman’s only in
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Figure 1. Prototype waveguide for perturbation.

having an unflanged transition between its interior and exterior regions
and in treating the effects of the exterior region through quasi-static
approximations. Cullen compared the predictions of his theory with
the results of experiments which he also carried out himself and
reported satisfactory agreement between the two. Both solutions
rely on the assumption that only a single mode is present in the
perturbed waveguide and that it is essentially the same as that in
the unperturbed guide, which in this instance is the TE01 mode of
a rectangular waveguide. The restricted aims of this paper, where
we shall be interested only in parallel plate lines or others that for
the most part are conformal distortions of them, allow a this simple
starting point to continue to be used.

2. SOME PRELIMINARY PHYSICS

Consider the waveguide shown in Fig. 1 which is bounded on opposite
pairs of faces by electric and magnetic conductors. This is our choice
for the closed waveguide that is to be perturbed to provide solutions to
several related open waveguide problems. It possesses a denumerably
infinite set of modes that may be found by separation of the wave
equation subject to the conditions imposed by the boundaries. The
fundamental of these modes is the TEM mode which propagates from
zero frequency, but at higher frequencies higher order TE and TM
modes will begin to appear. The lowest order members of these two
families are the TE01 and TM01 modes and which is first to appear
depends on the aspect ratio of the cross-section. For w > s it will be
the TE01 and for the converse, the TM01; when w = s, both appear
together as a degenerate pair of modes.
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Separation of the reduced wave equation to find these modes is
a standard textbook problem [11] that does not require repetition
here. However it is interesting to examine the fields associated with
them. Both can be resolved into pairs of crossing plane waves. Within
each pair, each wavefront, while maintaining the same angle with the
longitudinal axis of the guide, propagates by reflection in the walls in
a manner analogous to passage of a ray of light along a hall of mirrors.
For the TE01 mode the electric field is normal to the electrically
conducting walls which therefore provide the boundaries to contain
the waves in the manner of a TEM parallel plate line while they are
reflected between the magnetic walls. For the TM01 case it is the dual.

The angles which the normals to these wavefronts make with
the longitudinal axis of the guide are frequency dependent. At high
frequencies, they are very oblique, but with decreasing frequency
eventually reach the condition of being normal, when each plane
wave no longer has any axial component of velocity. At this
frequency propagation ceases and the mode has reached its cutoff
condition. Even so, if the waves are to continue to exist under this
circumstance, conditions must be such that in the round trip between
the two reflecting walls, each wave returns with a phase to reinforce
itself. Mode cutoff therefore corresponds to the transverse resonance
condition.

The perturbation to be introduced is to replace the non-physical
magnetically conducting walls with physical open circuits when,
although much of the foregoing argument retains its validity, these
edges are no longer perfect and some leakage of energy will occur from
them. For waveguides with no losses, the Q of transverse resonance
is infinite and the cutoff discrete. However, when as here the case is
otherwise, the resonant Q will be finite and it becomes more sensible
to speak of a leaky mode with a critical rather than a cutoff frequency
[12]. It is with these critical frequencies and the Q’s associated with
them, a measure of the degree to which the leaky mode is dominant,
that we will be concerned in the remainder of this paper. We will begin
by considering critical frequency in parallel plate lines as a means of
advancing on the final objective of treating the two-wire line.

3. THE TE-LIKE MODE IN PARALLEL PLATE LINE

From a theoretical point of view, the simplest form of parallel plate
line is that shown in Fig. 2, made by cutting a slit through a finite
thickness but otherwise infinite conducting slab, the presence of the
slab serving to prevent coupling of the fringing fields at the two open
faces. Determining the critical frequency for this configuration is
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Figure 2. Slit in infinite slab.

simplified if use is made of symmetry, i.e., if the problem geometry
is bifurcated by introducing an electrically conducting plane along
x = 0. Each half of what remains is a Rotman’s problem for which a
solution already exists in the literature [8]. We will therefore be brief
in developing it, adding no more detail than is needed to take us on to
the next stage.

The equivalent circuit for determination of resonance is shown in
Fig. 3a. It consists of a section of transmission line short circuited
at one end and terminated at the other in a parallel combination
of G and B representing the open face of the slot. Expressions for
these quantities normalised in terms of the characteristic impedance
of the transmission line are available from an earlier consideration by
Marcuvitz [9] of a parallel plate line radiating through a conducting
baffle into a half space.

In anticipation of later simplifications, a useful way to begin is
to replace the transmission line part of the resonator to the left of
the reference plane TT ′ with its π-equivalent, lumped circuit which,
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Figure 3. Equivalent resonator for the bifurcated parallel plate line.

because of the short circuit, immediately degenerates into the pair
of parallel susceptances shown in Fig. 3b. What remains is simply
a lumped, parallel resonator for which resonant frequency and Q are
readily found. It is to be noted that all the inductance (magnetic
energy storage) is supplied by the transmission line while capacitance
(electric energy storage) is shared between the transmission line and
the fringing field. Radiation losses in the guise of G determine the Q.

Again looking ahead, it will be found useful to write the suscep-
tances contributed by the transmission line in terms of its transmission
(A,B, C,D) parameters, when the general equations for resonance and
Q are easily shown to be

A+ jBB = 0 (1a)

Q =
1
|B|G (1b)

For a uniform transmission line of length 1
2w and characteristic

impedance Z0

A = D = cos
1
2
kw (2a)

B = jZ0 sin
1
2
kw (2b)

C =
j

Z0
sin

1
2
kw (2c)

Substituted into eqns. (1a,b), these lead to as the equation for
resonance

cot
1
2
kw − b = 0 (3)
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plate line.

and for Q

Q =
1

g sin
1
2
kw

(4)

where g = GZ0 is the normalised conductance, and b = BZ0 is the
normalised susceptance.

An expression similar to eqn. (3) is to be found in Rotman’s paper
[8].

Interestingly Marcuvitz [9] provides two formulas for each of
G and B, an accurate formula based on a modal expansion and a
simplified approximation obtained quasi-statically† Fig. 4 shows the
critical wavelength normalised to the line width w, i.e., the ratio
2π/kcw, where kcw is the smallest solution of eqn. (3), as a function of
w/s. The results given in this figure were derived using the accurate
formulas but substitution of the approximate forms leads to differences
indistinguishable within the line width. At least so far as resonant
wavelength is concerned, the reason lies in the fact that it is the
transmission line that contributes most of the resonator capacitance, so
that even a relatively large error in fringing field susceptance tends to
be washed out in the final result. Overall the contribution of the open
edge is to effectively widen the resonator and to produce a sharpness
of resonance which increases monotonically with w/s, indicative of the
growing dominance of the leaky mode.
† In the case of the susceptance, there is a sign error in the accurate formula (although
not in the accompanying graph) which is corrected in [13]



10 Green

Z 

X 

Y

w

s X’ 

Y’

Figure 5. Physically realisable parallel plate line.

A more realistic form of parallel plate line consists of the pair of
thin conducting strips shown in Fig. 5. Here the fringing fields at each
open edge are no longer kept separate but interact. However, given
new values for edge admittance, a result can be obtained directly by
their substitution into the previous equations. Formulas for G and
B of comparable quality to Marcuvitz’s do not seem to have been
published for this case but the success in the previous example of
approximate results obtained quasi-statically does suggest a way out.
This problem also has strong similarity to Cullen’s [10], from which it
differs only in the need to account for interaction of the two fringing
fields. The fact that Cullen obtains satisfactory results from quasi-
static approximations lends added weight to their use here.

B can be estimated from electrostatic considerations. A formula
for static capacitance attributable to the fringing field in a parallel
plate capacitor is to be found in [14]‡. It is a lower bound on the
correct result, the accuracy of which improves with increasing w/s.
Adapted to supply a normalised susceptance, it is

b =
ks

2π

(
1 + ln

2πw
s

)
(5)

The formula for static capacitance that underlies this result is known
to be accurate to four percent or better for w/s > 2.

Finding G requires further work and is addressed in Appendix A
‡ This problem is also solved in Morse and Feshbach [15] but there is an error which leads
to the fringing capacitance given there being out by a factor of 2.
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where it is shown that for w/s� 1

g =
ks

4
{1 + J0(kw)} (6)

It is shown in the Appendix that for w/s > 3, about five percent or
better is a reasonable expectation for the accuracy of this result.

The results for critical wavelength normalised in terms of w and Q
are shown as a function of w/s in Fig. 6. They exhibit similar trends
to those appearing in Fig. 4, although for w/s at the smaller end of its
range, they are probably more indicative than highly accurate.

4. THE TE-LIKE LEAKY MODE IN TWO-WIRE
TRANSMISSION LINE

It is interesting to extend the foregoing ideas to determining the
critical frequency of the lowest order TE-like leaky mode in two-
wire transmission line. This is essentially a conformal distortion of
the previous case in which the parallel conducting surfaces, parts of
constant coordinate surfaces in a cartesian frame, now become parts
of constant coordinate surfaces in a bipolar coordinate system [16].

Consider the cross-section shown in Fig. 7, the condition for
transverse resonance of which is to be found. If for a moment we think
about the electrostatic field which surrounds such a pair of conductors
when they are at equal and opposite potentials, it is clear that on
each side of the diagram there is a line of force joining the points of
intersection of the circles with a common tangent drawn parallel to
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Figure 7. Resonator and its circuit representation.

the vertical axis of symmetry. These lines of force, which will appear
to have their origin in line charges located at points S and T , are
semicircles of diameter equal to the centre-to-centre spacing of the
circular conductors [17]. They will be taken as the boundaries between
the interior and exterior of the resonator whose resonant wavelength
is to be determined.

The method used follows closely that employed previously. Sym-
metry about the plane x = 0 is again used to allow bisection of the
resonator and the interior region is represented by lumped susceptances
derived from the transmission parameters. The external region is
modelled as a parallel combination of G and B. The immediate
problem is to find all these quantities.

When a quasi-TEM wave is propagating transversely in the cross-
section, we can expect that its electric lines of force will follow the same
paths as those of the electrostatic field instanced above, i.e., they will
be segments of circles which pass through S and T . We may therefore
segment the interior region into n elementary sub-regions between
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successive lines of force drawn at equal increments in the angle α joining
the centre of each circular conductor with the takeoff or reception point
of the line force on the conductor surface. Our strategy is to represent
each of these elementary sub-regions circuitally as an inductance-
capacitance L-section and to find the transmission parameters of the
entire interior region as the cascade of their individual transmission
matrices.

The question of actually finding these elemental inductances and
capacitances is one better deferred to Appendix B. Here we will proceed
on the assumption that they are known. It is shown in any number of
texts that the transmission matrix of an LC L-section is

Ti =
[
ai bi
ci di

]
=

[
1− LiCiω2 jLiω
jCiω 1

]
(7)

from which it follows that that for the entire interior region is

T =
[ A B
C D

]
=

n∏
i=1

Ti (8)

A program to find the elements of this matrix has been written in
MATLAB. Some numerical experimentation has shown that using
2,000 sub-regions guarantees four figure consistency of the transmission
parameters of the interior region. However, since it is not excessively
costly in machine time to use more, 3,000 have been used in this work
to provide an extra comfort margin.

At the chosen boundary between the interior and exterior regions,
the exterior portion is to be represented by a parallel combination
of G and B. As was the case with the parallel plate line, in the
expectation that because capacitance is shared between interior and
exterior regions an approximation for the exterior capacitance will
suffice, B has been determined electrostatically as the residuum of the
total capacitance of the cross-section not attributable to the interior
region. The method given in Appendix D allows this to be done
conveniently. Finding an acceptable formula for G is much more
complex and in a sense only minimally rewarding in that the critical
wavelength, the more interesting of the two resonance parameters, does
not depend on it. However the question is considered in Appendix E.

Fig. 8 shows the data for the TE-like mode over the range of
diameter ratios 1.1 ≤ D/d ≤ 1.6 (corresponding to TEM mode
characteristic impedances in the range 50–125 ohms). It has been
prepared in a form that affords easiest comparison with the earlier
Figs, 4 and 6 where similar data for the parallel plate line is presented.
Here normalised critical wavelength and Q form the ordinates in a
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Figure 8. Normalised critical wavelength and Q for the TE-like mode
in two-wire line.

plot with the interior capacitance of the resonator as abscissa. (Recall
that in the parallel plate case w/s, the chosen abscissa, is directly
proportional to the interior capacitance of the resonator.) Wavelength
has been normalised to 1

2πd, the length of the conducting surface
interior to the resonator and chosen as having some equivalence with
w in the parallel plate case, i.e., normalised critical wavelength is the
ratio 4c/ωcd, where ωc is the critical angular frequency determined
by solving eqn. (1a) with appropriate insertions for the quantities
involved and c is the velocity of light. All three figures show similar
trends save that in this instance Q remains small, indicating a rapidly
attenuating leaky mode. It is only for these very low impedance
lines, not infrequently used as components of baluns, that the TE-
like leaky mode is of any importance. For the wider spaced, hundreds
of ohms TEM mode characteristic impedance, two-wire lines normally
deployed, it is the TM-like higher mode that becomes more interesting.
This is the problem that we will now address.

5. TM-LIKE LEAKY MODES IN PARALLEL PLATE
AND TWO-WIRE LINES

In the case of parallel plate line, application of the result argued for in
Section 2 leads to an immediate outcome. This suggests that the TM-
like leaky mode critical wavelength corresponds to putting the plates
half a wavelength apart, as in the unperturbed case. Credence is lent
to this by observing that TM resonance within a pair of parallel plates
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is exactly the same phenomenon as resonance in a Fabry-Perot cavity
operating in its lowest order mode, for which the plates must be a half
wavelength apart. In fact this is precisely the simplified model on which
elementary analyses of it are based [11]. To be sure, in any real Fabry-
Perot cavity, corrective action is taken to limit losses by diffraction at
the edges, a remedy that we are not proposing. However, the result
will be to have produced a “badly designed” cavity in which resonance
can be expected to occur at much the same wavelength, even if with a
much diminished Q.

It strains permissiveness only a little more to apply this idea to
a two-wire transmission line, even if it strains the imagination a great
deal more to agree that what now we are dealing with much resembles
a Fabry-Perot cavity. As most often deployed, two-wire lines are made
with an inter-wire spacing of several times the conductor diameter.
The canonical problem that holds the key to further advance is that
of an electrical line source parallel to a conducting cylinder.

Consider the configuration depicted in cross-section in Fig. 9
in which the axis of the cylinder is used to define the z-axis, any
point on which can be chosen as origin. The perpendicular from this
origin through the line source then becomes the initial line for angular
measurement in a cylindrical coordinate system. It is then easy to
use some results presented by Harrington [18] to show that the surface
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Figure 10. Normalised critical wavelength and Q in for TM-like mode
in two-wire line.

current density induced on the cylinder by the line current I1 is

Jz =
−I1
πd

∞∑
n=−∞

H
(2)
n (kD)ejnφ

H
(2)
n

(
1
2kd

) (9)

For small kd, only the n = 0 term is significant, when the cylinder is
essentially equivalent to another line current given by

I2 =
1
2
d

∫ π

−π
Jzdφ � −I1

H
(2)
O (kD)

H
(2)
O

(
1
2kd

) (10)

It was, of course, in the expectation of obtaining a result of this kind
that we made the implicit assumption that the first of the pair of
conductors could be represented by a line current and hence chose our
canonical problem.

The induced line current which replaces the second conductor now
becomes the source for induction of a further line current on the first,
and for resonance to occur, it must do so such that the effect is one
of reinforcement, i.e., with a round trip phase lag of 2π. Hence the
equation for resonance is

arg


 H

(2)
O (kD)

H
(2)
O

(
1
2kd

)

 = −π (11)

The solution of this equation is presented in Fig. 10 which shows
critical wavelength normalised to conductor spacing as a function of the
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spacing to diameter ratio. It is clear that a good first approximation is
just to assume that the critical wavelength corresponds to having the
centres of the wires a half wavelength apart, a result arrived at earlier
by Marin [12] but in a much more elaborate analysis.

It is also possible to work out a Q factor for the resonance, a
result not readily available from Marin’s analysis. In that each wire
can intercept only a small fraction of the radiation from the other, the
expectation has to be for a smallQ and a mode with high leakage losses.
The basis of the calculation is to determine the ratio in which, after
each reflection in the second cylinder, the magnitude of the current
re-induced in the first is decreased and noting that the time required
for this to happen is one period of the oscillation. Resonant Q then
follows as [19]

Q =
−π

2 ln

∣∣∣∣∣∣
H

(2)
O (kD)

H
(2)
O

(
1
2kd

)
∣∣∣∣∣∣
res

(12)

Q is shown as a function of D/d also in Fig. 10. For D/d = 5
for example, corresponding to a TEM-mode characteristic impedance
of 276 ohms, the Q is found to be about 1.5, corresponding to an
extremely leaky guide and probably too low to assert any strong
dominance of the leaky wave mode poles on the continuous mode
spectrum.

6. CONCLUSION

In this paper, using a transverse resonance technique originally used
for determination of the eigenvalues in leaky wave antennas, we have
found the critical wavelengths of the lowest order TE and TM-like leaky
modes in the parallel plate and two-wire transmission lines. These can
be used to set a bound on the bandwidth over which the fundamental
TEM mode is substantially the only propagating field. Particularly in
a context where the aim is to avoid by a margin any conditions that
would allow significant energy to be coupled into other than the TEM
mode, this is a satisfactory approximation.
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APPENDIX A. DETERMINATION OF G
ATTRIBUTABLE TO THE EXTERNAL REGION OF A
PARALLEL PLATE LINE
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Figure A1. Geometry for determining edge conductance in parallel
plate line.

A formula for the edge conductance for the case where w � s is
easily obtained in the following way. Consider the cross-section shown
in Fig. A1 and let the voltage travelling waves traversing it be

V + = V0e
−jkx (A1a)

V − = −V0e
jkx (A1b)

Note that this choice ensures that V + + V − = 0 at x = 0. Then, at
the right hand end (x = 1

2w),

V = V + + V − = −j2V0 sin
(

1
2
kw

)
(A2)

Assuming that the electric field at the open edge can be approximated
[18] as that in the interior of a parallel plate capacitor, we then have

E = −ŷj 2V0

s
sin

(
1
2
kw

)
(A3)

Using the equivalence principle [18], the open edge is now to be closed
with a conductor supporting on its surface a magnetic current density
M, given by

M = E× x̂ = ẑj
2V0

s
sin

(
1
2
kw

)
(A4)
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If we go through the same steps for the left hand end, exactly the same
result is obtained. This follows because the reversal of the direction of
the normal compensates for the change in sign of the aperture field.
Hence we are left to solve the problem of radiation from a conducting
bar of rectangular cross-section, on opposite ends of which there are
equal, in-phase, magnetic strip currents.

Since we expect resonance of the interior cross-section to occur
when kw ≈ π, the restriction w � s implies that ks � π, in which
case diffraction effects due to the bar can be neglected and the radiation
field computed assuming the strip currents to be located in free space.
Moreover it also will involve only small error to concentrate these strip
currents as equivalent line currents K at their centres, i.e.,

K =
∫ 1

2
s

− 1
2
s
Mdy = ẑj2V0 sin

(
1
2
kw

)
(A5)

Two dimensional radiation from an electric line current is a problem
solved in [18] and the result for a magnetic line current can be inferred
directly from it by duality. Taking into account the array factor due
to the two in phase magnetic line sources, the electric far field (ρ� w)
will be

E = φ̂j4kV0 sin
(

1
2
kw

)
cos

(
1
2
kw cosφ

) √
j

8πkρ
e−jkρ (A6)

From this the Poynting vector can be integrated over unit axial length
of the far field cylinder to determine the total radiated power. The
result is

P =
2kV 2

0 sin2(1
2kw)

η
{1 + J0(kw)} (A7)

where η = 120π is the impedance of space. The power out of each
aperture separately will be half this, making the aperture conductance

G =
1
2P

V V ∗
=
k

4η
{1 + J0(kw)} (A8)

When this is normalised in terms of the characteristic admittance per
unit length of the cross-section (1/ηs), the result is that shown in
eqn. (6).

It is noteworthy that as kw → ∞ and there is no interaction
between the edges, eqn. (6) reduces to the approximate formula given
by Marcuvitz in [9] for a single open (but flanged) edge. This
approximate formula is known to be accurate to better than five
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percent for ks < 1. Since, as we have noted, transverse resonance
occurs when kw ≈ π, it is reasonable then to expect that the value
obtained for Q by inserting eqn. (6) into eqn. (4) will be accurate to
about this order for w/s > 3.

APPENDIX B. FINDING THE ELEMENTAL
INDUCTANCE AND CAPACITANCE

The problem taken up in this appendix is that of finding the inductance
and capacitance that are to be used in an L-section representation of
the elemental region contained between the line conductors and near
neighbouring, electric lines of force.

Consider Fig. 7 and let it be required to determine the inductance
and capacitance for the ith such region which is contained between the
(i− 1)th and the ith lines of force, i = 1, n. This is the shaded region
shown in the figure. All these lines of force are arcs of circles that
leave or enter the conductors normally and appear to have originated
or terminated on virtual line charges at S and T . To set up an
identification system for them, let the quadrant on each conductor
between the axis joining the centres of the conductors, the Y axis in
the chosen coordinate system, and the end of the resonator be divided
into n equal sub-arcs, with neighbouring lines of force coming away or
entering from the end points of each given sub-arc. Let radius vectors
be drawn from the centres of the conductors to the end points of these
sub-arcs. A parameter which then serves to define the ith line of force
is the angle contained between the Y axis and the radius vector drawn
to its point of exit or entry. This angle will be αi = πi/2n.

The associated set of magnetic lines of force will all be parallel to
OZ, i.e., normal to the cross-sectional plane shown in Fig. 7, and might
be thought of as being supported by fictional static magnetic charges
contained on magnetically conducting planes lying in cross-sections
unit distance apart. Since the region that they occupy contains no
electric currents, it follows from the magnetostatic form of Ampere’s
Law that this magnetic field must be uniform over the cross-section.
Hence the inductance attributable to the shaded region in Fig. 7 will
be

Li = µ0∆Ai (B1)

where ∆Ai is the area of the shaded region.
In Appendix C a formula is derived which gives the area bounded

by the ith electric line of force, the arcs of the conductor cross-section
and the Y axis in terms of the parameter α. By subtracting the areas
so determined for consecutive lines of force the areas of successive
repetitions of the shaded region are found, i.e., ∆Ai = A(αi)−A(αi−1).
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From this the inductance of each elemental L-section follows through
eqn. (B1).

The capacitance is determined electrostatically from a knowledge
of the charge distribution on the conducting surfaces when a static
potential difference exists between them. The capacitance attributable
to each shaded region bears the same ratio to the total capacitance
per unit length of the cross-section as does the charge on either of the
sub-arcs that help define it to the total charge on the conductor of
which the sub- arc is part. In Appendix D it is shown how the surface
charge between the Y axis and the exit or entry point of the ith line
of force can be found as a function of the parameter α. As with the
inductance, the capacitance to be inserted into the L-section equivalent
is then determined by differencing the capacitances attributable to
regions bounded at their outer ends by consecutive lines of force.

Once these L’s and C’s are known, it is a simple matter to use
eqn. (8) to determine the transmission parameters of the resonator for
insertion into eqns. (1a,b).

APPENDIX C. ON FINDING THE AREA OF A
CERTAIN CLOSED FIGURE

In this appendix, we provide a method for determining the area of
the interior region shown in Fig. 7 as bounded by the vertical axis of
symmetry, a line of force and the two conductors. This is most easily
done by subtracting from the circular segment cut off by the line of
force and the vertical axis of symmetry the two identical sub-areas
contained within the conductor cross-sections and themselves bounded
by two arcs and the axis.

As a prelude, it is useful first to define a special function seg(r, s),
the area of the minor segment cut from a circle of radius r by a chord
of length s. It requires only simple geometry to show that

seg(r, s) = r2 sin−1 s

2r
− s

2

√
r2 −

(
s

2

)2

(C1)

All lines of force are circles with their centres on the horizontal axis of
symmetry and passing through the points S and T . It requires only
some tedious geometry to show that the radius of curvature of the line
which enters or leaves the conductors at positions defined by the angle
α is

ρ(α) =
D − d cosα

2 sinα
(C2)

However, of those lines which are interior to the right hand half of the
resonator, some only will have their centres on the positive X axis. It
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is necessary therefore to determine the critical angle αc beyond which
the segment cut off by the line of force and the vertical axis passes
from being the minor to the major segment. This can be done by
determining where a circle of radius 1

2

√
D2 − d2 and centre the origin

cuts the conductors, when it is found that

αc = cos−1 d

D
(C3)

The area of the segment bounded by the vertical axis of symmetry and
the interior line of force is then

A1(α) =



seg

{
ρ(α),

1
2

√
D2 − d2

}
, α < αc

πρ2(α)− seg
{
ρ(α),

1
2

√
D2 − d2

}
, α > αc

(C4)

The subareas to be subtracted and contained within the conductor
cross-sections are next found as the sum of an interior triangle and
two residual segments. After some amount of trigonometry, this can
be shown to be

A2(α) =
1
8
d sinα

{√
D2 − d2 − (D − d)

}
+ seg

{
1
2
d, d sin

1
2
α

}

+seg

{
ρ(α),

√
1
2
(D − d cosα)

(
D −

√
D2 − d2

)}
(C5)

The required area which we set out to find is therefore

A(αi) = A1(αi)− 2A2(αi) (C6)

and from this the element of inductance is found by the method given
in Appendix B.

APPENDIX D. DETERMINATION OF THE
CAPACITANCE ATTRIBUTABLE TO AN ELEMENT OF
CROSS-SECTION IN A TWO-WIRE LINE

The root problem, from which the result sought readily follows, is to
determine under static conditions the charge contained on an arc of
either conductor between the vertical axis of symmetry and a radius
vector making an angle α with it. The capacity per unit axial length
of the cross-section attributable to the arc then bears the same ratio
to the total capacitance as does the charge on the arc to the total
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Figure D1. Geometry for determining resonator capacitance.

charge on the conductor. From this the element shunt capacitance
follows by differencing in a manner similar to that used to find the
series inductance in the equivalent ladder network.

Consider Fig. D1 which shows a virtual line charge q0 per unit
length located on the vertical axis of symmetry at S, i.e, y =
1
2

√
D2 − d2, and let the plane y = 0 be replaced with an infinite,

perfectly conducting sheet. Then by image theory, in the upper
half space this is equivalent to the original problem. Now trace a
line of force emanating at the line charge and passing through the
conducting cylinder at a position defined by the angle α. Then it is
not hard to show that this will terminate on the conducting plane at
x0 = 1

2(D+ d) tan 1
2α, when the charge on the arc will be the negative

of that contained on the sheet in 0 < x < x0. We do this because it is
easier to integrate across the sheet than around the arc.

With no great effort, it can be shown that the charge density on
the sheet is

ρ(x) =
−1

2q0
√
D2 − d2

π
(
x2 + 1

4(D2 − d2)
) (D1)

and hence the charge on the arc is

q(α) =
∫ x0

0
ρ(x)dx =

q0
π

tan−1




√
D + d
D − d tan

1
2
α


 (D2)
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In [17] C0, the total capacitance per unit length of the line, is found.
Hence the capacity contributed by the arc is

C(α) =
C0q(α)
q0

=
C0

π
tan−1




√
D + d
D − d tan

1
2
α


 (D3)

In this paper, we have assumed that the susceptance of the region
exterior to the resonator is contributed by the exterior static capaci-
tance, when

B =
1
2
C0ω


1−

2C
(

1
2π

)
C0


 (D4)

APPENDIX E. DETERMINATION OF G
ATTRIBUTABLE TO THE EXTERIOR REGION OF A
TWO-WIRE LINE

We compute G using the equivalence principle [18]. This requires
placing magnetic sheet currents on each end face of the resonator which
is then closed with a perfect conductor. Energy loss, which manifests
itself circuitally as a conductance, occurs by radiation of a cylindrical
wave from the magnetic current into the two dimensional space exterior
to the resonator. To determine G, two things are required; one must
either know or be able to make plausible assumptions about the nature
of the sheet currents and then be able to calculate the radiation pattern
which they produce in the presence of a conducting object made up by
juxtaposition of two pairs of hemicylinders, the ends of the resonator
and the top and bottom halves of the original conductors, the latter
banished to the exterior region by assumption.

As was done in Appendix A where we considered the parallel plate
line case, here we will also assume that the form of the electric field
along an open end face of the resonator is the same as along a similarly
placed line of force in the static field produced by a voltage V between
the conductors, though without the further assumption that this is the
same as along an interior line of force. This may be found in terms of
the geometric parameters shown in Fig. E1 when, after a lot of routine
algebra which is omitted here, it is possible to show that

E(φ′) =



φ̂′

−V
√
D2 − d2

D(D cosφ′ + d) cosh−1 D
d

−π
2
< φ′ <

π

2
0 otherwise

(E1)

Application of the equivalence principle then gives for the magnetic
sheet current M = −ρ̂′ ×E.



TEM-mode bandwidth of open transmission lines 25

�’�

Y

X 

P

Q

Z

T

S

M 

to far field 

D/2 

d/2

X’ 

Y’

Figure E1. Geometry for determining G.

There is no simple way of computing the radiation pattern
that this will produce in the presence of the quadrihemicylindrical,
conducting structure which supports it. As an approximation we
propose to replace this structure with a pair of cylinders which are
simply extensions of the ends of the resonator (i.e., cylinders of
diameter D) and, even though they intersect (because their centres are
spaced d < D apart), to treat them as isolated conducting cylinders.
This can be expected to lead to greatest error in the weakest parts
of the field and is justified by the fact that determining conductance
involves integration of the field, an error suppressing process. Finally,
of course, there is the consideration that G itself plays no part in
determining the critical frequency, although it does have a first order
impact on resonant Q.

The radiation field produced by an isolated conducting cylinder
on the surface of which there is an axially directed magnetic sheet
current harmonically distributed in φ′ is easily found taking as a point
of departure the field produced by an axial magnetic line source, a
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problem to which the solution is given in [18]. This suggests as a way
forward expanding the magnetic current obtained from eqn. (E1) as a
Fourier series and combining this with the previous result to obtain an
expression for the field. These steps involve considerable detail that
we will choose to omit here in favour of simply stating the end result,
most easily done in terms of the magnetic field which contains only the
single, z-directed component

Hz(φ) =
V

√(
D
d

)2
− 1

πD cosh−1 D
d

j2
η

√
j2
πkρ

e−jkρf(φ) (E2)

where

f(φ) =
∞∑
m=0

′ jmcm cosmφ

H
(2)′
m

(
1
2kD

) (E3)

and

cm =
1
π

∫ π
2

0

cosmφ′
D
d cosφ′ + 1

dφ′ (E4)

Note the priming of the summation in eqn. (E3), intended to indicate
that the first term is to be halved; note also that the series substantially
converges in around kD terms, meaning that in practice only a few of
the cm need to be determined.

In our problem, this is the radiation field produced by the
cylindrical aperture having its centre on the X-axis at x = 1

2d. That
due to the other, the cylinder with its centre at x = −1

2d, will be the
lateral inversion of this, obtainable from the previous result under the
transformation φ → π − φ. Combining both aperture fields with the
correct phasing gives as the total radiation pattern

Hz=
V

√(
D
d

)2
− 1

πD cosh−1 D
d

j2
η

√
j2
πkρ

e−jkρ
{
f(φ)ej

1
2
kd cosφ+f(π − φ)e−j 1

2
kd cosφ

}
(E5)

From this the Poynting vector is easily found. When, similarly to the
procedure used in Appendix A, this is integrated over unit axial length
of the far field circumscribing cylinder, the conductance per unit length
of each aperture can be shown to be

G=
16

π3ηkD2

((
D
d

)2
− 1

)
(
cosh−1 D

d

)2

∫ π
2

0

∣∣∣f(φ)ej 1
2
kd cosφ + f(π − φ)e−j 1

2
kd cosφ

∣∣∣2 dφ
(E6)
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Note that in doing this, the range of integration has been minimised by
making use of the fourfold symmetry of the radiation field. However, it
does not appear possible to reduce this formula further to any simple,
explicit kind of result and values of G would seem best computed from
it directly numerically.

REFERENCES

1. Green, H. E., “Determination of the cutoff of the first higher order
mode in coaxial line by the transverse resonance technique,” IEEE
Trans. Mic. Th. Tech., Vol. MTT-37, 1652–1653, 1989.

2. Sorrentino, R., “Transverse resonance technique,” Numerical
Techniques for Microwave and Millimetre-wave Passive Struc-
tures, T. Itoh (ed.), John Wiley & Sons, 1989.

3. Rozzi, T. and M. Mongiardo, Open Electromagnetic Waveguides,
Institution of Electrical Engineers, London, First Edition, 1997.

4. Friedrichs, K. O., “Criteria for discrete spectra,” The Theory
of Electromagnetic Waves, First Edition, M. Kline (ed.), Dover
Publications Inc., 1951.

5. Tamir, T., “Leaky wave antennas,” Antenna Theory Pt 2,
R. E. Collin and F. J. Zucker (eds.), McGraw-Hill Book Coy.,
First Edition, 1969.

6. Langston, W. L., J. T. Williams, D. R. Jackson, and F. Mesa,
“Spurious radiation from a practical source on a covered micro-
strip line,” IEEE Trans. Mic. Th. Tech., Vol. MTT-49, 2216–2226,
2001.

7. Shigesawa, H., M. Tsuji, and A. A. Oliner, “The nature of the
spectral-gap between bound and leaky solution when dielectric
loss is present in printed-circuit lines,” Radio Sci., Vol. 28, 1235–
1243, 1993.

8. Rotman, W., “The channel guide antenna,” Proc. Natl. Electron.
Conf., Vol. 5, 190–202, 1949.

9. Marcuvitz, N. (ed.), Waveguide Handbook, First Edition, Dover
Publications, 1965.

10. Cullen, A. L., “On the channel section waveguide radiator,” Phil.
Mag., Vol. 40, 417–428, 1949.

11. Collin, R. E., Foundations for Microwave Engineering, First
Edition, McGraw-Hill Book Coy., 1966.

12. Marin, L., “Transient electromagnetic properties of two, infinite
parallel wires,” J. App. Phys., Vol. 5, 335–345, 1975.

13. Melino, R. and H. E. Green, “An error in the ‘Waveguide



28 Green

Handbook’,” IEEE Trans. Mic. Th. Tech., Vol. MTT-48, 1972,
2000.

14. Love, A. E. H., “Some electrostatic distributions in two dimen-
sions,” Proc. London Math. Soc., Vol. 22, 337, 1923.

15. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics,
First Edition, McGraw-Hill Book Coy., 1953.

16. Moon, P. and D. Spencer, Field Theory Handbook, First Edition,
Springer-Verlag, 1961.

17. Green, H. E., “A simplified derivation of the capacitance of a two-
wire transmission line,” IEEE Trans. Mic. Th. Tech., Vol. MTT-
47, 365–366, 1999.

18. Harrington, R. F., Time Harmonic Electromagnetic Waves, First
Edition, McGraw-Hill Book Coy., 1961.

19. Altman, J. L., Microwave Circuits, First Edition, Van Nostrand
Coy., 1964.


