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Abstract—We present a rigorous method giving the field scattered
by a dielectric plane surface with a local cylindrical perturbation
illuminated by a plane wave. The theory is based on Maxwell’s
equations written in a nonorthogonal coordinate system. A Method
of Moments (PPMoM) with Pulses for basis and weighting functions
is applied for solving in the spectral domain. For several deterministic
profiles, we study the influence of polarization, incidence angle and
perturbation depth and show that the distance defining the far-field
approximation depends on the observation angle.
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1. INTRODUCTION

We present a method giving the field scattered by a dielectric plane
surface with a cylindrical local perturbation illuminated by a plane
wave in E‖ or H‖ polarization. The method is based on Maxwell’s
equations in covariant form written in the translation nonorthogonal
coordinate system [1–3]. The principle of resolution has been presented
in [4] for the case of perfectly conducting surfaces. In this paper, we
adapt the method to dielectric media (Sections 2–4). In the translation
coordinate system and for each medium, the covariant components of
the electric vector and magnetic vector fulfill an eigenvalue system. A
Method of Moments (PPMoM) with Pulses for basis and weighting
functions is applied for solving these systems in the spectral domain
[5]. The Fourier transforms of fields are expanded in series of pulse
functions b̂q(α). The width ∆α of the basis functions defines the
spectral resolution. Using an inner product, eigenvalue systems are
projected over functions b̂q(α). Finally, for each medium, a scattering
matrix is obtained, the size of which is fixed by the truncation order M .
The eigenvalues of these matrices and the corresponding eigenvectors
lead to elementary wave functions. For each medium, the scattered
field is expanded as a linear combination of eigensolutions satisfying the
outgoing wave condition. Their amplitudes are found by solving the
boundary conditions. Outside the modulated zone, the longitudinal
covariant components of the reflected field and transmitted field can
be represented by a superposition of a continuous spectrum of outgoing
plane waves, the so-called Fourier-Rayleigh integral [6–9]. For a lossless
dielectric material, the far-field and the scattering pattern can be
derived from the asymptotic approximation of the Fourier-Rayleigh
integrals [8].

In Section 5, for several deterministic profiles, we study the
influence of polarization, incidence angle and of perturbation depth and
show that the distance which determines the radiation zone depends
on the observation angle. We also show some comparisons with a
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Figure 1. Plane with a local deformation illuminated by a plane wave
under incidence θ

(1)
i . According to the conventions used here, θ(1)

i and
θ are positive.

Rayleigh method in order to confirm its numerical applicability domain
presented in [8, 9].

2. PRESENTATION OF THE PROBLEM

In Fig. 1, we consider a local perturbation in a dielectric plane surface.
The deformation is given by the equation y = a(x), where a(x) is
a local function defined over the interval [−l/2; l/2], where l is the
width of the modulated zone. The surface separates the air (medium
1, n1 = 1) from a dielectric material with a real or complex refractive
index n2 (medium 2). This structure is illuminated under incidence θ(1)

i
by a monochromatic plane wave of wavelength λ. The incident wave
vector �ki lies in the xOy plane. Both fundamental cases of polarization
E‖ and H‖ are considered. For E‖ polarization, the electric vector
is parallel to the Oz axis and for H‖ polarization, this is the case
for the magnetic vector (Eq. 1). The time-dependence factor is in
exp(jωt), where ω is the angular frequency. Afterwards, any vector
function is represented by its associated complex vector function and
the time factor is suppressed. Upper or lower indices (1) and (2) denote
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quantities relative to medium 1 and medium 2, respectively.

F
(1)
0− (x, y) = exp(−jαix + jβ

(1)
i y) =

{
E

(1)
z,0−(x, y) inE‖

Z1H
(1)
z,0−(x, y) inH‖

(1a)

αi = ki sin θ
(1)
i ; β

(1)
i = k1 cos θ(1)

i ; k1 = |�k1| =
2π
λ

; Z1 =
√

µ0

ε0
≈120π

(1b)

In the absence of a deformation, the total field F
(1)
0 (x, y) in medium 1

is the sum of the incident field F
(1)
0− (x, y) and the specularly reflected

field F
(1)
0+ (x, y):

F
(1)
0 = F

(1)
0− (x, y) + F

(1)
0+ (x, y) (2a)

F
(1)
0+ (x, y) = ρ(1) exp(−jαix− jβ

(1)
i y) =

{
E

(1)
z,0+(x, y) in E‖

Z1H
(1)
z,0+(x, y) in H‖

(2b)

and the total field F
(2)
0 (x, y) in medium 2 is reduced to the transmitted

field F
(2)
0− (x, y):

F
(2)
0 (x, y) = F

(2)
0− (x, y) = ρ(2) exp(−jαix + jβ

(2)
i y)

=

{
E

(2)
z,0−(x, y) in E‖

Z2H
(2)
z,0−(x, y) in H‖

(2c)

with

β
(2)
i =

√
k2

2 − α2
i ; k2 = n2k1; Z2 = Z1/n2 (2d)

If

Im(n2) = 0, β
(2)
i = k2 cos θ(2)

i (2e)

F
(1,2)
0− (x, y) designates a plane wave moving in direction −y and

F
(1,2)
0+ (x, y), one moving in direction +y, respectively. ρ(1) and ρ(2)

are the Fresnel reflection and transmission coefficients, respectively,
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defined as follows:

ρ
(1)
E‖

=
β

(1)
i − β

(2)
i

β
(1)
i + β

(2)
i

and ρ
(2)
E‖

=
2β(1)

i

β
(1)
i + β

(2)
i

(3a)

ρ
(1)
H‖

=

β
(1)
i

n2
1

− β
(2)
i

n2
2

β
(1)
i

n2
1

+
β

(2)
i

n2
2

and ρ
(2)
H‖

=
n1

n2

2
β

(1)
i

n2
1

β
(1)
i

n2
1

+
β

(2)
i

n2
2

(3b)

If Im(n2) = 0 and n1 = 1, ρ(1) and ρ(2) are real.
For a locally deformed plane, we consider, in addition to the

incident, reflected and transmitted plane waves, a scattered field
F

(1,2)
d (x, y). The plane waves F

(1,2)
0∓ (x, y) have an infinite power but

the scattered fields F
(1,2)
d (x, y) have a finite power and a zero mean

power density per unit surface [8, 9]. The problem consists in working
out the field F

(1,2)
d (x, y) scattered within the two media.

3. FOURIER-RAYLEIGH INTEGRAL

3.1. Asymptotic Expression

Outside the deformation, the scattered field can be represented by a
superposition of a continuous spectrum of outgoing plane waves [6–9],
the so-called Fourier-Rayleigh integral (4).

For y > y
(1)
M = max(a(x)) and y < y

(2)
M = min(a(x)), ∀x,

F
(m)
d (x, y) =

1
2π

+∞∫
−∞

R̂(m)(α) exp(−jβ(m)(α)|y|) exp(−jαx)dα

=




E
(m)
d,z (x, y) in E‖

or
ZmH

(m)
d,z (x, y) in H‖

(4)

In a lossless medium (m), a propagating wave is defined when |α| < km,
with:

α = km sin θ; β(m)(α) =
√
k2
m − α2 = km cos θ and − π/2 < θ < π/2

(5a)
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An evanescent wave exists when |α| ≥ km with:

β(m)(α) = −j
√
k2
m − α2 (5b)

In the far-field zone, the Fourier-Rayleigh integral is reduced to the
only contribution of the propagating waves. In the polar coordinate
system, we show that the asymptotic expression of the Fourier-
Rayleigh integral is given by [8]:

�F
(m)
d (x = r sin θ, y = r cos θ)

≈


 1

2π

+km∫
−km

R̂(m)(α) exp(−jβ(m)(α)|y|) exp(−jαx)dα


 �uz

=
(
F

(m)
dfar

(r, θ) + O

(
1

r3/2

))
�uz (6a)

F
(m)
dfar

(r, θ) =

√
km
2πr

R̂(m)(km sin θ) cos θ exp(−jkmr) exp
(
j
π

4

)
(6b)

In the radiation zone, the field F
(m)
dfar

(r, θ) at the observation point
(r, θ) decreases as 1/

√
r and the angular dependence is given by the

function R̂(m)(α) cos θ, and becomes identified with the propagating
wave amplitudes of the continuous spectrum (4) with α = km sin θ.

3.2. Power Conservation — Scattering Pattern

For a lossless material, the angular power density dP
(m)
d (θ)

dθ is defined as
follows:

dP
(m)
d (θ)
dθ

=
km|R̂(m)(km sin θ)|2 cos2(θ)

4πZm
with − π/2 < θ < +π/2

(7)

dP
(m)
d (θ) is the real part of the flux of the complex scattered Poynting

vector of the scattered field F
(m)
dfar

(r, θ) through an elementary surface

d�S = rdθ∆z�ur, with ∆z = 1. The angular power density dP
(m)
d (θ)

dθ

(W.rad−1) defines the scattering pattern.
Many authors [12] define an angular density of scattered power in

degrees normalized with respect to the flux of incident power through
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the modulated region:

dξ
(m)
d (θ)
dθ

=
π

180Pi

dP
(m)
d (km sin θ)

dθ
=

π

180λl
n2
m|R̂(m)(km sin θ)|2 cos2 θ

cos θ(1)
i

(8)

where −90◦ < θ < +90◦ with

Pi =
1
2

Re

(∫ +l/2

−l/2
�E

(1)
0− ∧ �H

(1)∗
0− dx

)
, �uy =

1
2Z1

l cos θ(1)
i (9)

h∗ is the complex conjugate of h and �a∧�b the vector product of �a and
�b. dξ

(1)
d (−θ(1)i )

dθ is the backscattering coefficient of the surface illuminated
under incidence θ

(1)
i .

For lossless dielectric media, R̂(m)(km sin θ) fulfils the power
balance criterion (10) where ξ

(m)
d corresponds to the total normalized

power scattered in medium (m) and ξ
(m)
0 represents the electromagnetic

coupling between the reference field F
(m)
0 and the scattered field F

(m)
d

(Appendix A).

ξ
(1)
d + ξ

(2)
d = ξ

(1)
0 + ξ

(2)
0 (10a)

and

ξ
(m)
0 = −2

l

nm cos θ(m)
i

cos θ(1)
i

ρ(m) Re
[
R̂(m)(km sin θ(m)

i )
]

(10b)

The accuracy on the power balance can be defined as follows:

∆ξ = − log10

(
ξ
(1)
d + ξ

(2)
d − ξ

(1)
0 − ξ

(2)
0

ξ
(1)
d + ξ

(2)
d

)
(11)

The integer part of ∆ξ gives the number of significant digits common
to ξ

(1)
d + ξ

(2)
d and ξ

(1)
0 + ξ

(2)
0 . The relative error on the power balance

(10) is equal to 10−∆ξ.

4. ANALYSIS IN THE SPECTRAL DOMAIN

The scattered field cannot be expressed by the Rayleigh integral in the
modulated zone (Y (2)

M < y < Y
(1)
M ) if the perturbation amplitude is
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too large [6–9]. In this paper, we propose to derive an expression
of electromagnetic fields that is valid everywhere in space, outside
and on the surface, by solving Maxwell’s equations in the translation
coordinate system (x, u = y − a(x), z) [1–3].

4.1. Components of Fields and Eigenvalue Systems

If there is no current density and no charge density, then under their
covariant form [1, 3], Maxwell’s equations expressed in the translation
system lead to a differential system:

1
jkm

∂F (m)(x, u)
∂u

=
d(x)
jkm

∂F (m)(x, u)
∂x

+
(
c(x)− 1

)
G(m)(x, u) (12a)

1
jkm

∂G(m)(x, u)
∂u

=
1
k2
m

∂

∂x

[
c(x)

∂F (m)(x, u)
∂x

]
− 1

k2
m

∂2F (m)(x, u)
∂x2

− F (m)(x, u) +
1

jkm

∂

∂x

[
d(x)G(m)(x, u)

]
(12b)

The local functions c(x) and d(x) depend on the profile derivative:

d(x) =
ȧ(x)

1 + ȧ(x)2
; c(x) = ȧ(x)d(x); ȧ(x) =

da(x)
dx

(13)

System (12) is valid for the two types of polarization, with
for E‖ polarization:

F (m)(x, u) = E(m)
z (x, u); G(m)(x, u) = ZmH

(m)
x (x, u)

E(m)
x (x, u) = E(m)

u (x, u) = H(m)
z (x, u) = 0 and H(m)

u (x, u) �= 0
(14a)

for H‖ polarization:

F (m)(x, u) = ZmH
(m)
z (x, u); G(m)(x, u) = −E(m)

x (x, u)

H(m)
x (x, u) = H(m)

u (x, u) = E(m)
z (x, u) = 0 and E(m)

u (x, u) �= 0
(14b)

The covariant components E
(m)
x (x, u), E

(m)
z (x, u), H

(m)
x (x, u) and

H
(m)
z (x, u) are parallel to surfaces u = constant. These components

verify the boundary conditions in u = 0, hence their presence in
differential system (12).
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4.2. Elementary Wave Functions

After a positive Fourier transform, system (12) takes the form:

1
jkm

∂F̂ (m)(α, u)
∂u

= − 1
2πkm

∫ +∞

−∞
γd̂(α− γ)F̂ (m)(γ, u)dγ

+
1
2π

∫ +∞

−∞
ĉ(α− γ)Ĝ(m)(γ, u)dγ − Ĝ(m)(α, u)

(15a)

1
jkm

∂Ĝ(m)(α, u)
∂u

= − α

2πk2
m

∫ +∞

−∞
γĉ(α− γ)F̂ (m)(γ, u)dγ

− k2
m − α2

k2
m

F̂ (m)(α, u)

− α

2πkm

∫ +∞

−∞
d̂(α− γ)Ĝ(m)(γ, u)dγ (15b)

F̂ (m)(α, u), Ĝ(m)(α, u), ĉ(α) and d̂(α) are the Fourier transforms of
functions F (m)(x, u), G(m)(x, u), c(x) and d(x), respectively.

A method of moments with pulses as basis and weighting functions
is applied to solve system (15) in the spectral domain [5]. The unknown
functions F̂ (m)(α, u) and Ĝ(m)(α, u) and the Fourier transforms ĉ(α)
and d̂(α) are expanded in a series of piecewise functions (pulses) b̂q(α)
of unit amplitude, of width ∆α, and centered on αq = q∆α:

F̂ (m)(α, u) =
q=+∞∑
q=−∞

F (m)
q (u)b̂q(α); Ĝ(m)(α, u) =

q=+∞∑
q=−∞

G(m)
q (u)b̂q(α)

(16)

ĉ(α) =
q=+∞∑
q=−∞

cq b̂q(α); d̂(α) =
q=+∞∑
q=−∞

dq b̂q(α) (17)

The spectral resolution ∆α is fixed by the cut-off integer Mc.

∆α =
2k1

2Mc + 1
(18)

The basis functions constitute an orthonormal basis with respect to
the inner product (19) where δm,q denotes the Kronecker symbol.

〈
b̂m(α); b̂q(α)

〉
=

∫ +∞

−∞
b̂m(α)b̂q(α)dα = ∆αδm,q (19)
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Substituting expressions (16) and (17) into system (15) and taking the
inner product of the intermediate equations with each basis function
b̂q(α), we obtain, for each medium, an infinite system of differential
equations relating coefficients F

(m)
q (u) and G

(m)
q (u) to each other.

With a truncation order M , the resolution gives 4M +2 eigensolutions
of initial system (15):

F̂ (m)
n (α, u) =

q=+M∑
q=−M

f (m)
qn b̂q(α) exp(jkmr(m)

n |u|)

with 1 ≤ n ≤ 4M + 2

Ĝ(m)
n (α, u) =

q=+M∑
q=−M

g(m)
qn b̂q(α) exp(jkmr(m)

n |u|)

(20)

where f
(m)
qn and g

(m)
qn with −M ≤ q ≤ M represent the components of

eigenvectors �f
(m)
n and �g

(m)
n associated with the eigenvalue r

(m)
n .

The principle of resolution has been briefly described in this
subsection. This principle is detailed in [4] for a perfectly conducting
interface. Nevertheless, the expressions of matrices given in [4] are
valid whatever the refractive index of medium.

The signs of the real (Re) and imaginary (Im) parts of kmr
(m)
n

define the nature of the wave corresponding to the elementary wave
function (20). In particular, F̂ (m)

n (α, u) and Ĝ
(m)
n (α, u) represent an

outgoing wave propagating without attenuation if Re(kmr
(m)
n ) < 0 and

Im(kmr
(m)
n ) = 0. For an evanescent wave, Im(kmr

(m)
n ) > 0.

In [4], we show that the eigenvalues are opposite two by two.
Since rn and −rn are eigenvalues, among the 4M + 2 eigenfunctions
(20), there are 2M +1 of them that correspond to outgoing waves and
as many of them to incoming waves.

For lossless media, the real eigenvalues are on the interval [−1; +1]
and correspond to the cosine of scattering angles. Moreover, among the
2M + 1 outgoing waves, 2 Ent(nmMc + nm/2) + 1 are moving without
attenuation and give the far-field (Ent designates the integer part).

Finally, the Fourier transforms of covariant components of scat-
tered fields are defined as a linear combination of 2M+1 eigensolutions
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(20) satisfying the outgoing wave condition.

F̂
(m)
d (α, u) =

2M+1∑
n=1

A(m)
n F̂ (m)

n (α, u) (21a)

Ĝ
(m)
d (α, u) =

2M+1∑
n=1

A(m)
n Ĝ(m)

n (α, u) (21b)

4.3. Scattering Amplitudes and Boundary Conditions

The scattering amplitudes An are found by solving the boundary
conditions in u = 0 (i.e., in y = a(x)). Taking into account expressions
(1) and (2) of the longitudinal component F (m)

0 (x, y) of the total field
without any deformation and expressions (21) of covariant components
of the scattered field, we obtain:
For E‖ polarization:

F
(1)
d (x, u=0)− F

(2)
d (x, u=0) = −F (1)

0

(
x, y=a(x)

)
+ F

(2)
0

(
x, y=a(x)

)
(22a)

G
(1)
d (x, u = 0)

Z1
− G

(2)
d (x, u = 0)

Z2

= −
(
− 1
jk1Z1

∂F
(1)
0 (x, y)
∂y

+ ȧ(x)
1

jk1Z1

∂F
(1)
0 (x, y)
∂x

)
y=a(x)

+

(
− 1
jk2Z2

∂F
(2)
0 (x, y)
∂y

+ ȧ(x)
1

jk2Z2

∂F
(2)
0 (x, y)
∂x

)
y=a(x)

(22b)

For H‖ polarization:

F
(1)
d (x, u=0)

Z1
− F

(2)
d (x, u=0)

Z2
= −F

(1)
0

(
x, y=a(x)

)
Z1

+
F

(2)
0

(
x, y=a(x)

)
Z2

(23a)

−G(1)
d (x, u = 0) + G

(2)
d (x, u = 0)

= −
(

1
jk1

F
(1)
0 (x, y)
∂y

− ȧ(x)
1
jk1

∂F
(1)
0 (x, y)
∂x

)
y=a(x)

+

(
1
jk2

∂F
(2)
0 (x, y)
∂y

− ȧ(x)
1
jk2

∂F
(2)
0 (x, y)
∂x

)
y=a(x)

(23b)
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After a Fourier transform, the continuity relations (22) and (23) are
projected onto the basis functions. According to (1), (2), (20) and
(21), for each polarization, a (4M + 2)-dimensional matrix system is
obtained, the inversion of which leads to spectral amplitudes A(m)

n .
For E‖ polarization and −M ≤ q ≤ +M :

2M+1∑
n=1

A(1)
n f (1)

qn −
2M+1∑
n=1

A(2)
n f (2)

qn = −
(
S

(1)
0−,q+ρ

(1)
E‖
S

(1)
0+,q

)
+ρ

(2)
E‖
S

(2)
0+,q (24a)

1
Z1

2M+1∑
n=1

A(1)
n g(1)

qn −
1
Z2

2M+1∑
n=1

A(2)
n g(2)

qn

=
k1

β
(1)
i Z1

(
S

(1)
0−,q − ρ

(1)
E‖
S

(1)
0+,q

)
− αi

β
(1)
i k1Z1

(
T

(1)
0−,q − ρ

(1)
E‖
T

(1)
0+,q

)

−
k2ρ

(2)
E‖

β
(2)
i Z2

S
(2)
0−,q +

αiρ
(2)
E‖

β
(2)
i k2Z2

T
(2)
0−,q (24b)

For H‖ polarization and −M ≤ q ≤ +M :

1
Z1

2M+1∑
n=1

A(1)
n f (1)

qn −
1
Z2

2M+1∑
n=1

A(2)
n f (2)

qn = − 1
Z1

(
S

(1)
0−,q+ρ

(1)
H‖

S
(1)
0+,q

)
+
ρ
(2)
H‖

Z2
S

(2)
0q

(25a)
2M+1∑
n=1

A(1)
n g(1)

qn −
2M+1∑
n=1

A(2)
n g(2)

qn

=
Z1k1

β
(1)
i

(
S

(1)
0−,q − ρ

(1)
H‖

S
(1)
0+,q

)
− Z1αi

β
(1)
i k1

(
T

(1)
0−,q − ρ

(1)
H‖

T
(1)
0+,q

)

−
Z2k2ρ

(2)
H‖

β
(2)
i

S
(2)
0−,q +

Z2αiρ
(2)
H‖

β
(2)
i k2

T
(2)
0−,q (25b)

The coefficients of second members of Eqs. (24) and (25) are given by:

S
(m)
0∓,q =

1
∆α

∫ l/2

−l/2

(
exp

(
±jβ(m)

i a(x)
)
− 1

)
I∗q (x) exp(−jαix)dx (26a)

T
(m)
0∓,q =

1
∆α

∫ l/2

−l/2

(
exp

(
±jβ(m)

i a(x)
)
− 1

)
J∗q (x) exp(−jαix)dx (26b)
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Functions Iq(x) and Jq(x) are defined as follows:

Iq(x) =
∫ αq+∆α/2

αq−∆α/2
exp(−jαx)dα=∆α sinc

(
∆α

x

2

)
exp(−jαqx) (27a)

Jq(x) =
∫ αq+∆α/2

αq−∆α/2
α exp(−jαx)dα

=
exp(−jαqx)

jx

(
2jαq sin

(
∆α

x

2

)
+ ∆α sinc

(
∆α

x

2

)

−∆α cos
(
∆α

x

2

))
(27b)

4.4. Normalized Power Density

dξ
(m)
d
dθ is defined from the scattering amplitudes R̂(m)(α) (Eqs. 4 and 8).

Outside the modulated zone, the longitudinal components F
(m)
d (x, u)

can be represented by the Fourier-Rayleigh integrals. For a lossless
medium, the following continuity relations can then be written:
At y = y

(m)
M , ∀x

F
(m)
d

(
x, u = y

(m)
M − a(x)

)
=

1
2π

∫ +∞

−∞
R̂(m)(α) exp

(
−jβ(m)(α)

∣∣∣y(m)
M

∣∣∣) exp(−jαx)dα (28)

The function R̂(m)(α) is obtained by solving the continuity relation
(28) with the PPMo method in the spectral domain [4]. Projections
R

(m)
q of R̂(m)(α) onto the basis functions b̂q(α) are given by:
∀q ∈ [−M ; +M ],

R(m)
q =

exp
(
+jβ

(m)
q

∣∣∣y(m)
M

∣∣∣)
∆α

2M+1∑
n=1

(V (m)
qn +f (m)

qn ) exp
(
jkmr

(m)
n

∣∣∣y(m)
M

∣∣∣)A(m)
n

(29)

with

V (m)
qn =

+M∑
p=−M

f (m)
pn

∫ l/2

−l/2

(
exp

(
j(−1)mkmr(m)

n a(x)
)
− 1

)
I∗p (x)Iq(x)dx

(30)
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β(m)
q =

(〈
b̂q(α); (k2

m − α2)b̂q(α)
〉)1/2

= k1

(
n2
m −

12q2 + 1
3(2Mc + 1)2

)1/2

; Im(β(m)
q ) ≤ 0 (31)

5. RESULTS

5.1. Convergence of the Method

Mc and M are the two numerical parameters of the method. The cut-
off integer Mc sets the width ∆α of pulses b̂q(α). As Mc increases,
∆α decreases and the approximation of functions F̂d(α, u), Ĝd(α, u),
ĉ(α) and d̂(α) in series (16) and (17) becomes more accurate. The
consequence of the M th-order truncation is the suppression of high
spatial frequency evanescent waves in the Fourier transform of field
components (21) and in Rayleigh integrals (4). Indeed, integration
variable α varies within interval [−αmax; +αmax] where αmax depends
on ratio M/Mc:

αmax = αM = M∆α =
2k1M

2Mc + 1
≈ k1

M

Mc
if Mc � 1 (32)

The method is numerically stable and the accuracy in the results
increases with M and Mc. The convergence tests proposed in [4] for
the case of perfectly conducting surfaces can be applied to dielectric
interfaces and the two main conclusions remain valid:

• For a given wavelength λ and a given depth, the value Mc increases
with the length of the deformation (the value of the spectral
resolution ∆α ensuring the numerical convergence decreases with
l).
• For given λ and l values, the value of αmax ensuring the

convergence of results increases with the depth of the deformation.

5.2. Study of Finite Gratings Having a Small Number of
Grooves

The finite grating under consideration [10, 11] is a rough surface whose
profile is given by:

a(x) = −h cos
(

2πx
D

)
V (x) (33a)
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with:

V (x) =




0 if |x| > +
l

2
1 if − l

2
+ t < x < +

l

2
− t

x + l/2
t

− 1
2π

sin
(

2π
t

(
x +

l

2

))
if − l

2
< x < − l

2
+ t

l/2− x

t
− 1

2π
sin

(
2π
t

(
l

2
− x

))
if

l

2
− t < x <

l

2
(33b)

Figure 2 shows four finite gratings with t = D/2 and h = 0.2D. The
length l is equal to 3, 5, 7 and 9D, respectively. Figure 3 and Figure 4

give the normalized power density dξ
(m)
d
dθ associated with these 4 lengths

(θ(1)
i = 30◦, λ = 0.9D, n2 = 3/2).
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Figure 2. Finite gratings having a small number of grooves. t = D/2
and h = 0.2D. From top to the bottom, l = 3, 5, 7, 9D with D = 1 m.
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Figure 3. Normalized scattering pattern for E‖ polarized finite

grating referenced in Subsection 5.2. θ
(1)
i = 30◦, λ = 0.9D, n2 = 3/2,

θ
(1)
i = 0◦ and Pi = l−2t

2Z1
cos θ(1)

i . For profile (a), (Mc;M) = (16; 80). For
profiles (b) and (c), (Mc;M) = (20; 100). For profile (d), (Mc;M) =
(24; 120). The dashed curves show the values given by the Rayleigh
method [8, 9].

The obvious conclusion is that the ratio of lobe amplitudes is
nearly independent of the number of grooves since l ≥ 5D. These peaks
correspond to the scattering angles of the infinite grating. Moreover,
the width of lobes is in inverse ratio to the number of grooves. For all
these structures, the normalized powers ξ

(1)
d and ξ

(2)
d scattered in the

two media are of the order of 0.07 and 0.57 for the E‖ case and 0.05

and 0.35 for the H‖ case, respectively. Insofar as ξ
(1)
d and ξ

(2)
d values

are constant and as the width of peak varies as 1/l, we deduce that
the height of these peaks is proportional to the number of grooves, a
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Figure 4. Normalized scattering pattern for H‖ polarized finite
grating referred to in Subsection 5.2. Same values as in Fig. 3.

fact which can be confirmed in Figures 3 and 4.
The value of Mc depends on the lobe width of the scattering

pattern. Mc sets the spectral resolution ∆α and consequently, the
angular resolution. One should increase the cut-off integer value for a
better description of narrow lobes. For the profiles under consideration,
Mc increases with l. For example, for l = 3D and l = 9D, we take
Mc = 16 and Mc = 24, respectively. With h = 0.2D and λ = 0.9D,
the depth of gratings is 0.44λ. Taking M = 5Mc, formula (31) gives
αmax ≈ 5k1 = 10k2/3. This value ensures a good description of the
scattered field inside and outside the grooves. With these values of Mc

and M , the errors on the power balance (11) are smaller than 10−3.
Figures 3 and 4 also show the scattering patterns obtained by a

Rayleigh method [8, 9]. We have recently determined the numerical
applicability domain of this method in the far=field zone [8, 9] and we
try to confirm this domain. Here, the surfaces under consideration are
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Figure 5. Total normalized power scattered in medium (m) ξ(m)
d and

normalized coupling power ξ
(m)
0 as a function of the depth parameter

p for the profile referred to in Subsection 5.3. Mc = 16, M =
Ent(|p|/λ + 2)Mc; l = D = 20 cm, λ = 10 cm, θ(1)

i = 17.6◦, n2 = 1.94.

included in or very close to the domain and the comparisons with the
rigorous method are quite good. The reliability of the results obtained
by the Rayleigh method is confirmed. Nevertheless, the power balance
errors increase with l. For l = 3D, this error is smaller than 10−2. For
l = 9D, it is close to 1.5% in E‖, and 4% in H‖.

5.3. Influence of the Deformation Depth

Figure 5 shows the normalized scattered powers ξ(m)
d and the normal-

ized coupling powers ξ(m)
0 as a function of the parameter p defining the
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deformation depth:

a(x) =



pλ

2

(
cos

(
2πx
D

)
+ cos

(
4πx
D

))
if |x| ≤ l

2

0 if |x| > l

2

(34)

with l = D = 20 cm, λ = 10 cm, θi = 17.6◦, n2 = 1.94 and
−0.8 ≤ p ≤ +0.8.

For p = ±0.8, the perturbation has a depth equal to 5λ/4. With
p = 0, the surface is reduced to a plane and the scattered fields are zero.
The obvious conclusion is that the normalized scattered powers ξ

(m)
d

do not increase systematically with the depth. For E‖ polarization,

the maximum of ξ(1)
d is reached at p = −0.55 and for H‖ polarization

at p = +0.4.
For these profiles, Mc = 16 is used and the truncation order

increases with depth. For p = 4/10, M = 6Mc and for p = 8/10,
M = 10Mc, i.e., αmax ≈ 6k1 and αmax ≈ 10k1, respectively. In all
cases, the power balance is obtained with an error smaller than 10−3.

Figure 6 gives the scattering patterns in air, associated with 4
(−p; +p) pairs for E‖ polarization. Figure 7 shows the scattering
patterns associated with same values of p but in the dielectric material
and for H‖ polarization. Patterns given for p = −0.2 and p = +0.2
are almost superimposed. With these values, the y = a(x) and
y = −a(x) profiles represent small-depth perturbations which can be
analyzed with the Small Perturbation method [12, 13]. With the SP

approximation, for a given deformation, dξ
(m)
d (θ)

dθ is proportional to the
square modulus of the profile Fourier transform in α = km sin θ −
k1 sin θ(1)

i . Consequently, for a small depth versus the wavelength, the
scattering patterns for the y = a(x) and y = −a(x) profiles are equal.

From the comparison with the rigorous method, we note that the
Rayleigh method gives reliable results in both polarizations and for
both media below |p| = 0.6, but, it fails drastically for p = ±0.8.
These observations are in accordance with the numerical applicability
domain: with l = 2λ, the Rayleigh method is fully capable of
accurately describing the far field produced by local perturbations
having amplitudes close to λ and a derivative with an absolute value
smaller than 5/2.
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Figure 6. Normalized scattering patterns dξ
(1)
d
dθ for four values of ±p of

E‖ polarized profiles referred to in Subsection 5.3. The dashed curves
show the values given by the Rayleigh method [8, 9]. Same values as
in Fig. 5.

5.4. Distance Associated with the Radiation Zone

The deformation under consideration is described by a Schwartz
function:

a(x) =




0 if |x| > l/2

h exp
(
b− bl2

l2 − 4x2

)
if |x| ≤ l/2

with l = 2λ; h = 0.4λ; b = 2

(35)

Figure 8 gives the Oz component magnitudes of the scattered field
and of the far field as a function of the distance from the origin, r,
for an observation angle θ = 42◦ and under an incidence θ

(1)
i = 20◦
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Figure 7. Normalized scattering patterns dξ
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d
dθ for four values of ±p

of H‖ polarized profiles referred to in Subsection 5.3. Same values as
in Fig. 5.

(λ = 1 m, n2 = 1.5). The asymptotic field F
(m)
dfar

(r, θ) is given by (6b).
The spatial-domain values of the longitudinal component of scattered
fields F

(m)
d (x, u) is obtained by an inverse Fourier transform of (20a)

and (21a):

F
(m)
d (x, u) =

sin(∆αx/2)
πx

F
(m)
dp (x, u) (36a)

F
(m)
dp (x, u) =

2M+1∑
n=1

A(m)
n

+M∑
q=−M

f (m)
qn exp(−jq∆αx) exp(jkmr(m)

n |u|)

(36b)

with u = y − a(x).
The expression in cylindrical coordinates is obtained from Eq. (36)

with x = r sin θ and y = r cos θ. On all the curves shown, the
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Figure 8. Magnitude and phase of F
(1)
d (r, θ) and F

(1)
dfar

(r, θ) as a
function of r under the observation angle θ = 42◦ for the Schwartz
profile referred to in Subsection 5.4. l = 2λ, h = 0.4λ; b = 2, θ(1)

i = 20◦;
λ = 1 m and n2 = 1.5.

cosine of observation angles in the lossless medium (m) corresponds
to eigenvalues r

(m)
n . In this case, the asymptotic field amplitude

R̂(m)(α = k sin θ) corresponds to one of the projection coefficients R(m)
q

of R̂(m)(α) onto the basis function b̂q(α).
Function F

(m)
d (x, u) (Eq. 36) is defined as the product of the peri-

odic function F
(m)
dp (x, u), of period 2π/∆α by the function sin(∆αx/2)

πx ,
the main lobe of which has a width of 4π/∆α. Then, the curve of
the scattered field magnitude can show unwanted oscillations. For a
large enough observation distance, sooner or later, these oscillations
dominate. Figure 8(a) shows that with Mc = 16, these appear from
r = 2.2λ in E‖ polarization, and from r = 1.4λ in H‖ polarization.
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It is important to overcome this drawback. First, we can increase the
value of Mc. Figure 8(c) shows that with Mc = 32, the phenomenon
appears only from r = 4.4λ in E‖ polarization, and from r = 2.2λ in
H‖ polarization. A reduction of these oscillations can also be obtained
by filtering in the angular-domain. Figures 8(b) and 8(d) give the
modulus of the mean scattered field over five angles (Q = 2 in (37)).

〈
F

(m)
d (r, θn)

〉
=

1
2Q + 1

q=+Q∑
q=−Q

F
(m)
d (r, θn+q) (37)

θn is the observation angle corresponding to an eigenvalue r
(m)
n , with

r
(m)
n = cos θn.

This process is effective. For the profile under consideration, with
Mc = 16, the curves giving the magnitudes of 〈F (1)

d (r, θ)〉 and F
(1)
dfar

(r, θ)
are superimposed from an observation distance r that depends on the
polarization, until r=10λ.

To compare the functions 〈F (m)
d (r, θ)〉 and F

(m)
dfar

(r, θ), a limit
distance d(m) is defined as follows:

∀r > d(m),

∣∣∣∣∣∣
∣∣〈F (m)

d 〉
∣∣− ∣∣F (m)

dfar

∣∣∣∣F (m)
dfar

∣∣
∣∣∣∣∣∣ < 0.1 (38)

For r > d(m), the relative modulus error between the exact repre-
sentation 〈F (m)

d (r, θ)〉 and the asymptotic approximation F
(m)
dfar

(r, θ) is
smaller than 10%. For an observation angle θ = 42◦, d(1) ≈ 0.6λ in
E‖ polarization, and d(1) ≈ 1.2λ in H‖ polarization (Fig. 9). Distance
d(m) can be seen as the limit between the near zone and the far field
zone. For a given observation angle, this limit depends on the incident
wave polarization.

Figure 9 gives the magnitude and phase of 〈F (2)
d (r, θ)〉 and

F
(2)
dfar

(r, θ) as a function of r in medium (2). For the observation angle
θ = 0◦, d(2) ≈ 1.4λ ≈ 0.93λ2 in E‖ polarization, and d(2) ≈ 1.2λ ≈
0.8λ2 in H‖ polarization. For r > d(2), the phases of 〈F (2)

d (r, θ)〉
(circles) and of F (2)

dfar
(r, θ) (dots) are superimposed. Expressions (36–

37) are fully capable of accurately describing the near field and the
far-field both in magnitude and phase.

Figure 10 gives normalized scattering patterns dξ
(1)
d
dθ in E‖ polari-

zation and dξ
(2)
d
dθ in H‖ polarization and the magnitudes of 〈F (m)

d (r, θ)〉
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Figure 9. Magnitude and phase of F
(2)
d (r, θ) and F

(2)
dfar

(r, θ) as a
function of r under the observation angle θ = 42◦ for the Schwartz
profile referred to in Subsection 5.4. Same values as in Fig. 8.

and F
(m)
dfar

(r, θ) under two observation angles. Table 1 gives the values of
d(m) associated with Figures 8, 9 and 10. The obvious conclusion is that
for given polarization and medium, d(m) depends on the observation

angle. Moreover, d(m)(θ) does not systematically increase with dξ
(m)
d
dθ .

For example, in E‖ polarization, the maximum value of dξ
(1)
d
dθ is obtained

in the specular direction θ = θ
(1)
i = 20◦ with dξ

(1)
d
dθ

∣∣∣
θ=θ

(1)
i

= 0.0886 and

d(1)(θ(1)
i ) = 3.2λ. Well then, under θ = −27.5◦, dξ

(1)
d
dθ = 0.0198 and

d(1)(θ) = 3.5λ.
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Figure 10. Normalized scattering patterns and magnitudes of
F

(m)
d (r, θ) and F
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dfar

(r, θ) in both media as a function of r under many
observation angles. Same values as in Fig. 8.

Table 1. Values of d(m) for different observation angles.

Medium (m) Polarization Observation angle d(m)/λ

1 E‖ −27.5◦ 3.5

1 E‖ 20◦ 3.2

1 E‖ 42◦ 0.7

2 H‖ −10.6◦ 1.9

2 H‖ 0◦ 1.2

2 H‖ 13◦ 1.4
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6. CONCLUSION

The method proposed in this paper gives the field scattered by a
dielectric plane surface with a local deformation. The method is
numerically stable and the accuracy in the results increases with the
truncation order M and the cut-off integer Mc [4].

A filtering is applied in the angular-domain to reduce unwanted
oscillations inherent to the expression of the scattered field F

(m)
d (r, θ).

Accordingly, the method gives the near field and for a lossless dielectric
material, it allows the asymptotic behaviour in magnitude and phase
to be found.

To compare the filtered field 〈F (m)
d (r, θ)〉 and the asymptotic field

F
(m)
dfar

(r, θ), the limit distance d(m) from which the relative modulus
error is smaller than 10% is defined. We show that for given
polarization and medium, d(m) depends on the observation angle.

APPENDIX A. POWER BALANCE FOR A LOSSLESS
DIELECTRIC INTERFACE

We consider the bounded contour Γ1 = C1∪γ in Figure 1 where C1 is a
half-circle centered at the origin of radius R > l/2 and γ is the part of
surface S for x ∈ [−R;R]. Γ2 = C2 ∪ γ is the bounded contour defined
in the dielectric material. C1 is taken in the anticlockwise sense, C2 in
the clockwise sense.

For two lossless dielectric media with k2 > k1, the second Green
identity applied to the longitudinal component of the total field over
contour Γm yields:

Im
[ ∫

Cm

(F (m)
d + F

(m)
0 )

∂(F (m)
d + F

(m)
0 )

∂r

∗

Rdθ

+
∫
γ
(F (m)

d + F
(m)
0 )

∂(F (m)
d + F

(m)
0 )

∂n

∗

dl

]
= 0 (A1)

∂
∂n denotes the differentiation along the outward normal to Γm.

In E‖ polarization, F (1)
d + F

(1)
0 = F

(2)
d + F

(2)
0 over γ, and taking

into account of the directions of C1 and C2, according to (A1), we
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obtain:

Im
[ ∫ +π/2

−π/2
(F (1)

d + F
(1)
0 )

(
∂F

(1)
d

∂r
+

∂F
(1)
0

∂r

)∗
dθ

+
∫ +π/2

−π/2
(F (2)

d + F
(2)
0 )

(
∂F

(2)
d

∂r
+

∂F
(2)
0

∂r

)∗
dθ

]
= 0 (A2)

Four integrals must be computed. According to (6), a first integral is
given by:

Im

[∫ +π/2

−π/2

(
F

(1)
d

∂F
(1)
d

∂r

∗

+ F
(2)
d

∂F
(2)
d

∂r

∗)
dθ

]

=
1

2πR

∫ +π/2

−π/2
k2

1 cos2 θ|R̂(1)(k1 sin θ)|2dθ

+
1

2πR

∫ +π/2

−π/2
k2

2 cos2 θ|R̂(2)(k2 sin θ)|2dθ + O(1/R2) (A3)

Second, the wave functions F
(m)
0 (x, y) (2) in the polar coordinate

system are given by:

F
(1)
0 (R, θ) = exp

(
jk1R sin(θ + θ

(1)
i + π/2)

)
+ ρ

(1)
E‖

exp
(
jk1R sin(θ − θ

(1)
i − π/2)

)
(A4a)

F
(2)
0 (R, θ) = ρ

(2)
E‖

exp
(
jk2R sin(θ + θ

(2)
i + π/2)

)
(A4b)

According to (A4) and taking into account the expression of Fresnel
coefficients (3), we show the following result:

Im

[∫ +π/2

−π/2

(
F

(1)
0

∂F
(1)
0

∂r

∗

+ F
(2)
0

∂F
(2)
0

∂r

∗)
dθ

]

= 2β(1)
i

(
|ρ(1)
E‖
|2 − 1

)
+ 2β(2)

i |ρ
(2)
E‖
|2 = 0 (A5)

In a third stage, function F
(m)
0 (r, θ) and its derivative ∂F

(m)
0 (r,θ)
∂r are

expanded in a series of Bessel functions Jn(kmr), according to the
following relation:

exp(jkmr sin δ) =
+∞∑

n=−∞
Jn(kmr) exp(jnδ) (A6)
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with δ = θ + θ
(1)
i + π

2 , δ = θ − θ
(1)
i − π

2 or δ = θ + θ
(2)
i + π

2 .
Using the asymptotic expansion of Bessel functions (A6) in

relations (A4)

Jn(kmr) =
√

2
πkmr

(
exp

(
jkmr − j(2n + 1)

π

4

)

+ exp
(
−jkrm + j(2n + 1)

π

4

) )
+ O(r−3/2) (A7)

and taking into account far-field expression (6), the last two integrals
are:

Im

[∫ +π/2

−π/2

(
F

(1)
0

∂F
(1)
d

∂r

∗

+ F
(1)
d

∂F
(1)
0

∂r

∗)
dθ

]

=
2β(1)

i ρ
(1)
E‖

R
Re

(
R̂1(α = k1 sin θ(1)

i )
)

+ O(1/R2) (A8a)

Im

[∫ +π/2

−π/2

(
F

(2)
0

∂F
(2)
d

∂r

∗

+ F
(2)
d

∂F
(2)
0

∂r

∗)
dθ

]

=
2β(2)

i ρ
(2)
E‖

R
Re

(
R̂2(α = k2 sin θ(2)

i )
)

+ O(1/R2) (A8b)

Integrals (A8) express the electromagnetic coupling between the
scattered field F

(m)
d (r, θ) and the field without any deformation

F
(m)
0 (r, θ).

According to (A3), (A5) and (A8) and identifying the 1
r terms,

the following relation can be derived from (A2):

1
2π

∫ +π/2

−π/2
k2

1|R̂(1)(k1 sin θ) cos θ|2dθ+
1
2π

∫ +π/2

−π/2
k2

2|R̂(2)(k2 sin θ) cos θ|2dθ

= −2β(1)
i ρ

(1)
E‖

Re
(
R̂1(α=k1 sin θ(1)

i )
)
− 2β(2)

i ρ
(2)
E‖

Re
(
R̂2(α=k2 sin θ(2)

i )
)

(A9)

With the definition of the normalized angular power density (9),
relation (A9) gives the power balance (10). The proof can also be
applied to H‖ polarized lossless media and gives the same power
balance with the notation of fields (1) and (4).
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