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Abstract—Using rather general assumptions, wave beam propagation
is considered in a medium constituted of two half-spaces with smoothly
changing properties, these latter changing stepwise at the half-spaces’
interface. Expressions for the beam-shape change in the course of
propagation are obtained. General results are applied to a Gaussian
beam propagating in a series chain, and to fields described by the
Helmholtz equation.
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1. INTRODUCTION

Investigations of wave beam propagation in homogeneous media are
of interest both scientific and applied [1–3]. Sufficiently complete
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bibliography on this problem is given in [2]. However, investigations
of this important problem are carried out as usual for homogeneous
media. Meanwhile real media are frequently inhomogeneous, and this
fact may result in serious changes of the features of the propagating
wave beam. As far as we know, the only inhomogeneity previously
considered, was presented by two isotropic homogeneous half-spaces,
where reflection and refraction of the one-dimensional wave beam from
the half-spaces’ interface were studied [4]. Helmholtz’s equation is
usually used for describing the beam propagation. In a number of
cases, however, e.g. in media with spatial dispersion, gyrotropic and
anisotropic media, this equation becomes much more intricate, which
seriously complicates the propagation picture. Those and related
effects are of actual interest, and their consideration is the subject
of this paper.

In the single assumption of smoothness of medium’s properties,
we have derived expressions describing the beam propagating in the
near-zone (the Fresnel zone) and in the far-zone (the Fraunhofer zone).
We have studied in detail the change of the beamwidth caused by the
medium’s inhomogeneity, and culculated also multiwave propagation
in such media. The medium is considered to be isotropic with one-
dimensional inhomogeneity along the z-coordinate. The wave beam
propagation is described with an equation of quite general form, and
the theory built here is applied to the wave propagation in a series
chain.

2. GENERAL THEORY

We start with

Ĥ

{
z,
∂

∂�r
,
∂

∂z

}
E = 0, (1)

where operator Ĥ acting on a field E is an arbitrary function of its
arguments. Eq. (1) may be a differential, difference, integral with
difference kernel, etc. A solution to the equation provides an integral

E(z, �r) =
∫
E

(0)
k⊥
Uk⊥(z)ei�k⊥�rd�k⊥, (2)

where �k⊥ is a vector with components kx, ky and �r is a vector with
components x, y; Uk⊥(z) is the sought after function. Substituting (2)
into (1) yields an equation for Uk⊥(z):

Ĥ

{
z, i�k⊥,

∂

∂z

}
Uk⊥ = 0. (3)
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Let us formulate the boundary conditions of the problem. Suppose
that on the plane z = 0, a field distribution is given:

E(�r, 0) = E(0)(�r), (4)

where E(0)(�r) is a known function. From this condition (4), the
boundary condition for Uk⊥(z) is derived:

Uk⊥(0) = 1. (5)

Let the wave propagate in the positive direction, then for Uk⊥(z),
Zommerfeld’s radiation condition is fulfilled. As appears from Eqs. (2),
(4), and (5), E(0)

k⊥
is the Fourier transform for E(0)(�r):

E
(0)
k⊥

=
1

(2π)2

∫
E(0)(�r)e−i�k⊥�rd�k⊥. (6)

To obtain specific results, an explicit functional form for E(0)(�r) has to
be given. The Gaussian wave beam is practically the most applicable
one in the situation, therefore we assume

E(0)(�r) = E0e
− r2

w2
0 (7)

and

Ek⊥ = E0
w2

0

4π
e−

w2
0k

2
⊥

4 , (8)

here w0 is the beamwidth in the z = 0 plane, which is the beamwaist
in this case. Let us look for Uk⊥(z) in the form

Uk⊥(z) = ρk⊥(z)eiSk⊥ (z). (9)

Note that ρ is a dimensionless quantity and S is the phase.
Let Ĥ as a function of z be changing substantially on a distance

L, which is, hence, a characteristic length of the change of medium’s
properties; let the correlations

1
ρ(z)

∂ρ(z)
∂z

� 1
L
,

1
Sk⊥(z)

∂Sk⊥(z)
∂z

� k,

1
Sk⊥(z)

∂2Sk⊥(z)
∂z2

� k

L

(10)
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be fulfilled. The wave amplitude also changes on the same length L,
and 1/k is a characteristic distance over which the wave phase changes.

Hereinafter, we shall use a geometrical optics method JWKB for
which the validity condition is kL� 1. To define S and ρ from Eq. (10)
we have a system of equations:

H(i�k⊥, ikz, z) = 0, ρ2υ(i�k⊥, ikz, z) = const., (11)

where

kz =
∂Sk⊥(z)
∂z

and υ =
∂H(z, i�k⊥, ikz)

∂kz
.

The set of equations (11) is a system of ordinary equations, of which the
first one is the eikonal equation and the second one is the continuity
equation. A future publication will be dedicated to deducing these
equations.

From the first equation of (11) we have found kz(i�k⊥, z), then for
S and ρ we obtain

Sk⊥(z) =

z∫
0

kz(z, i�k⊥)dz, ρk⊥(z) =

√√√√υ
(
0, i�k⊥, ikz(0)

)
υ
(
z, i�k⊥, ikz(z)

) . (12)

The second expression in (12) has been obtained by choosing such
a value of the “const.” in the second equation of (11) that yields
ρk⊥(0) = 1. It follows from Eqs. (11) that Uk⊥(0) = 1.

We consider here two limiting cases: near-field zone and far-
field zone. In the near-zone, one can consider kx and ky to be
small parameters and to expand ρ(i�k⊥, ikz, z) and S(i�k⊥, ikz, z) in
corresponding series in the near neighborhood of the �k⊥ = 0 point. The
needed criteria will be given further. Sk⊥ and ρk⊥ are even functions
of �k⊥ because the medium is isotropic and the substitution �k⊥ for −�k⊥
does not change these functions. After expanding ρ(i�k⊥, ikz, z) and
S(i�k⊥, ikz, z) in series we get

ρk⊥(z) ≈ ρ0(z),

Sk⊥(z) = S0(z) +
1
2

[
∂2S0(z)
∂k2

x

k2
x + 2

∂2S0(z)
∂kx∂ky

kxky +
∂2S0(z)
∂k2

y

k2
y

]
.

(13)

For ρk⊥(z) one can restrict onself to the first expansion term, and for
the phase S, because it is included in the exponent, to the second term.
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Substituting (9) and (14) into (3) gives

E(�r, z) =
E0w

2
0ρ0(z)e

iS0(z)√
D(z)

exp
{
− 1

4a

[
x2 +

(ay − bx2)
D(z)

]}
, (14)

here

D(z) = a(z)c(z)− b2(z), where a =
w2

0

4
− i

2
∂2S0(z, i�k⊥)

∂k2
x

,

b = − i
2
∂2S0(z, i�k⊥)
∂kx∂ky

, c =
w2

0

4
− i

2
∂2S0(z, i�k⊥)

∂k2
y

.

If in the z = const. planes the medium is uniform and isotropic,
i.e. Sk⊥ is a function of only k2

⊥, after some calculations we get an
expression for the field:

E = AeiΦ, (15)

where A is the field amplitude and Φ is its phase:

A =
E0ρ0(z)
W (z)

exp
{
−αz +

r2

w2
0W (z)

}
(16)

Φ = S0(z)− arctan
{

4S0(z)
w2

0W (z)

}
+

4S′0(z)r
2

w4
0

, (17)

here

W (z) = 1 +
[
4S′0(z)
w2

0

]2

and α is the field attenuation due to dissipative processes. It is
supposed that

αz

k
� 1, S0(z) = Sk⊥(z)

∣∣
k⊥=0

and S′0(z) =
dSk⊥(z)
dk2
⊥

∣∣∣∣
k⊥=0

.

Note that

w2(z) = w2
0W (z) (18)

is the effective beam width related to its diffractional spreading in the
medium. The same is the origin of the two last terms in (17).
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For the far-field zone, the integral in formula (2) can be calculated
using the saddle-point technique [5], which results in

A =
E0w

2
0

4
∣∣D1/2

(
�k⊥S

)∣∣ exp
{
−αz − w

2
0
�k2
⊥S

4

}
, (19)

Φ = Sk⊥S (z) + �k⊥S�r, (20)

where vector �k⊥S can be found from the equation

�r +
∂S

(
z,�k⊥S

)
∂�k⊥S

= 0. (21)

3. BEAMS TRANSMITTED AND REFLECTED FROM
THE INTERFACE

We shall suppose the interface to be the z = 0 plane and the beam
source located in a z = z0 plane of a medium filling the positive half-
space. In this half-space the field is described by Eq. (1), and in the
negative half-space by the same equation with another H function that
will be referred to as H ′. Thus, passing the z = 0 plane, the medium
properties change abruptly. As boundary conditions relating the field
in the positive half-space with that of the negative half-space, we shall
take the continuity condition on the z = 0 plane for the field E and its
derivative with respect to z:

E(+0) = E(−0),
∂E(+0)
∂z

=
∂E(−0)
∂z

. (22)

In the positive half-space, the field is a sum of two fields: incident Ei
and reflected ER, and in the negative half-space the field is ET . Setting
aside the details of the standard calculation procedure, we obtain:

Ei =
∫
Ek⊥ρk⊥(z, z0) exp

{
i
[
Sk⊥(z, z0) + �k⊥�r

]}
d�k⊥ (23)

with ρ(z, z0) and S(z, z0) that should satisfy the following boundary
conditions, respectively

ρk⊥(z0, z0) = 1 and Sk⊥(z0, z0) = 0; (24)

these requirements lead to the following expressions for ρk⊥(z, z0) and
Sk⊥(z, z0):

ρk⊥(z, z0) =

√√√√v
[
i�k⊥, ikz(z0)

]
vz

[
i�k⊥, ikz(z)

] , Sk⊥(z, z0) =

z∫
z0

kz(z)dz. (25)
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Then

ER =
∫
Ek⊥ρk⊥R(z) exp

{
i
[
Sk⊥R(z) + �k⊥�r

]}
d�k⊥, (26)

and

ET =
∫
Ek⊥ρk⊥T (z) exp

{
i
[
Sk⊥T (z) + �k⊥�r]}d�k⊥. (27)

In the two last expressions:

ρk⊥R(z) =
kz

(
0,�k⊥

)
− k′z

(
0,�k⊥

)
kz

(
0,�k⊥

)
+ k′z

(
0,�k⊥

)
√
vk⊥(z0)
vk⊥(z)

,

Sk⊥R(z) = Sk⊥ (0, z0)− Sk⊥(z, 0),

ρk⊥T (z) =
2kz

(
0,�k⊥

)
k′z

(
0,�k⊥

)
− kz

(
0,�k⊥

)
√
vk′⊥(0)vk⊥(z0)

vk⊥(0)vk′⊥(z)
, and

Sk⊥T (z) = Sk⊥T (z, 0) + Sk⊥T (0, z).

One can see that the formulas for reflected and transmitted beams, up
to the designation of the variables, coincide with formulas for the field
in an unbounded space, therefore all the results obtained for a beam
in an unbounded space are applicable to the reflected and transmitted
beams.

4. TWO-WAVE PROBLEM

Up to now, it has been supposed that the first of Eqs. (11) has a unique
solution. However, there are cases of actual physical interest, when
several solutions satisfy this equation, that is we are dealing with the
propagation of several waves. Suppose now that there are two solutions
denoted as k(1,2)(z, k⊥). For the solutions of the problem to be single-
valued, there must be—in addition to the boundary condition (4)—one
more boundary condition over the field derivative in the z = 0 plane,
namely

∂Ez(0)
∂z

= F(�r). (28)

The fields E(1,2) can be determined by a formula analogous to (2):

E(1,2)(�r) =
∫
E

(1,2)
k⊥

U
(1,2)
k⊥

(z)ei�k⊥�rd�k⊥, (29)
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where

E
(1)
k⊥

=
k

(2)
zk⊥

(0)E(0)
k⊥

+ iFk⊥
k

(2)
zk⊥

(0)− k(1)
zk⊥

(0)
, E

(2)
k⊥

= −
iE

(0)
k⊥

+ k(1)
zk⊥

(0)E(0)
k⊥

k
(2)
zk⊥

(0)− k(1)
zk⊥

(0)
,

and U (1,2)
k⊥

is determined like in the case with a unique solution.

5. INTEGRAL AND DIFFERENCE EQUATIONS
CONVERTED INTO DIFFERENTIAL ONES

Now we shall demonstrate how an integral equation and a finite-
difference one can be converted into equations of the form (1). Consider
as an example a finite-difference equation

∞∑
n=−∞

An(z)E
(
��+ ��n

)
= 0. (30)

Note that since this paragraph’s rasults are valid as well for a three-
dimensional non-uniform medium, here and below we use ��, a three-
dimensional vector with the x, y, z components, and ��n, a constant
vector. As is well known, E

(
�� + ��n

)
= exp

(
��n ∂

∂��
)
, which being

substituted into (30) yields Eq. (1), where

Ĥ

(
z,
∂

∂��

)
=

∞∑
n=−∞

An(z) exp
(
��n
∂

∂��

)
. (31)

The following integral equation can also get the form (1):

∞∑
n=−∞

Bn(z)
∫
Kn

(
��− ��′

)
E

(
��′

)
d��′ = 0. (32)

The Fourier transform for Kn

(
��− ��′

)
is

Kn

(
��− ��′

)
=

1
(2π)3

∫
Qn(�κ) exp

[
i�κ

(
��− ��′

)]
d�κ, (33)

which can be rewritten as follows:

Kn

(
��− ��′

)
=

1
(2π)3

Q̂n

(
1
i

∂

∂��

) ∫
exp

[
i�κ

(
��− ��′

)]
dκ, (34)
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or, using the definition of the δ-function,

Kn

(
��− ��′

)
= Q̂n

(
1
i

∂

∂��

)
δ
(
��− ��′

)
. (35)

By substituting (35) into (32) we arrive again at Eq. (1), where Ĥ
assumes a form

Ĥ

(
z,
∂

∂��

)
=

∞∑
n=−∞

Bn(z)Q̂n

(
1
i

∂

∂��

)
. (36)

6. BEAM PROPAGATION IN A SERIES CHAIN

Now we will use the theory developed above to solve a specific problem
of wave beam propagation in a periodic series chain. The corresponding
equation is written as

k2(z)E +
(
∂2

∂x2
+
∂2

∂y2

)
E +

η

d2
[E(z + d) + E(z − d)− 2E(z)] = 0,

(37)

where d is the chain period and η is the coupling coefficient of the
chain’s adjacent knots. Using the above procedure converts Eq. (37)
into form (1) with

Ĥ = k2(z) +
(
∂2

∂x2
+
∂2

∂y2

)
+

4η
d2

(
sinh

d

2
∂

∂z

)2

. (38)

We shall look for the solution of Eq. (38) as an expression of the form
(2), where Uk⊥(z) is defined with formula (9). In the geometrical optics
approximation, the Hamilton-Jacoby equation and continuity equation
are written as follows:

q2(z)− 4η
d2

sin2 d

2
∂S

∂z
= 0, (39)

ρ2v = j, (40)

here

v = 2η1/2q(z)

√
1− q

2(z)d2

4η
, (41)

where q(z) =
√
k2(z)− k2

⊥. The boundary conditions for Eqs. (39)
and (40) as they were formulated above, are: ρ(0) = 1, S(0) = 0. By
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taking these boundary conditions into consideration, we get for S and
ρ:

Sk⊥ =
2
d

z∫
0

arcsin
q(z)d

2
dz, ρk⊥ =

√√√√√q(z)
q(0)


1− q2(z)d2

4η

1− q2(0)d2

4η




1/2

. (42)

Consider now the beam’s field in the near-zone, which is defined
by expressions (15)–(17). For that, one should determine S0 and S′0.
Calculations give

S0(z) =
1
2d

z∫
0

arcsin
k(z)d

2
dz,

S′0 = −1
2

z∫
0

dz

k(z)
√

1− k2(z)d2

4η

,

ρ0 =

√√√√√k(z)
k(0)


1− k2(z)d2

4η

1− k2(0)d2

4η




1/2

,

W (z) = 1 +


 2
w2

0

z∫
0

dz

k(z)
√

1− k2(z)d2

4η




2

.

(43)

For the vacuum or an homogeneous medium, k is independent of z and

S0 =
2z
d

arcsin
kd

2
,

S′0 = − z

2k
√

1− k2d2

4η

,

ρ0 = 1,

W (z) = 1 +


 2z

w2
0k

√
1− kd2

4η




2

.

(44)

Substituting (43) and (44) into (16) and (17) gives the beam’s
amplitude and phase for this model.
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7. THE HELMHOLTZ EQUATION

Note, in conclusion of the previous paragraph, that with η = 1 and
d→ 0, Eq. (37) becomes the well-known Helmholtz equation[

∆ + k2(z)
]
E = 0. (45)

If in formulas (44) d→ 0, one obtains

S0(z) =

z∫
0

k(z)dz, S′0 = −1
2

z∫
0

dz

k(z)
, W (z) = 1 +


 2
w2

0

z∫
0

dz

k(z)




2

.

(46)

For an homogeneous medium, i.e., when k is not z-dependent, formulas
(46) become the expressions well known from the literature:

S0 = kz, S′0 = − z
2k
, W (z) = 1 +

(
z

ξ

)2

, ξ =
kw2

0

2
. (47)

Consider the validity criteria for k to be z-independent in the near-zone
approximation. Not going into the calculations themselves, we arrive
at the next inequalities:

k2w2
0 � 1, z � w0(kw0)3. (48)

The first one is always fulfilled by virtue of beam’s determination; the
second one, due to the first one, is not too much strong.

Unfortunately, carrying out such a detailed investigation on the
far-zone field is not simple a task, because Eq. (21) for �k⊥S can only
be solved analitically for r � w0. In this case the right item in the left
part of (21) can be neglected, and after simple but cumbersome enough
calculations we get the field’s amplitude and phase in the far-zone:

A =
E0ξz√
r2 + z2

exp−
[
d
√
r2 + z2 +

kξr2

2(r2 + z2)

]
and

Φ = k
√
r2 + z2.

(49)

From the first of inequalities of (48) it follows that

kξ =
k2w2

0

2
� 1,
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and from Eqs. (49), that A is not small only when r is small. Neglecting
r2 as compared to z2 we have

A =
E0ξ

z
exp−

(
dz +

kξr2

2z2

)
and Φ =

3π
2

+ kz. (50)

It is interesting to note that, if in the formula for W (z) of Eqs. (48)
one neglects the unity, i.e., supposes z � ξ, the expressions for the
field in the near-zone and far-zone coincide. This means that formula
derived for the near-zone field is valid for the far-zone as well. In spite
of the fact that this statement has been proved for a special case, it
apparently fits for a more general one, too. We will not dwell on the
formulas for the beam reflection from two-medium’s interface because
of their bulkiness and because they can be readily derived from the
above expressions. Since in most of media, when z → ∞, k is finite-
valued,

lim
z→∞

k(z) = k(∞),

formulas (50) can be regarded as asymptotic ones for a large enough z
and for an arbitrary relation k of z. The expression

ξ =
k(∞)w2

0

2
(51)

in these asymptotic formulas is a universal one for any field described
by the Helmholtz equation.

8. CONCLUSIONS

The wave beam evolution in a plane-layered medium with smoothly
changing properties, at the layer’s interface the properties being
changed stepwise, has been considered. Unlike the usual approach
based on the Helmholtz equation, a much more general equation
has been used. Into such a general equation form, as it is clearly
demonstrated, we can convert the difference and integral equations.
Using the JWKB method, expressions for the near-zone and far-zone
fields have been derived.

This general theory is applied to the wave propagation in a
periodical series chain described usually by a differential-difference
equation. The expression for the beam field in a medium where the
propagation is described by the Helmholtz equation, can be readily
derived from the results obtained for series chain by passage to the
limit.
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Naturally, the paper results do not exhaust the whole problem.
It is of actual interest to investigate the beam propagation in the
periodically and statistically inhomogeneous media, as well as the
propagation through and reflection from statistically rough surfaces.
These and similar problems are to be tackled in the next communica-
tions.
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