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MODE TRANSFIGURATIONS IN CHIROWAVEGUIDES
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Abstract—it has been analyzed physical features of the modes
behavior in a waveguide filled with the chiral medium. Both
mathematical and physical models of their propagation have been
defined and modes classification has been suggested. It has been
shown that the same root feature in dispersion is typical both for
chirowaveguide modes and for the unchiral waveguide; however the
mode transfiguration is peculiar to all chirowaveguide modes and
this determines the complex character of the final dispersion curves
behavior. The following features are typical for chirowaveguide
modes: connections between polarizations and between wave types,
intersections of the dispersion curves, the spatial beatings and
consecutive changes of the eigen function while moving the operating
point along the dispersion curve (the mode transfiguration). The
chirowaveguide performs polarization selection of propagating waves in
such a way that only right-polarized waves can exist under big values of
propagation constant in the chirowaveguide; the mode transfiguration
is the reason of this.
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1. INTRODUCTION

The properties of the chiral and biisotropic media [1–3] and
electromagnetic structures based on these media are still under
discussion in literature [4–6]. In the works [7–12] it has been solved
the problems concerning waves in a parallel plate chirowaveguide (see
Fig. 1a) [7–9], in a circular metal chirowaveguide [5, 10], in a circular
dielectric chirowaveguide [5, 10] and in a microstrip line on the chiral
substrate [11]. The problem of wave propagation in the circular
biisotropic waveguide has been solved in [5]. The problem of the
rectangular chirowaveguide excitation has been considered in [12].

In particular it has been shown that only hybrid waves can
propagate in chirowaveguides and transverse electric (TE) waves,
transverse magnetic (TM) waves or transverse electromagnetic (TEM)
waves cannot be supported in a chirowaveguide [7–10]. The dispersion
curves for chirowaveguides have been obtained and it has been shown
that these curves behave in an unusual way, not as in a usual waveguide
[7–9]. The phenomenon of dispersion curves splitting called mode
bifurcation has been described [7–9]. The frequency dispersion of the
transverse wave numbers has been observed [7, 8]. The mode with zero
cutoff frequency has been discovered in a parallel-plate chirowaveguide
and it has been analyzed in the work [9]. More detailed bibliography
concerning this question can be found in [5, 6].

In the works [7–12] the problem statement and peculiarities of its
solving in case when a waveguide is filled with the chiral medium are
stated in detail. However these works do not give consideration to
the physical processes taking place in such electrodynamic structures.
At the same time the chirowaveguide physics has a whole series of
principal features. The chirowaveguide waves are not identical to the
waves in usual waveguides. Our problem is to obtain asymptotic
correlations from the rigorous solution, in the mathematical sense,
and from the heuristic approach, and we must compare them. It will
allow us to differentiate physical processes that lead to the atypical
behavior of the chirowaveguides dispersion curves. We shall consider
a chirowaveguide not so much from the mathematical point of view
as from the radiophysical one. We shall endeavor the physical and
mathematical models to supplement each other.
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2. THE FIELD REPRESENTATION IN AN INFINITE
CHIRAL MEDIUM

The chiral medium is a variety of the artificial dielectric and consists
of the ideal non-dispersive isotropic unchiral dielectric — the medium-
matrix with parameter εµ, in which three-dimensional chiral figures
have been molded [3, 5], and ε = εcε0, µ = µcµ0 are the absolute
permittivity and permeability of the medium-matrix. The parameter
γ is referred to as a chirality admittance. Material equations, which
describe the isotropic chiral medium, can be written as in [3]:

�D = εcε0
�E − iγ

√
ε0µ0

�H, �B = µcµ0
�H + iγ

√
ε0µ0

�E. (1)

The time t dependence has been chosen as e−iωt. One can see the
alternative methods of material equations introduction in [5].

So if the linearly polarized wave Ex = A′ cos(ωt−kcz) propagating
in a dielectric with parameter εµ gets into the chiral medium based
on the same dielectric, it will split into two waves with circular
polarization: the left-hand circularly polarized (LHCP) plane wave
E−x, E−y and the right-hand circularly polarized (RHCP) plane wave
E+x, E+y (see Fig. 1b), and we add the sign (+) to RHCP and the
sign (−) — to LHCP. Using the conventional form of the circular
polarization wave representation [13] we write:{

E−x = A′ cos(ωt− k z),
E−y = B′ sin(ωt− k z)

{
E+x = C ′ cos(ωt− k+z),
E+y = −D′ sin(ωt− k+z)

(2)

where ω = 2πc/λ0 is the circular frequency of the electromagnetic field;
λ0 is the free-space wavelength; c = 1/

√
ε0µ0 is the velocity of light in

vacuum;
k± = ω [

√
εµ± γ

√
ε0µ0] = kc(1± η); (3)

is the dispersion of the plane electromagnetic waves in the infinite
homogeneous lossless isotropic chiral medium, kc = ω

√
εµ =

k0
√
εcµc = 2π/λc is the wavenumber for the isotropic unchiral medium

with parameter εcµck0 = 2π/λ0 is the free-space wavenumber, λc
is the wavelength in the isotropic unchiral medium with parameter
εcµc (where wavevectors �k0,�kc are directed along the 0Z-axis), and
η = γ/

√
εµ is the relative parameter of chirality.

This splitting is conditioned by changing of the wave propagation
speed: LHCP wave begins to pass ahead of the linearly polarized
wave (the phase speed V−f = c/(

√
µcεc − γ ) > Vf = c/

√
µcεc);

and RHCP wave begins to remain behind the linearly polarized wave
(V+f = c/(

√
µcεc + γ ) < Vf ). However it is possible to obtain another



158 Komar’ and Poyedinchuk

Figure 1. The electrodynamic structures considered in the paper:
a) parallel-plate chirowaveguide; b) infinite chiral medium and chosen
coordinate frame.

representation of waves in the infinite chiral medium. We sum up
the circularly polarized waves (2). Then we obtain the system of two
linearly polarized waves:{

E′x = 2 cos(kcηz) cos(ωt− kcz)
E′y = 2 sin(kcηz) cos(ωt− kcz).

(4)

The wave, polarization of which is changing continuously, corresponds
to the system (4). When z = pπ/kcη (where p = 0, 1, 2, . . .) the
wave will be linearly polarized (E′y = 0); when z = [1/2 + p]π/kcη
the wave will be linearly polarized too (but now E′x = 0); when z =
[1/4+p]π/kcη the wave will be the LHCP one; when z = [3/4+p]π/kcη
the wave will be the RHCP one; in other cases it will be polarized
elliptically. The system (4) can be interpreted in other terms too. The
record (4) is typical for two coupled modes (for example, in the coupled
transmission lines [14, 15]) and for spatial beatings of these two waves
(the power is transferred in turn from E′y to E′x and vice versa):

{
E′x = cos(KSz) cos(ωt− kcz)
E′y = sin(KSz) cos(ωt− kcz),

(5)

where the coefficient KS = kcη that is equal to the product of the
wavenumber and relative parameter of chirality is a coupling coefficient
of polarizations E′y and E′x of one wave. Evidently the wave (5) has the
wave vector �kc and propagates at the speed Vf , but the spatial beatings
take place: the wave power is transferred in turn from one polarization
to another at the length LS = π/2KS = π/2kcη that is also determined
by the value η. It is significant that KS = ∆k/2 = (k+ − k−)/2 as in
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[14, 15]. Then we obtain:

k± = kc ±KS . (6)

The records (2) and (5) are identical for the case of the infinite chiral
medium, but in case of a chirowaveguide they lead to two different
types of dispersion. Let us consider this case in detail.

3. THE MODES OF THE PARALLEL-PLATE
CHIRIWAVEGUIDE — THE RIGOROUS ANALYSIS

The parallel-plate chirowaveguide under investigation is formed by two
layers of the perfect metal with conductivity σ =∞ and by the layer of
the homogeneous lossless isotropic non-dispersive chiral medium with
thickness a, which is situated between them (see Fig. 1a and [8, 9]).
Let us consider the rigorous, in the mathematical case, statement of
the spectral problem of modes of the parallel-plate chirowaveguide with
perfect electric walls. We shall obtain analytic solutions of this problem
for two extreme situations when ω → 0 and ω →∞ what can help us
to analyze the physical features of the chirowaveguide dispersion in
comparison with the results of heuristic buildings.

Let us assume that the fields of chirowaveguide modes are
independent of the coordinate x (see Fig. 1a). Then on the basis of the
Maxwell equations and material equations (1) it is possible to formulate
the spectral problem where one should determine values of the spectral
parameter ξ[±n] of the propagation constant, that allow the existence
of non-trivial solutions of the following equations [7, 8]

d2U+

dy2
+

(
k2

+ − ξ2
[±n]

)
U+ = 0,

d2U−
dy2

+
(
k2
− − ξ2

[±n]

)
U− = 0, (7)

and that satisfy the boundary conditions on the chirowaveguide walls

(U+ + U−)|y=0,a = 0,
[

1
1 + η

dU+

dy
− 1

1− η

dU−
dy

] ∣∣∣∣
y=0,a

= 0. (8)

From the Maxwell equations and from the relations (1) it follows
that components of the E and H fields of modes can be expressed using
the functions U±(y) by the following formulas:

Ex = (U+ + U−) exp(iξ[±n]z),
Hx = −(i/W )(U+ − U−) exp(iξ[±n]z),

Ey =
iξ[±n]

kc

(
U+

1 + η
− U−

1− η

)
exp(iξ[±n]z),
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Hy =
ξ[±n]

Wkc

(
U+

1 + η
+

U−
1− η

)
exp(iξ[±n]z),

Ez =
1
kc

(
1

1− η

dU−
dv
− 1

1 + η

dU+

dv

)
exp(iξ[±n]z),

Hz =
i

Wkc

(
1

1 + η

dU+

dy
+

1
1− η

dU−
dy

)
exp(iξ[±n]z), (9)

where W =
√

(µcµ0)/(εcε0). The dispersion equations for ξ[±n] are
obtained from (7) and (8) and look as follows:

y− cos y+ sin y− + [(1− η)/(1 + η)] y+ sin y+ cos y− = 0, (10)
y− sin y+ cos y− + [(1− η)/(1 + η)] y+ cos y+ sin y− = 0, (11)

where
y2
± =

(
k2
± − ξ2

[±n]

)
a2/4. (12)

The values y± are non-dimensional transverse wavenumbers that
describe the mode dependence on the coordinate y. It is necessary
to add to the dispersion equations (10) and (11) the equation

y2
+ − y2

− = (kca)2η. (13)

which follows from (12). Thus having determined transverse
wavenumbers y± from (10), (13) or from (11), (13) one can calculate
the propagation constants ξ2

[±n] = k2
± − 4y2

±/a
2. In [8] three regions

of changing of the spectral parameter ξ[±n] were determined for the
chirowaveguide propagating modes (ξ[±n] is the real number): A =
{ξ[±n] : ξ[±n] ≤ k−}; B = {ξ[±n] : k− ≤ ξ[±n] < k+}; C = {ξ[±n] :
ξ[±n] > k+}. It is easy to show that there are no solutions of the
dispersion Equations (10)–(13) in the region C that correspond to the
propagating modes. Actually, as ξ[±n] > k+, then y± = iα±, where α±
are the real numbers. Substituting these values of y± for example, in
(10), we shall obtain:

(1 + η)α− tanhα− + (1− η)α+ tanhα+ = 0. (14)

As 0 ≤ η ≤ 1, then the left side of (14) is strongly positive for all
α± 
= 0 and it follows from (13) that α± 
= 0, quod erat demonstran-
dum.

Let us transform the equations (10)–(13) for each of the regions
A and B into the form convenient for the analytical and numerical
analysis. Let ξ2

[±n] ∈ A, then the transverse wavenumbers y± are the
real ones. It is easy to see that if the pair (y+, y−) is the solution of
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the equations (10), (13) (or (11), (13)), then the pair (±y+,±y−) has
this property too. So it is sufficient to consider the case when y± ≥ 0.
In this case it follows from (13) that:

y+ = kcaτ, y− = kca
√
τ2 − η, (15)

where the parameter τ ≥ √η. Substituting the equation (15) into (10)
and (11) we obtain two dispersion equations respectively:

√
τ2 − η cos kcaτ sin

(
kca

√
τ2 − η

)

+(1− η)/(1 + η)τ sin kcaτ cos
(
kca

√
τ2 − η

)
= 0, (16)

√
τ2 − η sin kcaτ cos

(
kca

√
τ2 − η

)

+(1− η)/(1 + η)τ cos kcaτ sin
(
kca

√
τ2 − η

)
= 0. (17)

Let τ0 ≥
√
η be the solution of the equation (16) or (17), then

ξ[±n]a = kca
√

(1 + η)2 − 4τ2
0 , (18)

is the solution of the spectral problem (7) and (8). As far as ξ[±n]
is the real number the variation domain of the parameter τ should
coincide with the interval [

√
η, (1 + η)/2]. It is easy to see that the

value τ0 = (1 + η)/2 is the root of the equation (16) (or (17)) only
when kca = πn, n = 0, 1, 2, . . .. In fact, substituting τ0 into (16) and
(17) we obtain: sin kca(τ0 +

√
τ2
0 − η) = 0 and, consequently kca = πn.

The values of the parameter kca = πn are critical values, under which
the propagation constants vanish.

Let ξ[±n] ∈ B now. Then the wavenumber y− will be the imagine
one and y+ will be the real one. From (13) we obtain:

y+ = ρ cosϕ, y− = iρ sinϕ (19)

where ρ = kca
√
η = KSa/

√
η. As in the case of the A region it is

enough to suppose that y+ ≥ 0, Imy− ≥ 0 and, consequently, the
parameter ϕ will vary in the interval [0, π/2]. Taking into account the
equation (19), the equations (10), (11) are transformed to the form:

sinϕ cos(ρ cosϕ) tanh(ρ sinϕ)− (1− η)/(1 + η) cosϕ sin(ρ cosϕ) = 0,
(20)
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sinϕ sin(ρ cosϕ) + (1− η)/(1 + η) cosϕ cos(ρ cosϕ) tanh(ρ sinϕ) = 0.
(21)

If ϕ0 ∈ [0, π/2] is the root of the equation (20) (or (21)), then

ξ[±n]a = kca
√

(1 + η)2 − 4η cos2 ϕ0, (22)

is the solution of the problem (7), (8).
Let us investigate solutions of the equation (20) when ρ→ 0. For

that let us represent (20) in the form of

1− cos2 ϕ
2

1 + η
+ ρ2

(
1 + sin2 ϕ− 2η cos4 ϕ

1 + η

)
+ 0(ρ2) = 0,

where 0(ρ2)/ρ2 → 0 when ρ→ 0. Using the Newton method it is easy
to obtain the solution of this equation when ρ→ 0

cosϕ0 =
√

(1 + η)/2
[
1− ρ2[(1− η)(3 + η)/2] + 0(ρ2)

]
. (23)

Substituting (23) into (22) we shall obtain the following formula for
the propagation constant

ξ[0] = kc

√
1− η2

[
1− η(3 + η)2ρ2 + 0

(
ρ2

)]
. (24)

From (24) it follows that the critical frequency of this mode is equal
to zero (see [9] too). The structure of the electromagnetic field of this
wave has the following form when ρ→ 0:

Ex = −A1

[
ρ2y/a(1− y/a) + 0(ρ2)

]
exp

(
iξ[0]z

)
, Ez = 0

(
ρ2

)
,

Ey = iA1

[(
1−η2

)−1/2
+

(
ρ2/4

)√
(1−η)(1 + η)+0

(
ρ2

)]
exp

(
iξ[0]z

)
,

Hx = − (iA1/W )
[
1 + ρ2(0.25 (1− η) + η(1− y/a)y/a) 0

(
ρ2

)]
exp

(
iξ[0]z

)
,

Hy = −A1

W

[
η

(
1− η2

)−1/2
+ ρ2

(
0.25η

√
(1− η)(1 + η)

−
√

1− η2(1− y/a)y/a
)

+ 0
(
ρ2

)]
exp

(
iξ[0]z

)
,

Hz = (iA1/W )
(
ρ(1− 2y/a) + 0

(
ρ2

))
exp

(
iξ[0]z

)
. (25)

Here A1 is the constant. Passing on (25) to the limit η → 0 we
obtain the electromagnetic field of the TEM-mode of the parallel-plate
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unchiral waveguide [16]

Ey = iA1 exp
(
iξ[0]z

)
, Hx = − (iA1/W ) exp

(
iξ[0]z

)
,

Ex = Ez = Hy = Hz = 0, ξ[0] = kc. (26)

We should stress that the ξ[0]-wave is linearly polarized under the little
a, since the quasistatic wave cannot have the circular polarization when
a < λ0/2.

4. THE MODES OF THE PARALLEL-PLATE
CHIROWAVEGUIDE — THE HEURISTIC APPROACH

Let us apply the approach considered in Section 1 for the case of
the chiral medium, which is confined by the planes of the parallel-
plate chirowaveguide. We’ll define the Brillouin’s waves for our
chirowaveguide in the usual way [16]. In Fig. 2 the forming of the
Brillouin’s waves in the parallel-plate chirowaveguide is shown for two
cases: Fig. 2a — for the case of slightly coupled modes of two circular
polarizations; Fig. 2b — for the case of strongly coupled modes of
circular polarizations. Under large ξ[±n] (in B-region) in the case of
slightly coupled Ex and Ey polarizations we shall use the following
representation for the wavenumbers of the plane wave: k± = kc(1± η)
(see (3)). It follows from Fig. 2a that the longitudinal wavenumber
of the Brillouin’s wave is ξ± = k± sin θ± where θ± are angles of
incidence of the plane Brillouin’s waves (2) with wave vectors k±
respectively. As cos θ± = λ±/2a (where λ± = 2π/k±) we obtain
ξ± = k±

√
1− cos θ± =

√
k2
c (1± η)2 − (π/a)2 or in the general case

ξ±m =
√
k2
c (1± η)2 − (mπ/a)2; where m = 1, 2, 3, . . . (27)

we obtain the Brillouin’s waves dispersion in the parallel-plate
chirowaveguide in case of slight coupling. At the same time the
relative parameter of chirality is included in the effective dielectric
permittivity εeff = εc(1± η)2. Then ξ±m =

√
k2

0εeff − (mπ/a)2. The
dispersion curves look like two branches that get out from different
points kca = mπ/(1± η) or k0a = mπ/εeff .

Under little ξ[±n] (in A-region) in case of strongly coupled Ex
and Ey polarizations we shall use another representation for the
wavenumbers of plane waves: k± = kc ±KS (see (6)). It is convenient
to denote the wavenumber for the case of strongly coupled Brillouin’s
waves with the letter ζ, which is different from ξ, but looks like
it. It follows from Fig. 2b that the longitudinal wavenumber of the
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Figure 2. The Brillouin’s waves in the parallel-plate chirowaveguide:
a) for the case of slightly coupled ξ±–waves; b) for the case of
strongly coupled ζ±–waves; (where λ±g = 2π/ξ± and λg = 2π/ζ
are wavelengths in the waveguide for different types of dispersion;
λc = 2π/kc is a wavelength in the non-chiral medium-matrix and
λ± = 2π/k± are lengths of the RHCP and LHCP waves in the infinite
chiral medium).

Brillouin’s wave (for this case) is ζ± = k± sin θ, where θ is the angle
of incidence of the sum of plane Brillouin’s waves (5) and the wave
vector kc. Since cos θ = λc/2a we shall obtain ζ± = k±

√
1− cos θ =√

k2
c − (π/a)2)(1± η) or in the general case

ζ±n =
√
k2
c − (nπ/a)2(1± η); where n = 1, 2, 3, . . . (28)

we shall obtain the Brillouin’s waves dispersion in the parallel-plate
chirowaveguide in case of strong coupling. At the same time the relative
parameter of chirality η plays the role of the coupling coefficient Kn

between the waves ζ+n and ζ−n: Kn = η
√
k2
c − (nπ/a)2; the dispersion

of the coupling coefficient from Kn = 0 under kca = nπ to Kn → kcη
under kca → ∞ can be seen; the dispersion curves look like two
branches that get out from one point kca = nπ. If we take into account
that hn =

√
k2
c − (nπ/a)2 is the dispersion in the unchiral parallel-

plate waveguide [17] then Kn = hnη and ζ±n = hn±Kn. The coupling
coefficient is equal again to the product of the wavenumber and relative
parameter of chirality. And if in the coupled transmission lines the
coupling coefficient is determined by the gap dimension between the
lines [14] and can be expressed using some coupling capacity [15], then
in our case it is determined by parameters of the hiral medium and
by the wavenumber in the unchiral medium-matrix. The magnitude
LS will be different for each n: LS = π/2Kn = π/2hnη. Under little
ξ[±n] → 0 the operating wavelength is determined by the value hn, not
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Figure 3. The dispersion in the parallel-plate chirowaveguide: a) ξ-
dispersion (27) and ζ-dispersion (28) for η = 0.3; b) the dispersion of
the first five modes of the chirowaveguide by the results of the strong
analysis from (10) — the dot curves and from (11) — the solid curves.

by ζ±n or ξ±n. And therefore (and also due to Kn → 0 under ξ[±n] → 0
critical wavelengths in the chirowaveguide are equal exactly to critical
wavelengths in the unchiral (usual) waveguide.

In Fig. 3a all four dispersion curves ζ±n and ξ±n for n = 1 are
shown. It can be seen that ζ±n get out from the point kca = π
and ξ±n get out from points kca = π/(1 + η) and kca = π/(1 − η)
respectively. At that the curves, which correspond to the indice
sign (−) tend asymptotically to the line kca = k−a and the curves,
which correspond to the sign (+), tend to the line kca = k+a. It
is clear that in the parallel-plate unchiral waveguide the waves hn
are converted to plane linearly polarized waves when kca → ∞; so
in the same case the ζ±n, ξ±n-waves are asymptotically converted
to waves of the infinite unchiral medium: to the LHCP and RHCP
plane waves with dispersion (3). For further analyzing it is important
that we can observe the situation under any n: four curves ζ±n, ξ±n
will group around points with appropriate nπ, at that ζ−n, ξ−n will
deviate to the left, tending asymptotically to k−a, and ζ+n, ξ+n will
go steeply upwards crossing the curves ζ−n, ξ−n of the smaller index
and tending asymptotically to k+a. Then we obtain that any waves
cannot propagate in the chirowaveguide under ξ[±n] > k+ (in the region
C); when k− < ξ[±n] < k+ (in the region B) only RHCP waves can
propagate; when ξ[±n] < k− (in A-region) both RHCP and LHCP
waves can propagate.
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5. RESULTS CONSIDERATION

Now let us compare the results obtained in Sections 2, 3 and 4
and analyze the physical reasons of the unusual behavior of the
chirowaveguide dispersion curves. Let us consider Fig. 3b, which shows
the final dispersion curves of five lowest modes of the parallel-plate
chirowaveguide obtained from the mathematically rigorous dispersion
equations (16) and (17). At that solid curves in Fig. 3b were obtained
from (16) and the dashed ones were obtained from (17). It can
be seen that the dispersion curves are splintered to pairs and have
typical inflections and intersections. The dispersion curves of unchiral
waveguides behave usually simpler. The phenomenon of dispersion
curves splitting to pairs has been referred to as a mode bifurcation
in the works [7–10]. In this work in Section 3 it is shown that the
splitting is connected with the coupling effect between Ex and Ey
polarizations (see (28)) of the chirowaveguide wave. From the results
of the rigorous solution one can obtain the asymptotic result, which
does not contradict this assertion. And so let us investigate the mode
dispersion near critical points kca = nπ. Let n be the integer positive
number. Then for the small values of |kca−nπ| 
 1, using the Newton
method one can obtain the following analytic solution of the equations
(16) and (17)

τ±n = ((1 + η)/2) [1− γ±n(kca− πn) + 0(kca− πn)] , (29)

where 0(kca − nπ)/(kca − nπ) → 0 under (kca − nπ) → 0, and
γ±n = (1 − η2)[(1 − η2)πn ± 2η(−1)n sin(πnη)]−1, n = 1, 2, . . . , when
the sign (+) corresponds to the roots of the equation (16) and the sign
(−) corresponds to the roots of the equation (17). Substituting the
equation (29) into (18) we shall obtain

ξ[±n]a = kca(1 + η)
√

2γ±n(kca− πn)
(
1 + 0

(
|kca− πn|1/2

))
, (30)

From (29) and (30) it follows that at the small neighborhood of values
kca = nπ the existing propagation constants ξ[±n] vanish when kca =
nπ. Accurate within 0(|kca− nπ|1/2) the structure of electromagnetic
fields of these modes looks like:

E+x = A2 sin(πny/a) sin(πnηy/a) exp
(
iξ[+n]z

)
,

E−x = iB2 sin(πny/a) cos(πnηy/a) exp
(
iξ[−n]z

)
,

E+y = H+y = 0(|kca− nπ|1/2) ≈ 0,

E−y = H−y = 0(|kca− nπ|1/2) ≈ 0,
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E+z = −A2 sin(πny/a) cos(πnηy/a) exp
(
iξ[+n]z

)
,

E−x = iB2 sin(πny/a) sin(πnηy/a) exp
(
iξ[−n]z

)
,

H+x = (iA2/W ) cos(πny/a) cos(πnηy/a) exp
(
iξ[+n]z

)
,

H−x = (B2/W ) cos(πny/a) sin(πnηy/a) exp
(
iξ[−n]z

)
,

H+z = (iA2/W ) cos(πny/a) sin(πnηy/a) exp
(
iξ[+n]z

)
,

H−z = −(B2/W ) cos(πny/a) cos(πnηy/a) exp
(
iξ[−n]z

)
, (31)

where A2, B2 are constants. It is essential for our analysis that the
dispersion equation (30), which corresponds to the fields (31), differs a
little from the relation (28) from Section 3. Hence it does not contradict
the mechanism of the dispersion curves splitting that is now under
discussion. The set of equations (31) describes the linearly polarized
hybrid waves that asymptotically (when η → 0) turn into the modes
of the unchiral parallel-plate waveguide.

Let us note one property, which is characteristic of the behavior of
ξ[±n] in the A-region. The strong analysis of the dispersion equations
(16) and (17) shows the following. Let n, p be positive integral numbers
and n(1 + η) < p < 2n. Then there are values of the parameter
kca = π

√
n(p− n)/

√
η, under which the equations (16) and (17) have

equal roots τn =
(
p
√
η
)
/

(
2
√
n(p− n)

)
. It means that under these

values kca the propagation constants from (18) coincide and this leads
to intersections of the dispersion curves with different signs (±) (see
Fig. 3b).

Now let us analyze the following moment in detail. It follows from
Fig. 3b that all dispersion curves cross the straight line kca = k−a, and
the straight line kca = k+a is their common asymptote. It follows
therefrom that when kca → ∞ all chirowaveguide modes must be
RHCP-waves and one might talk about a peculiar mode selection in a
chirowaveguide. Therefore we will analyze in detail the dispersion and
structure of the modes when ρ→∞. As follows from (1) and (20) the
functions U±(y), which are solutions of the problem (7) and (8), can
be represented in the form:

U−(y) = A3 [exp (−2 (y/a) ρ sinϕ) + exp (−2(1− y/a)ρ sinϕ)] ,

U+(y) = −A3

[
(1 + exp (−2ρ sinϕ)) cos

(
2
y

a
ρ cosϕ

)

+ tanϕ
1 + η

1− η
(1− exp(−2ρ sinϕ)) sin

(
2
y

a
ρ cosϕ

)]
,(32)
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where A3 is the constant, and ϕ is the solution of the equation (20).
Moreover from (20) we shall obtain that under ρ → ∞ the following
asymptotic formula is correct for all solutions:

cosϕn = [π(2n + 1)/2ρ]
[
1− (1− η)(1 + η)−1ρ−1 + 0

(
ρ−1

)]
, (33)

where n = 0, 1, 2, 3, . . .. The value ϕn with zero index corresponds to
the mode with zero critical frequency. Substituting (33) into (22) it is
easy to obtain the asymptotic formula for propagation constants:

ξ[+n]a = (1 + η)
√

(kca)2 − π2(2n + 1)2
[
1 +

π2(2n + 1)2(1− η)
(1 + η)

√
η(kca)2

+ 0

((
π(2n + 1)

kca

)2
)]

, (34)

It is supposed in (34) that kca� π(2n+1). The similar formula is for
the solution of the equation (21) too, namely:

ξ[−n]a= (1 + η)
√

(kca)2−π2(2n)2
[
1+

π2(2n)2(1− η)
(1 + η)

√
η(kca)2

+0

((
2πn
kca

)2
)]

,

(35)
where kca � 2nπ and n = 1, 2, 3, . . .. It follows from (34) and (35)
that under ρ → ∞ all solutions of the dispersion equations (20) and
(21) in the region B tend asymptotically to the propagation constant
k+ of the RHCP-wave in the infinite unchiral medium that does not
contradict to (27).

Now we will consider the electromagnetic field structure of the
chirowaveguide modes when ρ → ∞. Here we shall restrict ourselves
to the case of the dispersion equation (20) (the result will be the same in
case of the equation (21)). Substituting (33) into (32) and taking into
account the formulas (9) we shall obtain the asymptotic representation
for components of the electric and magnetic fields with the accuracy
of 0

(
ρ̃−1
n

)
and of the multiplier exp(izξ[+2n+1]):

E+x = −A3

[
2ρ̃n

(
1 + η

1− η

)
sin

(
π(2n + 1)

y

a

)
+

(
1− 2

y

a

)

cos
(
π(2n + 1)

y

a

)
− exp(−2ρy/a)− exp (−2ρ(1− y/a))

]
,

E+y = − iA3(1 + η)
1− η

[
2ρ̃nsin

(
π(2n + 1)

y

a

)
+

(
1− η

1 + η

) (
1− 2

y

a

)

cos
(
π(2n + 1)

y

a

)
− exp(−2ρy/a)− exp (−2ρ(1− y/a))

]
,
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E+z = [2A3
√
η/(1− η)]

[
cos(π(2n + 1)y/a)

− exp(−2ρy/a) + exp (−2ρ(1− y/a))
]
,

H+x =
iA3

W

[
2ρ̃n

(
1 + η

1− η

)
sin

(
π(2n + 1)

y

a

)
+

(
1− 2

y

a

)

cos
(
π(2n + 1)

y

a

)
+ exp(−2ρy/a) + exp (−2ρ(1− y/a))

]
,

H+y = −A3(1 + η)
W (1− η)

[
2ρ̃nsin

(
π(2n + 1)

y

a

)
+

(
1− η

1 + η

) (
1− 2

y

a

)

cos
(
π(2n + 1)

y

a

)
− exp(−2ρy/a)− exp (−2ρ(1− y/a))

]
,

H+z = − [2iA3
√
η/(W (1− η))]

[
cos(π(2n + 1)y/a)

+ exp(−2ρy/a)− exp (−2ρ(1− y/a))
]
. (36)

Here ξ[+2n+1] ≈ h+2n+1 + K ′+2n+1, ρ̃n = ρ/(π(2n + 1)). As follows
from (36) the electric and magnetic fields are connected by the relation
�H = −(i/W ) �E within the accuracy 0(ρ̃−1

n ), and the electric field
satisfies the equation rot �E = k+

�E with the same accuracy. Hence
the modes fields with the propagation constants ξ[+n] that satisfy the
condition k− < ξ[+n], k+ are RHCP-waves under ρ → ∞. The same
result can be obtained for the ξ[−n] modes from the analysis of the
equation (21).

So it follows from (25), (26), (31) and (36) that the field
distribution of the chirowaveguide mode does not remain while the
operating point moves along the dispersion curve. For example, the
main ξ[0] mode under when kca → 0 has the field distribution and
the dispersion of the quasi-static TEM-wave (see (26)). While kca
increases it turns into the quasi-TEM hybrid mode (see (25)) and its
dispersion begins to look like the dispersion of TE-waves of unchiral
waveguides and, eventually, when kca → ∞ it becomes the RHCP-
wave with dispersion ξ[0] → k+. The asymptotic character of the ξ[0]
mode dispersion is not typical for quasi-static waves of the double-wire
transmission lines [16, 17].

6. COUPLED MODES, MODE TRANSFIGURATIONS

From Sections 3–5 of this investigation it follows that the wavenumber
ξ[±n] of the parallel-plate chirowaveguide satisfies the root dispersion
(as hn of the unchiral waveguide does) under all 0 < kca < k+a. But
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two kinds of dispersion: ζ-dispersion under small ξ[±n] (see (28)) and ξ-
dispersion (see (27)) under large ξ[±n] are peculiar to a chirowaveguide.
When kca → ∞ the ξ-dispersion turns asymptotically into the k+-
dispersion of the infinite chiral medium. The dispersion curves of
the parallel-plate chirowaveguide obtained using different ways for
five lowest types of waves are shown in Fig. 4. Fig. 4a corresponds
to the ξ[0]-wave. It can be seen that ξ[0] begins as the dispersion
of TEM-wave does. But the linearly polarized waves in the chiral
medium cannot exist and ξ[0] turns fluently to the dispersion of the
first waveguide mode ξ+1 while a increases. The similar transitions
take place at the higher modes too (see Fig. 4). At that the dispersion
type modification is accompanied by the modification of the field
distribution and polarization (see Section 5). Let us refer these
modifications to the mode transfiguration of the chirowaveguide. It
is very typical for chiro-waveguides because the mode transfiguration
may be observed at all chirowaveguide waves. Moreover it may be
observed at many waves more than one time (see Fig. 4e). This leads
to the complex character of the final dispersion curves behavior, to the
dispersion type modification and to the mode polarization modification
while moving an operating point along the dispersion curve, to intersec-
tions of the dispersion curves and to polarization selection etc. By that
the chirowaveguide waves differ fundamentally from waves of unchiral
waveguides and of other electrodynamic structures [16–20]. By the
way, they differ also from plasma waveguides (the ungyrotropic case
[21]) and from the waveguides with artificial unchiral dielectrics [22].
In all mentioned cases the form of the mode eigenfunction remains
under any kca, though exclusions may take place. For example, in the
waveguides, which are partially filled with dielectric [23, 24], transitions
of the final dispersion curve from one branch to another occur (in [24]
it was referred to as critical frequencies exchange). The transitions in
[24] are also accompanied by the wave type change (for example, from
H0m to EH1m).

Let us refer to the chirowaveguide modes as changeable waves.
As it was mentioned above and in [7–10] all chirowaveguide modes are
hybrid ones. Such waves are accepted to denote by the letters HE with
corresponding indices. The traditional system of modes classification
for a chirowaveguide seems to be illogical. It is illogical to number
these waves in the usual manner, since because of intersections of the
dispersion curves we have to stipulate every time in which sense (or
when) the chosen number is smaller and when it is larger. It is proposed
to put two indices near the letters HE: the upper one and the lower
one, moreover the lower index must correspond to the initial number
n (when ξ[±n] → 0) and the upper index must correspond to the
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Figure 4. The mode transfiguration in the parallel-plate
chirowaveguide for five lowest modes; the dispersion curves calculated
using the formulas (27), (28), (10) and (11).

finite number m, which will be obtained after all transfigurations when
ξ[±n] →∞. The indices signs will denote the initial and final types of
polarization, at that the sign (+) will correspond to the RHCP-wave
and the sign (−) will correspond to the LHCP-wave. Let us note that
the upper index sign can be omitted because it will always be the sign
(+). Then the HE

[+1]
[0] wave (see Fig. 4a) that goes out from the point

kca = 0 will be the main wave of the parallel-plate chirowaveguide, and
the next waves will be waves HE

[+2]
[+1] (see Fig. 4b) and HE

[+3]
[−1] (see

Fig.4c) that go out from the point kca = π, and waves HE
[+4]
[−2] (see

Fig. 4d) and HE
[+5]
[−2] (see Fig. 4e) that go out from the point kca = 2π
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respectively. Then the waves HE
[+7]
[+3] and HE

[+6]
[−3] will come next (they

are not shown in figures), they go out from the point kca = 3π etc. The
chirowaveguide modes will form pairs of the dispersion curves, which
go out from points kca = nπ : HE

[2n+1]
[+n] and HE

[2n]
[−n] (except for n = 1

when there is no intersection of the dispersion curves). As a result it
is difficult to draw a distinction between the odd and even waves.

The phenomenon of dispersion curves splitting into pairs was
referred to as the mode bifurcation in the works [7–10]. We could find
the reason of this phenomenon. The wave splitting in a chirowaveguide
takes place because the chiral medium with spatial dispersion provides
coupling of different components of the wave field. It was succeeded in
calculating the value of the coupling coefficient Kn that turned out to
be proportional to the relative parameter of chirality. Then the mode
bifurcation can be represented as the coupled modes splitting plus the
mode transfiguration. Moreover this connection is provided by the
medium with spatial dispersion. By the way the splitting of k0 into
k± in the infinite chiral medium is a phenomenon of the same type.
The first cause of these splittings can be found in material equations
for the chiral medium.

It follows from Figures 3 and 4 that all dispersion curves ξ[±n] cross
the line kca = k−a (and tend asymptotically to the line kca = k+a)
i.e., they hit into the region where only the RHCP-waves can exist.
In other words the parallel-plate chirowaveguide performs polarization
selection of the mode and when ξ[±n] > k− it leaves only RHCP for all
modes. Only separate parts of the dispersion curves correspond to the
LHCP-wave. All these parts are situated below the line kca = k−a (see
Fig. 4 also). However it does not mean the prohibition for LHCP under
large kca. Under the arbitrary large kca one can always find the mode
with sufficiently large value of the lower index n, which will be able
to transfer the LHCP-power; all other waves existed in a waveguide
under the given kca will be RHCP-waves. By that the chirowaveguide
differs fundamentally from the infinite chiral medium, for which both
polarizations are equivalent (see (2) and (3)). At the same time we shall
note that in case of the circular chirowaveguide [5, 10] all dispersion
curves cross the line kca = k−a too and hit into the region B.

7. CONCLUSION

It has been shown that the relative parameter of chirality η has a
twofold physical meaning, it can determinate the coupling coefficient
of polarizations or it can be included in the expression for εeff . And
if for the infinite chiral space the selection of the physical meaning
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of η is a matter of taste, in case of the chirowaveguide it leads to
two different types of dispersion that determinate the final dispersion
curves behavior at different lengths.

The modes transfiguration are typical for chirowaveguides. It
has something in common with mode coupling [25, 26] but it has a
whole series of strong distinctions and features. This phenomenon
is a typical feature of chirowaveguides because it may be observed
at all chirowaveguide waves without exception. Moreover it may be
observed at many waves more than one time. This leads to the complex
character of the final dispersion curves behavior, to modification of the
wave type, dispersion type and the mode polarization while moving an
operating point along the dispersion curve, and also to intersections
of the dispersion curves and to polarization selection etc. The chiral
medium in the region ξ[±n] ≤ k− entangles and interlaces the waves
ξ+n with ζ−n and ξ−n with ζ+n due to the mode transfiguration. As
a rule the waves with different dispersion (ξ[±n]-waves with the waves
ζ[±n]) and/or the waves with different index sign (i.e., with different
polarization) take part in the mode transfiguration. On the one hand
the ξ-dispersion and the ζ-dispersion are only certain representations of
ξ[±n] that work in the different ranges of values: the ξ-dispersion works
when ξ[±n] → ∞ and the ζ-dispersion works when ξ[±n] → ∞. On
the other hand the ξ- and ζ-branches behave as they are independent
waves. So the ζ−1-branch takes part in the forming of the HE

[+2]
[+1] mode

and the ξ−1-branch takes part in the forming of the HE
[+5]
[+2] mode.

There is another example: ζ+1 takes part in the forming of the HE
[+2]
[+1]

mode and ξ+1 takes part in the forming of the HE
[+2]
[0] mode. Moreover,

the first three modes HE
[+1]
[0] , HE

[+2]
[+1] and HE

[+3]
[−1] represent rather

extrinsic situation of the mode transfiguration. The typical situation is
possible to see starting with the HE

[+5]
[+2] and HE

[+4]
[−2] wave types (more

than five wave types take part in the mode transfiguration forming an
intersection of two final dispersion curves) (see Fig. 4 also). Moreover
the number of intersections increase while n grows. In the unchiral
waveguide the wave dispersion is determined by the angle θ dependence
on kca. In the chirowaveguide the dispersion is determined both by the
angle θ dependence on kca and by the mode transfigurations.

The mode transfiguration leads to the polarization selection of
circular polarization waves. By that the chirowaveguide differs from
the infinite chiral medium. If in the chiral medium both the LHCP
and RHCP polarizations are equivalent then in the chirowaveguide the
preference is given to the right spiral (RHCP). It is interesting that in
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the bioorganic world the macromolecules homochirality does not have
exclusions [27–29]; macromolecules of ferments, RNA, DNA etc. are
constructed from parts with the same chirality sign. It is usually told
about the chiral specificity of the bioorganic world. But the generally
accepted explanation of the property of bioorganic molecules has not
been formulated yet.
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