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Abstract—In this paper, a new computational technique is presented
for the first time. In this method, physical differential equations
are incorporated into interpolations of basic element in finite element
methods. This is named physical spline finite element method
(PSFEM). Theoretically, the physical spline interpolation introduces
many new features. First, physical equations can be used in the
interpolations to make the interpolations problem-associated. The
algorithm converges much faster than any general interpolation while
keeping the simplicity of the first order Lagrange interpolation.
Second, the concept of basis functions may need to be re-examined.
Thirdly, basis functions could be complex without simple geometric
explanations.

The applications to typical one-dimensional electromagnetic
problems show the great improvements of the newly developed PSFEM
on accuracy, convergence and stability. It can be extended to other
applications. Extension to two- and three-dimensional problems is
briefly discussed in the final section.
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1. INTRODUCTION

The finite element method (FEM) has become one of the most
important and practical engineering tools for scientists and engineers.
It has been used to solve mechanical problems [1, 2], electromagnetic
problems [3–5], and many other mathematical and physical problems.
Lots of applications in electromagnetic theory have been collected in
[6]. New literature are appearing in many academic journals and
conferences. Some commercial software based on FEM are important
tools in industries. Many efforts have been paid to the efficiency,
accuracy and flexibility of FEM from the mathematical point of view.
Great progress has been made on the implementation of FEM since
electronic computer was invented. In research, one of the trends is
to incorporate more efficient mathematical solvers into FEM of large
scale problems. The second trend is to construct better elements to
make FEM more flexible in modeling complex structures. Adaptive
technique is also used. The third trend is to use the so-called p-
elements [7] and hp-elements [8] to improve accuracy and efficiency of
FEM. Of course, like any other numerical methods, artificial boundary
conditions (ABC) are always important for open problems. As we
expected, applications could be extended without limitations.

In the theoretical aspects, the Rayleigh-Ritz’s method and
Galerkin’s method are the most popular ones. Although not
all problems can be dealt with the Rayleigh-Ritz’s method, the
Rayleigh-Ritz’s method provides the foundations of the finite element
method [4]. The Rayleigh-Ritz’s method is based on the stationary
characteristics of variational functionals that are related to minimum
energy principle in mechanics. It was first introduced by Rayleigh
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in 1877 and was extended after 30 years by Ritz in 1907. Once the
formulation is obtained, interpolation choice is another important task.
Up to now, Lagrange polynomials are the most popular choices. As
pointed out by Noor [9, p. 26], trigonometric and exponential bases
are not recommended since they generally have poor approximation
properties for FEM computations. p (hp)-elements are too complicated
and not always better than lower order approximations. A typical
example is the well-known serpentine curve [10]. Recently, wavelet
type basis functions are also adopted [11]. But the construction of good
wavelets is not easy. In most cases, there are no closed forms. Although
the final matrices are sparse, the time is spent on the construction of
wavelets.

Another interpolation technique — spline — has been ignored
for a long time because of the following reasons: (1) They are too
difficult to implement in most two and three dimensional problems
[12]. (2) Splines are too smooth to be applied to inhomogeneous
problems [9, p. 26]. Special modifications must be used at the joints
[13]. Then, applications of spline functions in solving differential (linear
and nonlinear) and integral equations are mostly limited to theoretical
investigations [14–16]. Very few applications in electrical engineering
have been found [17]. Furthermore, only B-splines are practically used.
Similar to wavelet basis functions, B-spline basis functions are not
simple.

On the other hand, all the existing interpolations are inherently
general mathematical tools. The expansions have nothing to do with
the physical problems but pure mathematical expansions. Because of
this property, they can be used anywhere in principle, but may not be
efficient and accurate.

In this paper, a novel physical spline expansion is introduced. This
idea is motivated by the following intuition: if we can incorporate the
properties of the physical equations into the corresponding expansions,
we can solve these physical problems much more efficiently and
accurately. In this approach, some conventional concepts must be
extended. For example, all existing basis functions are always chosen
to be real. They have intuitive and geometric explanations [4, p. 421].
This limitation is not necessary and will be removed. According
to the stationary property of a functional, the only requirement
on the expansion is that the functional must be differentiable with
respect to the expansion coefficients. If the coefficients are complex,
the functional must be analytic with respect to the coefficients.
According to complex analysis, Cauchy-Riemann (C-R) equations must
be satisfied. C-R equations ensure that the stationary value can be
reached from any direction on the complex plane. It is worth pointing
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out that although the method used in [4, Appendix B] yields useful
results, the procedure for complex-valued problems is not rigorous.
Obviously, the procedure only ensures the stationary value along the
real and imaginary axes.

The physical spline expansion presented in this paper is based
on the well-known cubic spline interpolation that is used widely in
data processing, curve fitting, computer graphics. However, traditional
cubic spline is not convenient for FEM implementation. Incorporation
of the differential equations changes the situation dramatically. The
expansion theory will be presented in Sec. 3, application to FEM in
the following sections. Several classical examples are solved to show
the great improvement of the present method from theoretical and
practical points of view.

In this paper, only one-dimensional (1D) problems are discussed
to emphasize the idea, procedure and power of the method without
being distracted by the complexity of two dimensional(2D) and three-
dimensional(3D) problems. Although 1D problems themselves are not
very useful in general and analytical solutions exist in most cases,
numerical solutions are preferred in some applications [18]. They are
also the best to illustrate a new technique. It is easier to have some
theoretical observations on a new technique in 1D problems. Some 2D
problems can be simplified to be 1D problems [4]. Extension to two-
and three-dimensional problems is briefly discussed in the final section.

2. VARIATIONAL FORMULATION OF GENERAL 1D
PROBLEMS

Almost all techniques are examined in one-dimensional (1D) problems
first, and then are extended to higher dimensions. Most linear
one-dimensional problems can be recognized as special cases of one-
dimensional Sturm-Liouville differential equation [5]

− d

dx

(
p(x)

dU

dx

)
+ q(x)U(x) = f(x), (0 < x < xa) (1)

where p(x) and q(x) are knowns and U(x) is the unknown. Several
special interpretations are discussed in [5]. Now, for generality, we just
treat (1) as a mathematical equation. Boundary conditions can be
generalized as

U = Q0, (x = 0, or x = xa) (2)

∂U

∂x
+ αU = β, (x = 0, or x = xa) (3)
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(2) is the essential boundary condition. (3) is the generalized
impedance boundary conditions.

It is easy to get the functional expression by applying the principle
of virtual power to (1)〈

− d

dx

(
p(x)

dU

dx

)
+ q(x)U(x)− f(x), δU

〉
= 0

The functional is

F (u) =
1
2

∫ xa

0

[
p(x)

(
dU

dx

)2

+ q(x)U2(x)

]
dx

−
∫ xa

0
f(x)U(x)dx + p(x)

[
α

2
U2 − βU

] ∣∣∣∣xa
0

(4)

in which the boundary condition (3) is included. The essential
boundary condition (2) must be forced if it holds.

3. PHYSICAL SPLINE EXPANSION AND ITS FINITE
ELEMENT IMPLEMENTATION

Equation (1) claims that the second derivatives of U must be
continuous in uniform regions, i.e., U belongs to the smoothness class
C2[0, 1]. At an interface between different uniform regions, (1) holds on
both sides. In electromagnetics, the interface condition is determined
by Maxwell’s equations. On one hand, (4) (plus essential boundary
conditions if necessary) is not equivalent to the original problem (1)
exactly if the derivatives are not considered properly. If the smoothness
of U is lowered [15], the solution to (4) can still be obtained, but that
is not exactly the solution to (1). On the other hand, most traditional
interpolations in FEM do not satisfy the smoothness requirements at
joints of elements in continuous regions in which p(x), q(x) and f(x) are
continuous. For example, the second order derivative of the first order
Lagrange interpolations does not exist, even rational and algebraic
elements etc. are discontinuous at joints of elements. Note that
the so-called isoparametric elements do not change the properties of
interpolations, they change the shapes of elements only. Furthermore,
some of the existing interpolations are too smooth compared to what
(1) requires within elements. Higher order Lagrange interpolations
have higher (than second order) smooth derivatives that may not be
required by (1). Strictly speaking, all the above drawbacks imply
that the solutions may not be in C2[0, 1], which may numerically lead
to unpredictable bad approximations of the true solutions although
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theoretically the functional converges to the space. These solutions
are called weak solutions of (1) [4, 22].

Might we overcome the above shortcomings? They are physical
drawbacks rather than just mathematical ones. Splines are tools
designed for smoothing data. They may be the right choice. However,
if we use splines in solving partial differential equations (PDE)
directly, we will have some problems. (a) It makes the procedure too
complicated; (b) Splines are too smooth at discontinuous interfaces
such as the interfaces among different dielectrics; (c) They are still
general. No information about the differential equation (1) is included.
In fact, only B-splines are used [15, 19].

Cubic spline may be the best starting point since its first
order derivatives are smooth and the second order derivatives are
continuous. This property is good for uniform regions, but too much
for discontinuous dielectrics. It is also not easy to implement. The
flexible choice of end conditions is not desired either. However, its
main property matches partly what we desire. Let us start from it to
develop a completely new technique.

It is shown that there is only one way to construct cubic spline
[20]. Within an element (xe1, x

e
2), it is

U e(x) =
2∑
i=1

[
N e
i (x)U e

i + M e
i (x)(U e

i )
′′] (5)

where

N e
1 (x) =

xe2 − x

xe2 − xe1
(6a)

N e
2 (x) =

x− xe1
xe2 − xe1

= 1−N e
1 (x) (6b)

M e
1 (x) =

1
6

[
(N e

1 )3 −N e
1

]
(xe2 − xe1)

2 (6c)

M e
2 (x) =

1
6

[
(N e

2 )3 −N e
2

]
(xe2 − xe1)

2 (6d)

Obviously, 0 ≤ |N e
i | ≤ 1, M e

i ≤ 0. Although U may be complex,
the real and imaginary parts satisfy the same conditions respect to
space. Unfortunately, since the second order derivatives are usually
unknown in general interpolation of data, there are algorithms based
on the continuity of the first order derivatives for solving the second
derivatives. Natural and Not-a-knot end conditions etc. are employed.
In the natural cubic spline, the second order derivatives of the first and
last nodes are set to be zero. In the Not-a-knot condition, the second
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derivatives of the first and second nodes (knots) are forced to be equal.
Similarly, for the last and last second nodes. Our application is quite
different from pure data interpolation. The equation (1) governs the
behavior of the function U(x). In electromagnetics, p(x) and q(x) are
associated with the characteristics of dielectrics. It is reasonable to
make p(x) = pe and q(x) = qe constants within an element. Then (1)
implies

(U e
i )
′′ = − 1

pe
f(xei ) +

qe

pe
U e
i , (i = 1, 2) (7)

(5) becomes then

U e(x) =
2∑
i=1

{[
N e
i (x) +

qe

pe
M e
i (x)

]
U e
i −

1
pe

f(xei )M
e
i (x)

}
(8)

Since (8) is a combination of cubic spline and physical equation,
it is called physical spline (PS), and its corresponding FEM
implementation will be called physical spline FEM (PSFEM). In (8),
the second derivative U ′′ does not appear explicitly. The key is
that the differential equation (1) is embedded successfully into the
interpolation. It has to be noticed that the smoothness of the first
order derivatives is guaranteed by the continuity of the second order
derivatives according to functional theory. Therefore the continuity
of the first order derivatives in not necessary to be forced if the
second order derivatives are known. In traditional spline theory and
applications, algorithms such as Thomas Algorithm [21] are developed
to determine the unknown second order derivatives. The continuity
of the first order derivatives is used (not “required”) to construct the
linear equations of the second order derivatives (Eq. (3.3.7) in [20]).
Even though, the problem is still not complete since the end conditions
are needed as described before. It is worthy of pointing out that the
statement “However, we have not required that the first derivative,
computed from equation (3.3.5), be continuous across the boundary
between two intervals.” is then not proper. In terms of U e

i , U
′′ is known

in our case, and (8) does not break the continuity of the second order
derivatives in uniform spaces. So the algorithms required traditionally
and the end conditions are completely avoided. The solution must
belong to C2[0, 1] in uniform regions. The introduction of (7) makes
the interpolation more physically reasonable. In uniform regions, the
first order derivatives are smooth and the second order derivatives are
continuous. At discontinuous interface, the second order derivatives
satisfy the physical equations as expected. This may accelerate the
convergence of the algorithm as we will see in the next sections. From
the mathematical point of view, (7) relates U ′′ to U directly. It is
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expected that (8) keeps the same simplicity of the first order Lagrange
interpolation. We will make more comments on this technique in the
numerical examples.

Since ∂U e
i /∂U

e
i = 1, even for complex-valued U e

i , the stationary
value of (4) can be achieved by using (8). Substituting

U =
Ne∑
e=1

U e

=
Ne∑
e=1

2∑
i=1

[
Be
i (x)U e

i −
1
pe

f(xei )M
e
i (x)

]
(9)

where
Be
i (x) = N e

i (x) +
qe

pe
M e
i (x) (10)

into (4) and taking derivative with respect to the expansion coefficients,
and following the regular procedure used in FEM [4, 5], we get

Ne∑
e=1

2∑
i=1

∫ xa

0

{
p(x)

dBg
j

dx

d

dx

[
Be
i (x)U e

i −
1
pe

f(xei )M
e
i (x)

]

+ q(x)Bg
j

[
Be
i (x)U e

i −
1
pe

f(xei )M
e
i (x)

]}
dx

−
∫ xa

0
f(x)Bg

j (x)dx− p(x)Bg
j

dU

dx

∣∣∣∣xa
0

= 0 (11)

Because Bg
j (x) is localized within one element, g = e. Since

at boundary points, B1,N
i = 1, incorporation of the contributions of

endpoints remains the same as in traditional FEM. The matrix from
of (11) is

[Ae
ij ][U

e
j ] + [endpoints] = [bei ] + [aAe

ij ][1] (12)

where [endpoints] represents the contributions of boundaries. The
traditional method [5] is used to enforce them. [1] is a N × 1 vector.

Ae
ij =

∫ xe2

xe1

[
pe

dBe
i

dx

dBe
j

dx
+ qeBe

iB
e
j

]
dx (13)

bei =
∫ xe2

xe1

Be
i (x)f(x)dx (14)

aA
e
ij = f(xj)

∫ xe2

xe1

[
dBe

i

dx

dM e
j

dx
+

qe

pe
Be
iM

e
j

]
dx (15)
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In the form of (12), [Ae] and [aAe] have the same assembly
procedure. The following integrals can be used to simplify the
computations of (13), (14) and (15).

∫ xe2

xe1

(N e
i )

2 =
1
3
he (16a)

∫ xe2

xe1

N e
i N

e
j =

1
6
he, (i �= j) (16b)

∫ xe2

xe1

(
dN e

i

dx

)2

=
1
he

(16c)

∫ xe2

xe1

(
dN e

i

dx

) (
dN e

j

dx

)
= − 1

he
(i �= j) (16d)

∫ xe2

xe1

(M e
i )

2 =
2

945
(he)5 (16e)

∫ xe2

xe1

M e
i M

e
j =

31
15120

(he)5, (i �= j) (16f)

∫ xe2

xe1

(
dM e

i

dx

)2

=
1
45

(he)3 (16g)

∫ xe2

xe1

(
dM e

i

dx

) (
dM e

j

dx

)
=

7
360

(he)3, (i �= j) (16h)

∫ xe2

xe1

N e
i M

e
j = − 7

360
(he)3, (i �= j) (16i)

∫ xe2

xe1

N e
i M

e
i = − 1

45
(he)3 (16j)

∫ xe2

xe1

(
dN e

i

dx

) (
dM e

j

dx

)
= 0, (i, j = 1, 2) (16k)

where he = xe2 − xe1. Therefore

Ae
11 = pe

[
1
he

+
1
45

(
qe

pe

)2

(he)3
]

+qe
[
1
3
he − 2

45

(
qe

pe

)
(he)3 +

2
945

(
qe

pe

)2

(he)5
]

(17a)

Ae
22 = Ae

11 (17b)
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Ae
12 = pe

[
− 1

he
+

7
360

(
qe

pe

)2

(he)3
]

+qe
[
1
6
he − 7

180

(
qe

pe

)
(he)3 +

31
15120

(
qe

pe

)2

(he)5
]
(17c)

Ae
21 = Ae

12 (17d)

aA
e
11 =

2
945

(
qe

pe

)2

(he)5f(xe1) (17e)

aA
e
22 =

2
945

(
qe

pe

)2

(he)5f(xe2) (17f)

aA
e
12 =

31
15120

(
qe

pe

)2

(he)5f(xe2) (17g)

aA
e
21 =

31
15120

(
qe

pe

)2

(he)5f(xe1) (17h)

In general cases, bei needs to be evaluated numerically. Note
that aA

e
ijs are no longer necessarily symmetric. Formally, in the

case of ( q
e

pe ) → 0, the algorithm reduces to the first order Lagrange
interpolation. Although we can take out items with ( q

e

pe ) factors, we
cannot simply consider the first order Lagrange interpolation as a
reduced case of the new PSFEM because ( q

e

pe ) are not zero in general.
Therefore, two completely different elements, not two versions of the
same element, will be compared in the next section.

4. NUMERICAL EXAMPLES

It is very easy to implement the above algorithm. Its effects
must be examined with typical examples. Several examples from
electromagnetics are presented. All examples are not only typical but
also analytically solvable. So, comparisons are reliable and stable.
Some numerical error comparisons are provided in all examples. In
most cases, except for the analytical solutions, the present element
PSFEM is also compared with the first order Lagrange element.
Although the PSFEM is inherently cubic element, they are still
comparable since the PSFEM keeps the simplicity of the first order
Lagrange element, most importantly the same bandwidth of the system
matrices. Different examples are presented to illustrate effects on lossy,
lossless, uniform, and nonuniform cases etc. The last example shows
some comparison against the traditional cubic polynomials. In this
paper, only uniform meshes are used. Because of the improvement on
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hardware of computers, the 1D problem itself is no longer a challenge.
To demonstrate the new element, only few elements are used to
exaggerate the effects in simple examples.

4.1. A Simple Lossy Direct-Current Transmission Line

This example is used in [3] to illustrate FEM. The governing
transmission line equations are

dv

dx
= ri (18a)

di

dx
= gv (18b)

where r and g are resistance per unit length and conductance per unit
length respectively. Decoupling the above equations yields the second-
order equation in voltage

d2v

dx2
− rgv = 0 (19)

Assume that there is a source V0 at x = 0, the other end x = L is
open i = 0, then the boundary conditions of (19) are

v|x=0 = V0 (20a)
dv

dx

∣∣∣∣
x=L

= 0 (20b)

(19) and (20) form the complete mathematical descriptions of the
problem with analytical solution

v = V0
e
√
rg(L−x) + e−

√
rg(L−x)

e
√
rgL + e−

√
rgL

(21)

The variational expression can be derived by considering the power
loss per unit length as

W = −
∫ L

0

[
1
r

(
dv

dx

)2

+ gv2

]
dx (22)

This is identical to (4) in this case. As pointed out in [3], (22)
represents a physics law and is not open to choice. This implies,
from the physical point of view, Rayleigh-Ritz method is preferable
whenever possible. We will discuss this point later.
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Simple lossy transmission line model Ne=3

Figure 1. Voltage distribution of a simple lossy line.

Comparing the above equations with (1), (2) and (3), we have
p = −1, q = rg and f = 0, Q = V at x = 0, α = 0 and β = 0 at x = L.
In order to compare with existing literature, we use the same numerical
parameter as those used in [3]. Let L = 1, V = 1, and

√
rg = 1.

The numerical solutions of the first order Lagrange interpolation are
compared with the results of (21) in Fig. 1. The number of element
Ne = 3. Note that the physical spline interpolation (8) should be
used to interpolate the values between two adjacent nodes. Instead,
it is a straight line between two nodes in the Lagrange interpolation.
The maximum relative error of the present method is 0.27%, but is
1.85% in the Lagrange interpolation algorithm. A great improvement
is seen. As we expect that the smoothness is also much better than
the Lagrange interpolation.
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Table 1. Comparison of three methods for the fields between two
plates.

Node# Ey Absolute error

Analytical Present Lagrange Present Lagrange

1 0 0 0 0 0

2 0.309016994 0.309016869 0.310286676 −0.000000125 0.001269681

3 0.587785252 0.587785013 0.590200330 −0.000000239 0.002415077

4 0.809016994 0.809016666 0.812341063 −0.000000329 0.003324068

5 0.951056516 0.951056130 0.954964193 −0.000000386 0.003907677

6 1.000000000 0.999999594 1.004108775 −0.000000406 0.004108775

7 0.951056516 0.951056130 0.954964193 −0.000000386 0.003907677

8 0.809016994 0.809016666 0.812341063 −0.000000329 0.003324069

9 0.587785252 0.587785014 0.590200330 −0.000000239 0.002415077

10 0.309016994 0.309016869 0.310286676 −0.000000125 0.001269681

11 0 0 0 0 0

4.2. Wave between Parallel Plates

This example is solved using FEM in [5]. The differential equation and
boundary conditions are

−d2Ey(x)
dx2

+ π2Ey(x) = 2π2 sin(πx), (0 ≤ x ≤ 1) (23a)

Ey(0) = Ey(1) = 0 (23b)

Its exact solution is
Ey(x) = sin(πx) (24)

Obviously

p(x) = 1, q(x) = π2, f(x) = 2π2 sin(πx) (25)

In order to ensure the reliability of our comparison, all integrals
of bei are also performed analytically in our computations. The same
number of nodes N = 11 used in [5] is used. Table 1 compares our
results and the existing numerical results (Lagrange interpolation) with
the exact solutions in details. Because the error of our results is so
small that long format is displayed.

As seen, the accuracy of our results is in the seventh decimal
place, instead of in the third decimal place given in [5]. Obviously,
this is really impressive. To emphasize the dramatic improvement,
Fig. 2 compares the corresponding results when the number of nodes
N = 4. Even in this extreme case, the present results are satisfactory,
the results of Lagrange interpolation are too bad.
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Figure 2. Fields between parallel plates.

4.3. Reflection from a Grounded Dielectric Slab at Normal
Incidence

This problem is described by the differential equation and boundary
conditions for Ez-polarized wave

d2Ez

dx2
+ k2

0εrEz = 0 (26a)

Ez(0) = 0 (26b)
∂Ez

∂x
+ jk0Ez = 2jk0e

jk0x (26c)

The same configuration used in [5] is used here. The thickness
t = 0.25, µr = 1 and εr = 4 − jβ. xa = t + ∆t. The analytical
reflection coefficient is given by

R = −Z0 − jZ tan(k0
√

εrt)
Z0 + jZ tan(k0

√
εrt)

(27)

where Z0 = 120π and Z = Z0/
√

εr. From (26), p = −1, q = k2
0εr, α =
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Figure 3. Reflection (normal incidence) versus β from a grounded
dielectric slab with t = 0.25λ0, ε = 4− jβ, N = 6.
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Figure 4. Reflection (normal incidence) versus β from a grounded
dielectric slab with t = 0.25λ0, ε = µr = 4− jβ, N = 7.
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Figure 5. Planar absorbing layer analysis.

jk0 and β = 2jk0e
jk0xa .

The results of the present PSFEM, the Lagrange interpolation and
analytic method are compared in Fig. 3. The number of nodes N = 6.
The number of elements in the slab is 4 and 1 layer is in the air. It is
noticed that the physical spline results are in a very good agreement
with analytical solutions even for very high lossy slabs.

The following examples are also scattering problems.

4.4. Reflectionless Slab-Ez Polarized and Normal Incidence

This example is used to illustrate the powerful effects of the PSFEM.
We will discuss a more general case in the next section. All parameters
are the same as in Example 3 except for εr = µr = 4 − jβ. So the
discontinuity is serious at the interface. The exact solution to the
reflection is R = −e−2jk0εrt. Fig. 4 shows the comparison when the
number of elements in the slab N = 7, which implies the number of
elements in the slab is 5. Comparable results for other number of layers
using Lagrange interpolation are found in [5] Fig. 3.12. It is easy to
conclude that the PSFEM results with N = 7 are much better than
the existing FEM results. They are better than the Lagrange results
with N = 12.
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4.5. Design of Planar Absorbing Layers

4.5.1. Problem Description and Equations

Let us discuss a more general case of Example 4 — the design of
planar absorbing layers. This problem has important applications in
FEM simulations. Error analysis will be given numerically.

As illustrated in Fig. 5, an arbitrarily polarized plane wave
incidents on the metal-backed slab. The Ez polarized component is

Einc
z (x, y) = E0e

jk0x cosφ−jk0y sinφ (28)

and Hz-polarized component

H inc
z (x, y) = H0e

jk0x cosφ−jk0y sinφ (29)

In our implementation of FEM, one air layer at x = xa is added
to truncate the solution region.

As discussed in [4], the wave equations that govern the total fields
between x = 0 and x = xa and the corresponding boundary conditions
can be summarized as follows

1. Ez-polarized
d

dx

(
1
µr

Ez

dx

)
+ k2

0

(
εr −

1
µr

sin2 φ

)
Ez = 0 (30a)

Ez

∣∣∣
x=0

= 0 (30b)[
dEz

dx
+ jk0 cosφEz

] ∣∣∣
x=xa

= 2jk0 cosφE0e
jk0xa cosφ (30c)

2. Hz-polarized
d

dx

(
1
εr

Hz

dx

)
+ k2

0

(
µr −

1
εr

sin2 φ

)
Hz = 0 (31a)

dHz

dx

∣∣∣
x=0

= 0 (31b)[
dHz

dx
+ jk0 cosφHz

] ∣∣∣
x=xa

= 2jk0 cosφH0e
jk0xa cosφ (31c)

We do not need to enforce the inner boundary conditions at x = t.

4.5.2. Analytical Solution — Reflection

The closed forms are found in [18]. In order to compare, we list the
results with corrections,

RE(φ) = −a− j cosφ tan(k0abt)
a + j cosφ tan(k0abt)

(32)
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Figure 6. Reflected by metal-backed layers. N = 5, upper-Ez, lower-
Hz.

RH(φ) = −a + j cosφ cot(k0abt)
a− j cosφ cot(k0abt)

(33)

where b = εr = µr = α − jβ and a =
√

1− (sinφ/b)2. Of course, the
α and β are not those in (3).

4.5.3. Reflection Comparison

It is quite straightforward to perform FEM analysis by comparing (30)
and (31) with (1), (2) and (3). Some typical results are plotted in
Fig. 6. The number of nodes N = 5, which indicates that there are
three layers in the slab. t = 0.15 and b = −j2.5 are used, then
it is easy to verify our computation with [18]. Not surprisingly, the
PSFEM results are in very good agreements with the analytical ones.
In contrary to this, the Lagrange results are not acceptable. As seen in
Figure 3 of [18], the Lagrange method cannot obtain the same accuracy
even with twelve layers in the slab (N = 14 in our case). It is known
that modeling rapidly decaying fields is not easy. But the PSFEM
works well.
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Figure 7. Reflected by metal-backed layers. Amplitude, N = 200.

4.5.4. Field Comparison

Although the reflection coefficient of a metal-backed slab is important,
the fields in the region give us insight information. Checking the fields
helps us understand the details of various algorithms and perform
error analysis, then finally evaluate algorithms. Let us consider normal
incidence Ez-polarized case only. According to [22, p. 52] and [4, p. 50],
the fields in the slab (region 1 in Fig. 5) are given by

Ez1(x) =
Ez2(t)

sin(k0
√

εrµrt)
sin(k0

√
εrµrx) (34)

Ez2(x) = ejk0x + R2e
−jk0x (35)

where

R2 =
η2,1 − e−2jk0

√
εrµrt)

1− η2,1e−2jk0
√
εrµrt)

e2jk0t (36)

η2,1 =
√

µr −
√

εr√
µr +

√
εr

(37)
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Figure 8. Reflected by metal-backed layers. Phase, N = 200.
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Figure 9. Reflected by metal-backed layers. Error, N = 200, t/λ0 =
5.5.
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Figure 10. Reflected by metal-backed layers. Average error versus
N, t/λ0 = 5.5.

Let εr = 4, µr = 1 and t = 5.5λ0, N = 200. Fig. 7 compares the
amplitude of fields, Fig. 8 the corresponding phases. The same legends
apply. Again, the PSFEM results are very good. It is worthy of taking
a look at Fig. 9 and Fig. 10. They are quantitative error analysis
and comparable with Figure 3.15 and Figure 3.16 of [4]. Fig. 9 is the
error along x axis. It shows that the PSFEM is much better than the
first order Lagrange algorithm. Furthermore, comparing Fig. 9 and
Fig. 10 with Figure 3.15 and Figure 3.16 in [4], we can see that the
physical spline field computation is even much better than the cubic
Lagrange computation. We know that the implementation of higher-
order (cubic or higher) Lagrange interpolations is very complicated,
usually results in complex formulation, increases the bandwidth of the
system equations and then increases the computing time. Increasing
the number of nodes improves the accuracy rapidly as shown in Fig.
10. Fig. 10 is a plot of the average error versus the number of nodes.
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5. CONCLUDING REMARKS

In this paper, a new technique — physical spline finite element method
(PSFEM) — is first developed. In this technique, physical differential
equations are first incorporated into interpolations of basic elements
in FEM. Its effects are verified by several typical examples from 1D
electromagnetic problems. Theoretically, the PSFEM introduces many
new features. First, as we mentioned, physical equations can be used
in the interpolation. This makes the interpolation problem-associated.
The algorithm must converge much faster than general interpolations.
The simplicity of the first order Lagrange interpolation is remained.
The corresponding implementation is different from traditional splines
such as B-splines. Second, the concept of basis functions may need to
be re-examined. It is not easy to point out the basis functions in (8)
and (9) since the second term has nothing to do with the unknown U
or its derivatives. From this point of view, Rayleigh-Ritz’s formulation
is better than Galerkin’s formulation. We are not confused by the
choice of weighted functions from (8) or (9). Also, as pointed out in
the first example, the corresponding formation is not open to choice
because of its physics considerations. Unfortunately, not all problems
can be formulated via the Rayleigh-Ritz’s method. The application
of the new element in the Galerkin’s method needs to be investigated.
Thirdly, if we still name Be

i (x)s defined by (10) as basis functions, they
could be complex without intuitive and simple geometric explanations.
They are no longer always real as claimed in [4]. Finally, the PSFEM
limits the solutions within the physical solution space, which is C2[0, 1]
in this case.

We may argue that the new element is cubic. This is true.
However, it is not just simple cubic. It is based on the cubic spline and
physical equations. The same simplicity with the first order Lagrange
interpolation makes our comparisons in the examples meaningful.
More comparisons against higher order (p- and hp-) elements will be
an interesting topic even though higher order elements have inherent
smoothness problems as discussed in the introduction.

Obviously, more theoretical investigations on the newly developed
technique are needed. On the other hand, it should be applied to more
applications and extended to two-and three-dimensional problems. In
principle, the extension of a 1D interpolation to higher dimension
is possible as described in [20]. However, we may face some other
challenges in our case. One way of the extension to two-dimensional
problems is described in [23]. Its application to waveguide problems
is presented in [24]. Its extension to 3D problems is still under
investigation.
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This paper presents and emphasizes the basic idea rather than
specific examples. The concept is applicable to other disciplines and
other numerical methods.
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