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Abstract—This paper presents a novel eigenfunction expansion of
the electric-type dyadic Green’s function for an unbounded gyrotropic
medium in terms of the cylindrical vector wave functions. The
unbounded Green dyadics are formulated based on the Ohm-Rayleigh
method, orthogonality of the vector wave functions, and the newly
formulated curl and divergence of dyadic identities. The irrotational
part of the Green’s function is obtained from the residual theorem.
Unlike some of the published work where some assumptions are made
prior to the formulation, the irrotational dyadic Green’s function in

this paper is formulated rigorously based on the idea given by Tai.
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1. INTRODUCTION

The dyadic Green’s functions (DGFs) technique [1, 2], and [3] has been
widely used to investigate the electromagnetic boundary problems for
more than 20 years. Although the dyadic Green’s functions can be
obtained in closed form for only a few simple geometries, the compact
formulations and solutions of some electromagnetic problems they offer
make their use extremely attractive. The dyadic Green’s functions of
canonical problems may be constructed in several ways. One of the
common approaches is to express the Greens functions for defining
electromagnetic vector potentials or fields in terms of the Fourier
transform, whereas another approach is to represent the Green’s
functions for defining electromagnetic fields in terms of coordinates
vectors and from a set of appropriate electric and magnetic vector
potentials. Among all the available approaches, the vector wave
function expansion approach is most widely employed to derive the
dyadic Green’s functions [1, 3], and [3].

Although the DGFs in isotropic media have been well-documented
in the last three decades, a complete formulation of the DGF's in various
media using the eigenfunction expansion technique has not been
achieved so far. For example, for the past three decades, the dyadic
Greens functions in anisotropic media have been derived [4-12] using
one of the three methods, namely the Fourier transform technique, the
method of angular spectrum expansion and the transmission matrix
method. However, there is still no available result for the DGF of
gyrotropic media in terms of cylindrical vector wave functions; this
hence motivates the present work. Throughout this work, a time
dependence of e~™! is assumed and suppressed in the formulation.
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2. DGFS FOR UNBOUNDED GYROTROPIC MEDIA

A gyrotropic medium is described by the following constitutive
relations

D = e E+¢H (1a)
B (E+%-H, (1b)

where £ and ( are, respectively, the electric-magnetic and magnetic-
electric mutual-coupling parameters or dielectric parameters of bi-
isotropic media, and the permittivity and permeability tensors are
defined as

€ —teg O
€ = ieg €& 0 |, (2a)
| 0 0 €,
[ Mt _Z.Na 0
n = ita e 0 | (2b)
0 0 p

Substituting (1) into the source-incorporated Maxwell’s equations
leads to

VX (@ VxE)-iwV x (B-EB)+iwy - VxE-w3-E=iw] (3)

where for simplicity, we define

a = @, (4a)
B = Cﬁila (4b)
Y = gﬁilv (4'C)
6 = e-&p (4d)

2.1. General Formulation of Unbounded DGF's

The electric field can thus be expressed in terms of the DGF and
current source distribution as

E(r) = iw / G.(r,7') - J(r')dV", (5)
P
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where V' denotes the volume occupied by the exciting current source.
Similarly, substituting (5) into (3) leads to

Vx (@ VxG)-iwVx (B -G)+iwy VxG-w?3-G=Ts(r-r),

(6)

where I and §(r — 7') denote the dyadic identity and Dirac delta
function, respectively.

According to the well-known Ohm-Rayleigh method, the source

term in (6) can be expanded in terms of the solenoidal and irrotational

cylindrical vector wave functions in cylindrical coordinates system.
Thus, we have

I6(r — 7)) /dA/dh Z Ay (kN

n(h7 )‘) n(hv >‘) + Ln(h7 )‘)Cn(hv )‘)] ) (7)

where M, (h,\) and N,(h,)\) are the solenoidal, and L,(h,\) is
the irrotational, cylindrical vector wave functions while A and h are
the spectral longitudinal and radial wave numbers, respectively. The
solenoidal and irrotational cylindrical vector wave functions are defined

[3] as

Mo(h, ) = V x [Un(h V2], (8a)
No(h\) = %Van(h,)\), (8b)
L,(h,\) = V[¥,(hN)], (8c)

where k) = VA2 + h?, and the generating function is given by

The vector expansion coefficients, A, (h,\), B,(h, ), and Cp(h,\) in
(7), are to be determined from the orthogonality relationships among
the cylindrical vector wave functions which are given by [3]:

2 00 00
/dd)/,Od,O / dZM"(h? )\) : an’(_h/> _)‘/)
0 0 —00

2 00 00
- /d¢/pdp / dZN”(h7 )‘) : N—n’(_hlﬂ _)‘,)
0 0 —00

42NN — N)S(h — B) e, (10a)
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21 00 o]
/d¢/pdp / dZL"(h7 >‘) . L—n’(_h/a _)‘/)
0 0 —00

A2 + h?)

Pt 00— MNYS(h — B)dpr (10b)

and

2w 00 00
/dd)/pdp / dZM"(hv )‘) ’ N—n’(_h,7 _)‘/)
0 0 —00
2w [e'e) 00

- /d¢/pdp / dzN”(h’v /\) ’ Lfn’(_hlv _/\/)
0 0 —00

21 00 00
_ / do / pdp / 2L (h, \) - M (=1, =N
0 0 —00
0 (10c)
Therefore, by taking the scalar product of (7) with M _,,(—=h', =X,

N_(=h,=X) and L_,(—h',—)N) each at a time, the vector
expansion coefficients are given by:

1

Aﬂ(ha)‘) = 47T2)\M,—n(_ha_)‘)a (11&)
1

Bn(h7)‘) = 47T2)\N/—n(_h7_)‘)7 (11b)

Colh\) = — N[/ (—h, ), (11¢)

Am2(N2 + h?)
where the prime notation of the cylindrical vector wave functions

denotes the expressions at the source point 7’.
The dyadic Green’s function can thus be expanded [3] as:

Go(r,r') = /d)\/dh > IMu(h, Nan(h, \)

N (s b (B, A) + Lo (b, Nen(h, N)], (12)

where the vector expansion coefficients a, (h, A), b, (h, ) and ¢, (h, \)
are obtained by substituting (12) and (7) into (6), which the dyadic
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Greens function must satisfy. Noting the properties of the vector wave
functions

M, (h,\) = RV x Np(h,\), (13a)
No(h\) = kjv x My (h, \), (13b)
V x Ly(h,\) = 0 (13c)

and their vector or tensor relations
V x[g- Mn(h, M)
V x[g- Nu(h, )]

V x[g- Lu(h, M)
A)

hga n(hy A) + kage N (hy A), (14a)

(12004 X0 ) M (0, )+ hguNo (1, ), (14)

7(0s = )Ml ) = trgaNa( N (140
Mo () + 192N

g-My(h,

iN?
+?gaLn(ha A)s (14d)
by

h h2gt + )\292

g -Nn(h,A\) = k—AgaMn(h, A) + 2 N, (h,\)
A

N ih\2
k3

. ih
g Ln(hy )\) = _ZgaMn(ha )‘) + k_)\(gz - gt)Nn(hv )‘)

(9¢ — 9:)Ln(h, \), (140)

1
5 (9= + X2go) L (B, M); (14f)
A

we end up with

/dk/dh S [k (V x@-Na+V xa-Mb)

n=—oo

—zw(Vxﬁ-MaJerﬁ'Nb—kVxﬁ-Lc)
+iwl<:)\(7-Na—|—7-Mb)—wQ(E-Ma+5-Nb+3-Lc>}

/dA / dh Z {MA+NB+ LC} (15)

n=—oo
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where and subsequently, the notations a, b, ¢, A, B, C, M, N and
L represent an(h, ), bp(h, A), en(h, ), Ap(h,A), Bu(h, A), Cr(h, ),
M, (h,\), N,(h,\) and L, (h,\) respectively.

By taking the anterior scalar product of (15) with M _,,,(—=h/, =X,
N_(=h',=XN) and L_,/(—h',—X), respectively, and making use of
the identities shown in (14), and by performing the integration over the
entire space, we can formulate the equations satisfied by the unknown
vectors and the known scalar and vector parameters in a matrix form
as given below:

[Q][X] = [e], (16)
where [Q2] is a 3 x 3 matrix given by
[Q] = [2192:23] (17)
with
i R2ay + XN2a, — iwh(By — Ya) — w26y
W g 2. 12 :
Q — hkyo, + o (h Ve + ANy, — k3B —I-thda) . (1)
whA? w222
i TR (Ve —72) — k—?\fsa ]
Wy — =2 (n28, + X2B. — Ky — iwhd,
Ex
2 . w2 2 2
Q = | Kai—iwh(B—7)— 3 (n260+A%.) |, (18b)
)
wA? ihw?\?
i - kA ’YCE - ki (6t - 52) |
[ Wh(B: = Bi) +iwda
iw?h
Q3 — _Wk)\ﬁa - k)\ (5Z - 5t> ’ (18C)
2
w
——5 (P%0 + N6
-l )
and [X] and [®] are two column vectors given respectively by
an(h,\) ]
[X] = | ba(hA) |, (19a)
cn(h, A) ]
An(h,\) ]
[@] = Bn(ha )‘) ) (19b)
Cn(h,N) |
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By solving for the inverse of (17), the vector expansion coefficients for
the DGF can be shown to be as follows:

an(ha)‘) = % _alAn(ha >‘) - ﬁan(hv /\) + %Cn(ha)‘)] 5 (203)

bu(h, ) = % oA (7, ) — BB (b, \) + %Cn(h, /\)} , (20b)
17 3

enlhN) = 1 |22 Au(h0) = 2B, 3) + BCuh A)} . (200)

where the coefficients a1, a9, asz, 81, B2, B3, V1, Y2,v3 and [' are as
shown in Appendix B.
The unbounded dyadic Green’s function can be written as

o0 [e.e] 0o 1 /
O/d)\ / dhn;mm{Mn(h, A) {alM_n

(=h,=A) = BiN"_ (=h, =) + 2132 (—h, /\)]

N (k) [—a2M1n<—h, N = BN (—h—N)

72)\
k/z\w

ﬁs

L, (—h,—\)

+ Ly(hy\) [%M’n(—h, “\)
w

(hA) L A)H 1)

Hence, the dyadic Green’s function for an unbounded gyrotropic
medium is now represented explicitly in the form of the eigenfunction
expansion in terms of the cylindrical vector wave functions, as given
n (21).

In order to simplify (21), the residue theorem is needed, and we
must first extract the part in (21) which does not satisfy the Jordan
lemma as was done in [1]. To do so, we write

" (=h, =) = _m( h, )\)+L'_nz( h,—)),  (22b)
No(h,A) = Nup(h,A) 4 Ny (h, N), (22¢)
" (=h, =) N’ (=h,=X)+ N, (=h,—=)), (22d)
Lo(h,\) = —”‘“ N (h, V), (22¢)

h
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Ly(h=X) = —S2ANL(h, ), (220)
Loo(h\) = ”;’? N (b, \), (22¢)
L .(—h,—)\) = ”;]‘“ ! (—h,—\), (22h)

where the subscripts ¢ and z denote the transverse vector t-components
and the z-vector components, respectively, of the two functions
L, (h,\) and N, (h,\). The coefficient I is re-written in the following
form in order to perform the A integration:

I' =k} (—eepue + Gi&e) (/\2 - A%) (AQ - /\%) (23)

AL = \/m {PA - \/p?\ - Q)\:|7 (24a)
Ao = \/m [P)\ + \/pi - q,\}, (24b)

with the coefficients p) and ¢y as shown in Appendix B.
In terms of these functions, (21) can be rewritten in the form

where

o (o] (o0 fo%e) 1
Golrr)= [ar [ dh 3 e e
0 —00 n=-—00 1 2

[ My (hy, \YM", (—h, —=A) + oM, (h, )\)N’ (—h,—X)
+73M (R, \)N”_, . (—h, =) + 74N pt (R, )N, ,(—h, =)
+75N i (hy M, (—h, =A) 4+ 76N . (h, AN, . (—=h, — A
+77 Ny (B, A )M, (—h, =) + s N (h, )\)N' (—=h,=A)
+7'9an(h )‘) —nz( h, _)‘)] ) (25)

where the coefficients for 71 to 79 are as shown in Appendix B.

2.2. Analytical Evaluation of the A\ Integral

Using a similar idea as shown in [1], the irrotational dyadic Green’s
function can be obtained from (7) as

256(r — 1) /dk/dh Z 2)\/\2 N (h, NN (—h, =)
(26)
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With some algebraic manipulations, we can split (25) into

[e.o] o0 0o 1 k%\ /
- Y 52 Nua( AN, (—h, X
/ dA / dhn:_oo poCs W (7, A)NZ,. ( )
—00

> 1
* O/ dA_ZO D NN (P =)

[T M, (hy, )M (—h, —X) + 72 M, (h, )\)N/_nt( h,—\)
+73M (B, )N, (=h, =) + 74N e (B, )N, (=h, =)
+75 Nyt (h )M, (=T, =) + 76 Nz (R, )\)N/ i(=h, =X
+77 Ny (hy, )M n(—h, A) + 78N (B, )N, (=h,—))
+710Nnz(h, AN, (=h, =N)] . (27)

The first integration term in (27) is due to the contribution from the
irrotational vector wave functions while the second integration term
is due to the contribution from the solenoidal vector wave functions
and can be evaluated by making use of the residue theorem in A-plane
(Appendix A). After some mathematical manipulations, we arrived at
the final unbounded dyadic Greens function for a gyrotropic medium
as pZ pf

Go(r,r') = 21 226(r — 7' i—/dhz )
W4€,

(_l)jJrl Msl)(ha )‘J)PLn(_ha _)‘j)

M, (h,=A;) P ) (<h, A)
)M (=, =2)+Q, (h, =) M ) (=h, X))
FUD (A )N (—h, =A) +U (=2 N Dy (=R, A;)
+V£Ll)(ha)\])N/ ( ha _)‘j) }
HV (b, =N)N D (=) [

—nz

(28)

where the superscript (1) of the vector wave functions denotes the first-

kind cylindrical Hankel function H, (1)()\;)) The vector wave functions
e (5N), Qo (M), Unn(Nj) and V7, 5 (A;) are given, respectively,
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by
PLn(_hv _>‘j> = (leLn(_hv _)‘j) + (pQNLnt(_h’ _)‘j)
+(103N/—nz(_h7 _)‘j)7 (293“)
Qn(h’ )‘j) = (P4Nnt(ha )‘j) + (P5an(h7 )‘j)v (29b)
Un(h,Aj) = @6Nnt(h, Aj) + 07N nz(h, Aj), (29¢)
Vn(h’ )‘]) = QPSNnt(ha )‘]) +§09NnZ(h’ )‘]) (29d)

where the coefficients 1 to ¢g are shown in Appendix C.

3. CONCLUSION

This paper presents a complete eigenfunction expansion of the
dyadic Green’s functions for an unbounded gyrotropic medium. The
unbounded dyadic Green’s function in the gyrotropic medium is
obtained based on the Ohm-Rayleigh method, together with the vector
and tensor relationships as shown in (14) which greatly simplify the
formulation. It should be pointed out that the irrotational dyadic
Green’s function is directly formulated from the theoretical derivation
instead of those obtained indirectly from assumption based on the
known solutions. The results obtained here could be used to further
obtain the scattering Green’s dyadics for a layered cylindrical structure
where the scattering superposition method is applied. The method
presented here could also be used to obtain more general results for
other media. Certainly, practical applications of the results presented
herein can be applied to analyse electromagnetic radiation due to
various antennas in the gyrotropic medium. Design of these antennas
can be conducted so as to control the antenna property in the medium
whose dielectric parameters can also be changed to serve purposes of
practical requirements.

APPENDIX A. INTEGRATION OF X
To this end, we write

Mn(h7 A) = (Vt é)qln(hv )‘)7 (Ala)
M’ (~h,—)\) = (Vix 2V (~h,—\), (A1b)
Nn(hv)‘) = Nnt(ha )‘) +an(ha)‘)

— (VX Vx 2)%%@, M. (Al
A



112 Li et al.

Noting that VxV x 2 = ihV —V?2 = ihV;—V?2 where the subscript
t denotes the transverse gradient operator. Then,

No(h,A) = (zhvt)]CA W, (h, \), (A2a)
and
No.(h,\) = (—V?ﬁ)k%\pn(h,m. (A2b)
similarly
N, (=h,=X\) = (- zhv’)]CA (=R, =), (A3a)
and
N’ (=h,=)\) = (—V;22)k—1A\IJ_n(—h,—)\), (A3b)

where U, (h,\) is given by (9). In actuality, the differentiations are
performed before the integration. But in this case, it may be simpler
to perform the d\ integration before taking the derivative operations
inside M, (h, A), N p¢(h, A) and N, (h, A). Hence after exchanging the
order of dX integration and differentiation, typical integrals involving
M, (h,A), Npi(h,\) and Np.(h, A) terms in (28) are of the form

p)J—n(=Ap')
I—/d)\ T (A4)
With 1
Tu(h) = 5 [HD (o) + HP ()]

we thus have

im [7@ FOVT () HE) (=2p)
| PR

T FNT ) HE) (=)
+/dA A2 — A2)(2 — AZ) ] (45)

Here, the limit is introduced because a pole at A = 0 now exists in each
of the integrands due to the Hankel functions. Furthermore, letting A =
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e~ X’ and using the reflection formulas 2 (e \p) = (—1)"H7(11) (Ap)
and J,(—Ap) = (—=1)"J,(Ap), we have

_ D)
I = _éli%l/dA ( —2)

/ I )L X H ()
X( = A(N? = 23)

A)Jn (/\p) ()
— A2 =A3)”

- lpv A
2V/d)\)\ (A6)

where P.V. represents a principal value of integral. Notice that in (A6),
poles exist at A\ = £\; o which may be on the real axis. But again with
the introduction of some small loss, these poles are displaced from the
real axis. Moreover, a residue contribution can be added to (A6) at
the origin to make it a complete contour integral. In other words,

(1) / <\ In
O) SO (p5\" 1
/ Dy ol (r) w47

where the following relation has been utilized:

tim, [T HO O p)] = - (Z_)l |

A—0 |n|m

In (A7), the last term is resultant from the residue contribution which
has been included in the first term to make C a continuous contour.
Thus, we have for p > p’ the following formula:

2 (—1)itt Aj HTS '(Ajp

A similar operation on p < p’ will result in:
(1)

w(=Aip)H (=X 0!
_ —WZ mf )2&%?)_@( Jp)7 (A9)
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The term due to the residue contribution from the origin A = 0 in
(28) tends to vanish as a consequence of

anxzxv’xa(p)m—aﬁ—$X$—m>”2 (%) 0w

p>/0< p>
In| 2 [n|
n({P_ CNA L (P
(Vi x 2)(—ihV}) <p>) p=P)p+id) s < <p>) ’
(A10D)
| < In| L n2 p< In]
(ihV1) (V] x 2) (p ) (p+ig)(—ib+¢) == <p>> :
(A10c)
p< n
(V, % 2) <p>> (A10d)
<\ Inl
(—V25)(V) x £) <Z>> (A10e)
, ﬁ'"‘ i i) ()"
(ihV o) (—ihV}) <p>> WP +id)(p+id) S (p>> 7
(A10f)
p< n
(ihV ) (— (p ) (A10g)
In|
(—V22)(—ihV,) <p ) (A10h)
, Inl
vi-vin (%) -0 (A100)

where we assume that V7 (p )l " = 0 for p # p/. This is expected on

physical ground because it is an unphysical field with A = 0 and h # 0.
In fact, this field does not satisfy the dispersion relationship.

APPENDIX B. COEFFICIENTS OF INTERMEDIATE
RESULTS

o = kY {_)\Q,UZ (erp — C&) + B (—€zpuepiz + (i)
+ih/~La (C - 5) (_fz,uz + Cg) w + (_Ezﬂz + Cf)
et (tta = 1) (o + 1) + Cu€) (Bla)
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B = =k} {ihpua (eope — CE) + W2ps (C — &) (—eapiz + CE)w
+22 (¢ (e + €aptapsz — (=€)
+ €t (C (pta — pe) (pta + pie) + pepz€)] w
il [N (erptz — CE) + (€2t — CE)
(o (=12 + 1) + Cpa) 2]},
n = K {=hC (W24 X)) (= p) =i [ (B + 22) ua
+ (12 (et =€) pra + €0 (B2 +22) 1) pe] w
—hlezpitpis (C — &) + & (€aptattz + ¢ (1t — p12) €)
+ e (C(pa — 1) (Ba + ) + pez6)] w?
i (expe — CE) [ea (=02 + 17) + Cpat] WP},
ap = —ik} {ihpy (expis — CE) + WP (C = &) (—expiz + (O w

—\? [faC/J/a/Jz +¢¢ (_C,U/z + /J'tf)
et (Cugpez + (pta — pie) (pa + pt) §)] w

—i—ih [)\2/La (et,uz — Cﬁ) + (ezﬂz - Cg)
(ca (—r2 + u7) + Cuat) | }.

Bo = k3 {h4ut (exptz — CE) — M (et (pa — pae) (pta + pe) + Cp1e€)

+ih3 g (¢ =€) (€2 — CE)w + ihA2 (( — €)
: [Ea (ui + gt (—pe + uz)) + pa (€tptz — Cf)} w

115

(B1b)

(Blc)

(B1d)

+A 1z [(€a + €) (o + pe) — CE [(—€a + €) (pa — pe) + (€] w°

+h? [N (=2 + expid + npupiz — 20u€)

(et = C&) (et (a — 1e) (pa + o) + Cpe) | }
Yo = ik} {ig (h2 + /\2)2 fa + h [et/\Q (ta — 1) (Ha + pt)

—hPeupupe — k3 (G (1 = p2) + aptapt)

e (N2 (=2 + i) + WPz | w — i N[ (erpa

+eatit) fz + €a (fa — f1e) (pa + pe) & — C,U«agﬂ

(Ble)
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+ |ea€ (12— e (e = 202) ) = eapepiz€
+Ha (—€xCp + € (26 = ) + e — ¢€) | w2
[+ e (et e2) (o — o) (a+ )
— [Gt (Mg — (bt — 2uz)) + (2€atta — €21t) ,Uz} £
+ 2 (—p+ p) €] W}

o = RN (IR (et ) €+ [ (WP (e — e2) pa
teakpn) o+ K3 pa€?| w — b [€aCptapis
+ (&0 — €2) Quuepz + [€r (pa — p1e) (pa + p1t)
+ ¢ (e — pe) + ezutﬂz} 5] w? =i (€t

—CE) [ea (—m2 +17) + Cuat |},

B3 = iky\° {—ikiuaf —h [ezAQ (o — pt) (pa + put)
—hPe.pip + € ()\2 <—/~L¢2L + M%) + hzlit,uz>
+K3 (eauauz + e - uf)} w+i [eaCV (Ha
—h%C (€tta — €xba + €apte) = —) (Ha + ie)

Li et al.

(B1f)

- {)\2 (CQNa - (etﬂa+5aﬂt> ,U'z) +h2 (C2Ma+(_2€t + 62’) Haltz

teo (—p2 + 1 = 2upz) )| €] P+ R [ (2 4 e (—e +
(o — p1t) (pa + ) poz — € [q (ua e (pe — 2uz))
+ (2€atta = €xpue) i) € + € (—pe + 1) 2|0}

s = KL (W + h2p) + [ B (G = 2eapta — 2eupu
+€2 ) 4+ B2A? ((—2€apta — €xpie) iz + € (pe + pz)
+é ( — put (pe + 2Mz)) + (e +pe) )
+X' e (tta )(ua+ut)+ut(é — €tpy +§ )” 2
il [eaX? (tta — i) (o + 11) — (20 (etta + ar)

2% (

(ft + ez) Ha +€aﬂt)) z] (€ - 5) w3
+[h pe((ea — €)(pta — pe) — €§)

ez)>

(B1h)
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by =

ax

1

T2

T3

T4

T —

((eq + €)(pa + pe) —C€) — >\2(€zﬂz
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