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Abstract—This paper describes the steepest-descent evaluation of the
radiation field for both TE and TM modes of an asymmetric planar
open waveguide. The cover, film and substrate field will be formulated
in the spectral domain. The steepest-descent path in the complex
axial transform plane (ζ-plane) is identified as a direct method and
that in the complex φ-plane (φ = σ+ jη: complex polar coordinate) is
also identified as an indirect method in order to validate the steepest-
descent path in the complex axial transform plane (ζ-plane). The
branch cut integration will be rigorously analyzed through complex-
phasor diagrams. An alternative integration path will be also identified
since it is an effective method to validate the steepest-descent and
branch cut integrations. Then, the steepest-descent evaluation of
cover and substrate fields and numerical results for TE modes will
be presented and numerical implementation for TM modes will be
accommodated in the future research.
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1. INTRODUCTION AND GEOMETRICAL
CONFIGURATION

The steepest-descent method in the complex φ-plane has been
extensively developed to determine the asymptotic radiation field of
planar waveguide structures [1–4]. Due to the intrinsic nature of
complexity in the complex φ-plane, the radiation fields of open planar
waveguides are identified and classified here through the steepest-
descent method in the complex axial transform plane [5, 6]. The
spectral fields of planar open waveguide structures possess multiple
branch points associated with each of the three planar layers. The
branch point associated with the film layer is removable and the branch
points associated with the cover layer and the substrate layers are non-
removable. The steepest-descent evaluation of radiation fields in both
the cover and the substrate layer maintained by TE or TM electric
sources in proximity to the simplest canonical waveguide structure
will be performed when spectral representations of those fields possess
multiple non-removable branch points in the complex axial transform
plane.

For the TE or TM cover field, the steepest-descent path in the
complex axial transform plane replaces the cover layer branch cut
while the substrate layer branch cut is retained. Alternatively the
cover and the incomplete substrate layer branch cut are replaced while
the remaining substrate layer branch cut is retained. However, in the
substrate layer, the incomplete cover and the complete substrate layer
branch cut are replaced while the remaining cover layer branch cut is
retained.

The numerical results are only presented for TE case and
numerical implementation for TM case will be accommodated in future
research.

The planar waveguide structure consists of a dielectric guiding
region immersed in a planar-layered background environment. Each



Asymmetric planar dielectric waveguide 195

COVER LAYER 

FILM LAYER 

SUBSTRATE LAYER  

(ε µ δ1 0

2

3

, ) Jy ( )x, z = (x −x' )δ (z −z' )

z

(ε µ0, )

(ε µ0, )

x =

x =− t

0

x

Figure 1. Geometrical configuration of an asymmetric planar
dielectric slab waveguide with TE line-source excitation. Cover, film,
and substrate layers are considered in the low-loss limit.

planar layer is non-magnetic, isotropic, and homogeneous with complex
permittivity εl, l = 1, 2, 3 for cover, film, and substrate layers. A
coordinate system is chosen with the z axis as the waveguiding axis
and the x axis normal to the planar interfaces as depicted in Figures 1
and 2 for TE and TM modes respectively. The structure is of infinite
extent parallel to the y-z plane.

2. SPECTRAL TE FIELD FORMULATION

Uniformity along the waveguiding axis z prompts a complex axial
Fourier transformation of all field quantities with respect to the
z variable. Since the spectral fields are TE with respect to the
waveguiding axis in agreement with the prescribed y-invariance, the
guided wave fields are

ẽ(x, ζ) = ŷẽy(x, ζ)

h̃(x, ζ) = x̂hx(x, ζ) + ẑhz(x, ζ)
(1)

where ẽ(x, ζ) and h̃(x, ζ) are ζ-transform pairs ofE(x,z) andH(x,z)
respectively. Unit line current source excitation (ejωt time dependence)
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Figure 2. Geometrical configuration of an asymmetric planar
dielectric slab waveguide with TM line-source excitation. Cover, film,
and substrate layers are considered in the low-loss limit.

is assumed. The spectral Maxwellian equations for the l’th layer
become

ζẽy(x, ζ) = ωµ0h̃x(x, ζ)
∂ẽy(x, ζ)
∂x

= −jωµ0h̃z(x, ζ) (2)

jζh̃x(x, ζ)−
∂h̃z(x, ζ)
∂x

= j̃y(x, ζ) + jωεlẽy(x, ζ)

where j̃y(x, ζ) = δ(x − x′)e−jζz′ . Subsequent manipulation uncouples
the spectral Maxwell equations to yield the spectral Helmholtz
equation.

∂2ẽy(x, ζ)
∂x2

− p2l (ζ)ẽy(x, ζ) = jωµ0j̃y(x, ζ) (3)

where pl(ζ) =
√
ζ2 − k2

l (l = 1, 2, 3) and kl = nlk0 (nl =
√
εl/ε0).

The spectral cover field decomposes into the principal and reflected
field and Eqn. (4) superposes the primary and reflected solution in
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agreement with Eqn. (3).

ẽp1y(x, ζ) = −jωµ0
e−p1(ζ)|x−x′|

2p1(ζ)
e−jζz

′

ẽr1y(x, ζ) = −jωµ0R(ζ)
e−p1(ζ)(x+x′)

2p1(ζ)
e−jζz

′
(4)

where R(ζ) denotes the reflection coefficient given by

R(ζ) =
(p1 − p3)p2 + (p1p3 − p22) tanh(p2t)
(p1 + p3)p2 + (p1p3 + p22) tanh(p2t)

(5)

The film field decomposes into the transmitted and reflected fields

ẽ2y(x, ζ) = −jωµ0C(ζ)
[
ep2(ζ)x +R(ζ)e−p2(ζ)(x+2t)

] e−p1(ζ)x′

2p1(ζ)
e−jζz

′

(6)
where C(ζ) is the coupling and R(ζ) is the interfacial reflection
coefficient given by

C(ζ) =
2p1(p2 + p3)

(1 + e−2p2t)Z(ζ)

R(ζ) =
p2 − p3
p2 + p3

(7)

where Z(ζ) = (p1+p3)p2+(p1p3+p22) tanh(p2t). The spectral substrate
field is the transmitted field only and given by

ẽ3y(x, ζ) = −jωµ0T (ζ)ep3(ζ)(x+t) e
−p1(ζ)x′

2p1(ζ)
e−jζz

′
(8)

where T (ζ) is the transmission coefficient defined by

T (ζ) =
2p1p2

cosh(p2t)Z(ζ)
(9)

where Z(ζ) is given earlier.

3. SPECTRAL TM FIELD FORMULATION

Since the spectral fields are TM with respect to the waveguiding axis
z,

ẽl(x, ζ) = x̂ẽlx(x, ζ) + ẑẽlz(x, ζ)

h̃l(x, ζ) = ŷh̃ly(x, ζ)
(10)
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y-invariant current source excitation is assumed. The spectral
Maxwellian equations for the l’th (l = 1, 2, 3 for cover, film and
substrate) layer become(

∇̃t + ẑjζ
)
· ẽl(x, ζ) = ρ̂(x, ζ)/εl(

∇̃t + ẑjζ
)
× ẽl(x, ζ) = −jωµ0h̃l(x, ζ)(

∇̃t + ẑjζ
)
× h̃l(x, ζ) = j̃(x, ζ) + jωεlẽl(x, ζ)(

∇̃t + ẑjζ
)
· h̃l(x, ζ) = 0

(11)

where ∇̃t = x̂ ∂
∂x + ŷ ∂

∂y and j̃(x, ζ) = x̂j̃x(x, ζ) + ẑj̃z(x, ζ).
The transverse/longitudinal decomposition of independent Maxwellian

equations yields

ẽlt(x, ζ) = − 1
p2l

{
jζ∇̃tẽlz(x, ζ) + jωµ0j̃x(x, ζ)

}

h̃lt(x, ζ) = − 1
p2l

{
−jωεlẑ × ∇̃tẽlz(x, ζ)− jζẑ × x̂j̃x(x, ζ)

} (12)

Subsequent manipulation uncouples the spectral Maxwellian equations
to obtain the spectral Helmholtz equations.

∇̃2
t ẽlz(x, ζ)− p2l (ζ)ẽlz(x, ζ) =

jζ

εl
ρ̃(x, ζ) + jωµ0j̃z(x, ζ)

∇̃2
t h̃lz(x, ζ)− p2l (ζ)h̃lz(x, ζ) = −ẑ ·

{
∇̃t × j̃t(x, ζ)

} (13)

Spectral continuity equation∇·j̃(x, ζ)+jωρ̃(x, ζ) = 0 allows Eqn. (13)
to be

∇̃2
t ẽlz(x, ζ)−p2l (ζ)ẽlz(x, ζ) = − ζ

ωεl

(
∇̃t+ẑjζ

)
· j̃(x, ζ) + jωµ0j̃z(x, ζ)

∇̃2
t h̃lz(x, ζ)−p2l (ζ)h̃lz(x, ζ) = −ẑ ·

{
∇̃t × j̃t(x, ζ)

}
(14)

It is observed that ẽlz(x, ζ) is the spectral-field generating function and
given by[

∂2

∂x2
− p2l (ζ)

]
ẽlz(x, ζ) = − ζ

ωεl

∂j̃x(x, ζ)
∂x

− jp
2
l (ζ)
ωεl

j̃z(x, ζ) (15)

Even if the spectral field formulation can be done by the well-
known electric vector potential approach, the proposed methodology
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can be easily applied to extract the spectral Green’s dyads [7–9]
which completely determine the spectral EM fields for the l’th layer
(l = 1, 2, 3). Both electric and magnetic spectral fields are represented
by spectral Green’s dyads where gelm(x|x′) and ghlm(x|x′) represent
the spectral Green’s dyads for the spectral electric and magnetic fields
respectively in the l’th layer due to currents in or interactions with the
m’th layer (see Appendix A).

ẽ1(x, ζ) =
∫ ∞
0

[
ge11(x|x′) + ge12(x|x′)

]
· j̃(x′, ζ)dx′

ẽ2(x, ζ) =
∫ ∞
0
ge21(x|x′) · j̃(x′, ζ)dx′

ẽ3(x, ζ) =
∫ ∞
0
ge31(x|x′) · j̃(x′, ζ)dx′

h̃1(x, ζ) =
∫ ∞
0

[
gh11(x|x′) + gh12(x|x′)

]
· j̃(x′, ζ)dx′

h̃2(x, ζ) =
∫ ∞
0
gh21(x|x′) · j̃(x′, ζ)dx′

h̃3(x, ζ) =
∫ ∞
0
gh31(x|x′) · j̃(x′, ζ)dx′

(16)

It is noted in Appendix A that

Λ̃ =
2p1p2

(ε2p3 − ε3p2)(ε1p2 − ε2p1)e−p2t + (ε2p3 + ε3p2)(ε1p2 + ε2p1)ep2t
(17)

Each scalar component of the spectral EM fields is completely
determined by the spectral Green’s dyad above and the spectral current
density j̃(x, ζ) = x̂j̃x(x, ζ) + ẑj̃z(x, ζ).

4. STEEPEST-DESCENT PATH IN THE COMPLEX
AXIAL TRANSFORM PLANE (ζ-PLANE)

Transformation to spatial polar coordinates (r, θ) in both transverse
and longitudinal representations is implemented as depicted in Fig. 3.

As depicted in Fig. 4, for the phase-corrected TE cover field,

|x− x′| = r cos θ − x′ cos2 θ
x+ x′ = r cos θ + x′ cos2 θ (18)
z − z′ = r sin θ
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Figure 4. Phase correction diagram in the cover layer.

For the TE substrate field,

x+ t = −r cos θ

z − z′ = r sin θ
(19)

Substituting Eqn. (18) into Eqn. (4) and subsequent inverse Fourier
transformation yield the spatial cover field as

E1y(x, z) = C0

∫ ∞
−∞

1 +R′(ζ)
p1(ζ)

ep1(ζ)x′ cos2 θer[−jζ sin θ−p1(ζ) cos θ]dζ (20)
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where R′(ζ) = R(ζ)e−2p1(ζ)x′ cos2 θ and C0 = −jωµ0/4π. The spatial
substrate field is, in agreement with Eqns. (8) and (18), recovered as

E3y(x, z) = −jωµ0

∫ ∞
−∞

T (ζ)
e−p1(ζ)x′

4πp1(ζ)
er[−jζ sin θ−p3(ζ) cos θ]dζ (21)

Eqns. (20) and (21) lead to identification of δ(ζ) such that

δ(ζ) = −jζ sin θ − pl(ζ) cos θ (22)

where l = 1 and 3 for cover and substrate layers respectively. The
stationary point ζ0 in the complex ζ-plane was shown to be the saddle
point in that plane [10]. Then,

δ′(ζ0) = 0 (23)

where ζ0 = kl sin θ and the observation aspect angle is defined by

θ =



l = 1 :

{
tan−1 {(z − z′)/|x− x′|}
tan−1 {(z − z′)/(x+ x′)}

l = 3 : tan−1 {(z − z′)/|x+ t|}
(24)

Hence, the steepest-descent path in the complex ζ-plane is identified
as

δ(ζ) = δ(ζ0) (25)
After some manipulation,(

ζ

kl

)
sin θ − j

[
pl(ζ)
kl

]
cos θ = 1 (26)

Consequently, the steepest-descent path in the complex ζ-plane is
obtained by[

ζ

kl
+

(
ζ

kl

)∗] sin θ
2
− j

[
pl(ζ)
kl
−

{
pl(ζ)
kl

}∗] cos θ
2

= 1 (27)

where asterisk * indicates the complex conjugate. Eqn. (27) is
confirmed by the well-known steepest-descent path in the complex
polar coordinate φ = σ + jη.

For TM modes, the steepest-descent path for the Green’s dyad
representation rather than for the field representation is chosen to be
considered. The spatial Green’s dyads are

G̃
e
l (x,z|x′,z′) =

1
2π

∫ ∞
−∞

gel (x|x′)ejζ(z−z
′)dζ

G̃
h
l (x,z|x′,z′) =

1
2π

∫ ∞
−∞

ghl (x|x′)ejζ(z−z
′)dζ

(28)
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Figure 5. Polar coordinate transformations for TM modes.

For far zone,
x� x′ → |x− x′| = x− x′ (29)

As depicted in Fig. 5, for the cover field,

x = r cos θ

z = r sin θ
(30)

For the substrate field,

x+ t = −r cos θ

z = r sin θ
(31)

Then, the subsequent manipulation leads to the identical δ(ζ) as
obtained in Eqn. (22), which is not repeated here. The steepest-descent
path in the complex ζ-plane for TM modes is exactly determined by
Eqn. (27), which is identical for TE modes.

5. BRANCH CUT

It is observed that
Re {pl(ζ)} > 0 · · · for all ζ
Im {pl(ζ)} > 0 · · · for real ζ

}
· · · pl(ζ) =

√
ζ2 − k2

l , l = 1, 2, 3 (32)

is necessary to satisfy the radiation condition. Hence, the branch cut
is defined by

Re {pl(ζ)} = 0 (33)
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Figure 6. Branch cut construction in the low-loss limit.

Since the integrands of integral representations are not even in p1(λ)
and p3(ζ), the branch points contributed by the cover and the substrate
layer are non-removable. Then,

ζrζi = klrkli

ζ2
r − ζ2

i < k
2
lr − k2

li

(34)

constructs branch cuts emanating from ζi = kli at ζr = klr with ζi →∞
as ζr → 0 in the low-loss limit as depicted in Fig. 6. Portions of the
various cuts coalesce upon one another but they are a little exaggerated
to be clarified.

It is required to analyze a complex-phasor diagram in the complex
ζ-plane as depicted in Fig. 7 to implement the integration along the
branch cut. The Re{ζ}-axis inversion contour can be deformed to
the infinite semicircle in the upper half plane or in the lower half
plane with appropriate detour about the branch cuts as shown. Also
appropriate choice of branch cuts consequently leads to a 4-sheeted
Riemann surface in the complex ζ-plane. For a point 1 in Fig. 7,

p1(ζ) =
√
ρ+ρ−ej(−π+ψ−ψ)/2 = −j|p1(ζ)| (35)
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Figure 7. Complex-phasor diagram in the complex ζ-plane.

Similarly, for an opposite point on the left part of the negative
imaginary branch cut,

p1(ζ) =
√
ρ+ρ−ej(π+ψ−ψ)/2 = j|p1(ζ)| (36)

And also for a point 2 in Fig. 7,

p1(ζ) =
√
ρ+ρ−ej(π+0)/2 = j|p1(ζ)| (37)

Similarly, for an opposite point on the lower part of the positive real
branch cut,

p1(ζ) =
√
ρ+ρ−ej(−π+0)/2 = −j|p1(ζ)| (38)

It is noted that the previous complex-phasor diagram analysis can be
complied with that during the integration along the substrate layer
branch cut and branch points ±k3.
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Figure 8. The steepest-descent paths for the cover layer field
calculation on various observation aspect angles in the complex axial
spectral plane. The asymmetric planar dielectric waveguide consists of
cover, guiding and substrate layer with indices n1 = 1, n2 = 3.2, and
n3 = 3 respectively.

6. STEEPEST-DESCENT EVALUATION OF COVER
FIELD

Mapping to the complex φ-plane deforms the path of integration, in
which case the simple representation in terms of a discrete (bound) and
continuous spectrum is severely compromised due to the complicated
branch cut mapping. It is consequently more convenient to use
the steepest-descent path in the complex ζ-plane since all the field
quantities are represented on the same spectral domain. The steepest-
descent path on the complex ζ-plane is explicitly derived from
Eqn. (27) such that

ζ ′′ = ± |ζ ′ − kl sin θ||kl − ζ ′ sin θ|
cos θ

√
(ζ ′ cos θ)2 + (kl − ζ ′ sin θ)2

(39)

where ζ = ζ ′ + jζ ′′ = (ζ ′, ζ ′′). It is observed that one of ζ ′-intercepts,
ζ ′ = kl sin θ, matches the saddle point. Fig. 8 depicts the steepest-
descent paths for the cover field in the complex ζ-plane for various
observation aspect angles. As depicted in Fig. 8, the steepest-descent
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Figure 9. Proper closure of Re{ζ}-axis inversion contour C into SDP
and substrate branch cut for θ > θt: n1 = 1., n2 = 3.2, n3 = 3., θt =
19.5◦.

path always violates the cover and substrate branch cuts Cb1, Cb3 even
number of times for θ < θt, where the threshold aspect angle is defined
by

θt = sin−1
(
n1

n3

)
=
π

2
− cos−1

(
n1

n3

)
(40)

Hence both ends of the steepest-descent path lie on the top sheet and it
does not need to be deformed about any of the branch cuts but can be
directly connected to the Re{ζ}-axis inversion contour on the top sheet
of the 4-sheeted Riemann surface. It is noted that the specification of a
radiation condition that is most conveniently stipulated as Re{p1ζ} > 0
implies that if the integration path stays on the top Riemann sheet in
the complex ζ-plane. However, for θ ≥ θt, the steepest-descent path
violates the substrate branch cut an odd number of times and the left
side of the steepest-descent path lies on the top sheet of the substrate
layer Riemann surface while its right side ends on the bottom sheet.
Therefore, the proper closure of the steepest-descent path to the Re{ζ}-
axis inversion contour forces the integration path to be deformed fully
around the substrate branch cut so that both ends of the steepest-
descent path lie on the top Riemann sheet as depicted in Fig. 9. Even if
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the substrate wavenumber, p3(ζ), stays on the bottom Riemann sheet
during the integration path deformation, the contour from the one
end of the steepest-descent path to the substrate branch cut, C∞,
the closure condition is still satisfied. This is because the exponents
in the integrand of the field representation only contains the cover
wavenumber, p1(ζ), on the top sheet of 4-sheeted Riemann surface so
that it can still converge.∮

C−SDP−Cb3−Cp−C∞
Ψ1(x, z : ζ)dζ = 0

∫
Cp

Ψ1(x, z : ζ)dζ → 0 (41)
∫
C∞

Ψ1(x, z : ζ)dζ → 0

where Ψ1 represents the integrand of the cover field. Surface wave
poles contributes negligibly to the radiation field and leaky wave poles
captured on the lower sheet do not contribute to the radiation field.
Hence the cover radiation field becomes in agreement with the radiation
condition∫

C
Ψ1(x, z : ζ)dζ =

∫
SDP

Ψ1(x, z : ζ)dζ =
∫
Cb3

Ψ1(x, z : ζ)dζ (42)

It is observed that the substrate branch cut contribution vanishes
for θ < θt. Moreover the substrate branch cut contribution to the cover
field is annulled in the far zone but in the near zone, the substrate
branch cut contribution still remains. However, in the near zone,
the corresponding wave arising from path deformation around the
substrate branch cut is negligible near the threshold aspect angle, the
field discontinuity due to the branch cut contribution is resolved so
that the total radiation field is continuous over that region.

For TM case, the steepest-descent path on the complex ζ-plane is
identically determined from Eqn. (39). Therefore, Fig. 8 also depicts
the steepest-descent paths for the TM cover field in the complex ζ-
plane for various observation aspect angles. As discussed earlier, for
θ < θt, the steepest-descent path can be directly connected to the
Re{ζ}-axis inversion contour on the top sheet of the 4-sheeted Riemann
surface. However, it is observed that the integrands of the electric
Green’s dyads are contributed to by an electric charge distribution
from the continuity equation within the source region [11] and [12].
Therefore,∫

C
Ψe
lmαβ(x, z|x′, z′ : ζ)dζ = χδ(x− x′)δ(z − z′)
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+
∫
SDP

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ (43)

+
∫
Cp

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ

where
l = 1, 2, 3 m = 1, 2 and α, β = x or z

where Ψe
lmαβ denotes the integrand of the electric Green’s dyad. Then,

.. . χ = lim
S′
δ
→0

∫
S′
δ

{∫
C
Ψe
lmαβ(x, z|x′, z′ : ζ)dζ−

∫
SDP

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ

−
∫
Cp

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ

}
dx′dz′ (44)

where S′δ is a small cross section of source region which contains the
field point (x, z). Obviously, the magnetic Green’s dyad is not affected
by continuity equation. For θ ≥ θt as depicted in Fig. 9∮

C−SDP−Cb3−Cp−C∞
Ψe
lmαβ(x, z|x′, z′ : ζ)dζ = 0

∮
C−SDP−Cb3−Cp−C∞

Ψh
lmαβ(x, z|x′, z′ : ζ)dζ = 0

(45)

For the electric Green’s dyad,∫
C

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ = χδ(x− x′)δ(z − z′)

+
∫
SDP

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ

+
∫
Cb3

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ

+
∫
Cp

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ (46)

The pole and δ-function contributions vanish in the far zone. For the
far zone magnetic Green’s dyad,∫

C
Ψh
lmαβ(x, z|x′, z′ : ζ)dζ =

∫
SDP

Ψh
lmαβ(x, z|x′, z′ : ζ)dζ

+
∫
Cb3

Ψh
lmαβ(x, z|x′, z′ : ζ)dζ (47)

Therefore, the integral path deformation is identical for both TE and
TM cases.
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7. STEEPEST-DESCENT EVALUATION OF
SUBSTRATE FIELD

The steepest-descent path in the complex ζ-plane is obtained from
Eqn. (27) in agreement with l = 3 for the substrate layer index.
The saddle point of the steepest-descent path in the complex ζ-
plane denoted by k3 sin θ exists near guided-mode pole singularities
for certain aspect angles. Hence, the integrand of inverse spectral
substrate field representation doesn’t vary slowly near the saddle point,
which forces the saddle point approximation to be failed at these
angles in the substrate layer region. The steepest-descent paths in
the complex ζ-plane on various observation aspect angles are depicted
in Fig. 10. The integration path deformation for θ < θt in the complex
ζ-plane is identical to that for the cover field so it will not be repeated
here. However, for θ ≥ θt, the steepest-descent path violates cover
branch cut an odd number of times and substrate branch cut an even
number of times as depicted in Fig. 10 therefore it must be deformed
about the cover branch cut partially to stay on the top Riemann sheet
as depicted in Fig. 11. Then, after similar analysis for the cover field,
the radiation field becomes∫

C
Ψ3(x, z : ζ)dζ =

∫
SDP

Ψ3(x, z : ζ)dζ +
∫
partial{Cb1}

Ψ3(x, z : ζ)dζ

(48)
where Ψ3 represents the integrand of the substrate field. The
partial path deformation was forced to satisfy the closure condition.
The field discontinuity even due to the partial deformation of the
integration contour about the cover branch cut is considerable near
a threshold aspect angle but the complex field phase compensates for
the discontinuity so that the total radiation field is still continuous over
that region through that angle.

For TM case, the steepest-descent paths in the complex ζ-plane
are identical to those for TE case. It was observed earlier that the
steepest-descent path doesn’t need to be deformed to one of the branch
cuts but is connected to the Re{ζ}-axis inversion contour on the top
Riemann sheet for θ < θt. For the magnetic Green’s dyad,∮

C−SDP−Cp−C∞
Ψh
lmαβ(x, z|x′, z′ : ζ)dζ = 0 (49)

which leads to∫
C

Ψh
lmαβ(x, z|x′, z′ : ζ)dζ =

∫
SDP

Ψh
lmαβ(x, z|x′, z′ : ζ)dζ (50)

for the far zone.
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Figure 10. The steepest-descent paths for the substrate layer field
calculation at various observation aspect angles in the complex axial
spectral plane. The asymmetric planar dielectric waveguide consists
of cover, guiding and substrate layers with indices n1 = 1, n2 = 3.13,
and n3 = 3 respectively.

It is previously observed that integrands of electric Green’s dyads
are contributed by the electric charge distribution implicated by the
continuity equation within a source region. However, since x �= x′ and
z �= z′ in the substrate layer the substrate electric Green’s dyad is not
relevant to the continuity equation. Therefore,∫

C
Ψe
lmαβ(x, z|x′, z′ : ζ)dζ =

∫
SDP

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ

=
∫
Cb=Cb1+Cb3

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ (51)

Hence, it is noted that the steepest-descent contribution is equivalent
to the branch cut radiation field contribution for θ < θt.

It is observed earlier that for θ ≥ θt, only the partial integration
path deformation around the cover branch cut can satisfy the closure
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Figure 11. Proper closure of Re{ζ}-axis inversion contour C into SDP
and partial cover layer branch cut for θ > θt.

condition for the substrate field as depicted in Fig. 11.∮
C−SDP−partial{Cb1}−Cp−C∞

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ = 0

∮
C−SDP−partial{Cb1}−Cp−C∞

Ψh
lmαβ(x, z|x′, z′ : ζ)dζ = 0

(52)

For the far-zone electric Green’s dyad,∫
C

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ =

∫
SDP

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ

=
∫
partial{Cb1}

Ψe
lmαβ(x, z|x′, z′ : ζ)dζ (53)

And for the far-zone magnetic Green’s dyad,∫
C

Ψh
lmαβ(x, z|x′, z′ : ζ)dζ =

∫
SDP

Ψh
lmαβ(x, z|x′, z′ : ζ)dζ

=
∫
partial{Cb1}

Ψh
lmαβ(x, z|x′, z′ : ζ)dζ (54)
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Figure 12. Transverse dependence of the reflected continuous
spectrum in the cover layer; the steepest-descent numerical calculation
and saddle-point approximation.

8. NUMERICAL RESULTS

The asymptotic radiation field of guiding structures is determined
through the saddle-point approximation for far zone. But, in the near
zone, the saddle-point method fails. The steepest-descent method in
the complex ζ-plane is valid to determine the radiation field for both
near and far zone. As depicted in Fig. 12, the small observation aspect
angle θ corresponds to the far zone and the large one does to the near
zone. Therefore, it is observed that the saddle-point approximation
matches to the steepest-descent method in the far zone but, deviates
from the steepest-descent method in the near zone.

During the steepest-descent contour in the cover layer, it is
observed that both the partial and the full substrate layer branch cut
deformations are acceptable for θ ≥ θt and the field discontinuity due
to the full substrate branch cut contribution over θt can be resolved in
the cover layer since the full branch cut contribution is negligible near
the threshold aspect angle θt as depicted in Fig. 13.

In the substrate layer, the steepest-descent contour is equivalent
to the remaining cover and full substrate branch-cut deformations as
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Figure 13. Transverse dependence of the continuous spectrum in the
cover layer; steepest-descent numerical and the substrate layer branch
cut.
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Figure 14. Transverse dependence of the transmitted spectrum in
the substrate layer; steepest-descent numerical and the corresponding
branch cuts.
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Figure 15. Transverse dependence of the transmitted spectrum in
the substrate layer; steepest-descent numerical and the partial cover
branch cut.

depicted in Fig. 14. Moreover, the partial cover branch cut contribution
is considerable near θt but total field is still continuous over that angle
since the field phase compensate the discrepancy and validated by
Re{ζ}-axis inversion contour integration as depicted in Fig. 15.

9. CONCLUSION

The steepest-descent path in the complex ζ-plane in both the cover
and substrate layers was identified as a direct method and confirmed
it using the transformation of the steepest-descent path in the complex
φ-plane defined by φ = σ + jη as an indirect method. Both methods
yielded the identical result and reconfirmed the validity. Using
the steepest-descent method in the complex ζ-plane, the numerical
evaluation of the TE radiation field can be implemented in both
the cover and the substrate layer. During the steepest-descent
implementation in the complex ζ-plane, the integral path must be
deformed in order to meet the closure condition so that it can be
properly connected to the Re{ζ}-axis inversion contour. Then, the
radiation field can satisfy Sommerfeld’s radiation condition (closure
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condition) and can be numerically validated by Re{ζ}-axis inversion
contour integration. Since the far-zone field is the main concern,
the discrete-mode spectrum contributed by guided-pole singularity has
been less emphasized.

Due to the intrinsic nature of TM mode excitation, Green’s dyads
for radiation fields can be formulated in both the cover and the
substrate layers using the steepest-descent method in the complex ζ-
plane. It is observed that the steepest-descent path in the complex
ζ-plane is independent of the source excitatory mode but is dependent
of the geometrical structure of the waveguide. Since the far-zone
field is the main concern, the discrete mode spectrum contributed by
guided-pole singularity was less emphasized like in TE mode. However,
the discrete-mode spectrum for the electric Green’s dyad must be
considered significant within the near field and source regions. Charges
contribute to the electric Green’s dyad leading to a singularity term.
Another important observation is that TM mode excitation cannot
contribute to Green’s dyad singularity for the magnetic field within
the source region since no magnetic charge exists there.

During the steepest-descent contour deformation in both cover
and substrate layers, it is observed that the corresponding branch cut
deformation for each layer is identical for θ ≥ θt and the integration
path deformation was reviewed earlier.

Since no numerical results for TM mode are presented in this
paper, it is observed the apparent field discontinuity due to the branch
cut contribution beyond the threshold aspect angle cannot be resolved
numerically. However, based upon the results in TE case, it can be
conjectured that either the branch cut contribution is negligible or the
phase compensation for Green’s dyad near the threshold aspect angle
can resolve the field discontinuity in both cover and substrate layer
regions. The rigorous numerical implementation for Green’s dyad of
the radiation field in both the near and far zones and also within the
source region will be accommodated in future research.

APPENDIX A.

Spectral Green’s dyads are given by

ge11xx(x|x′) =
1

jωε1

{
ζ2

2p1

[
e−p1|x−x

′| + e−p1(x+x′)
]
+

2k2
1

p21
δ(x− x′)

}

ge11xz(x|x′) = − 1
jωε1

jζ

2

[
sgn(x− x′)e−p1|x−x′| − e−p1(x+x′)

]

ge11zx(x|x′) = − 1
jωε1

jζ

2

[
sgn(x− x′)e−p1|x−x′| − e−p1(x+x′)

]
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ge11zz(x|x′) = − 1
jωε1

p1
2

[
e−p1|x−x

′| − e−p1(x+x′)
]

ge12xx(x|x′) = − 1
jωε1

2Λ̃ε1[ε2p3 cosh(p2t) + ε3p2 sinh(p2t)]

·ζ
2

p21

[
e−p1x

′

2
+
δ(x− x′)
p1

]
e−p1x

ge12xz(x|x′) =
1

jωε1
jζΛ̃ε1[ε2p3 cosh(p2t) + ε3p2 sinh(p2t)]

e−p1(x+x′)

p1

ge12zx(x|x′) =
1

jωε1
2Λ̃ε1[ε2p3 cosh(p2t) + ε3p2 sinh(p2t)]

·jζ
p21

[
e−p1x

′

2
+
δ(x− x′)
p1

]
e−p1x

ge12zz(x|x′) = − 1
jωε1

Λ̃ε1[ε2p3 cosh(p2t) + ε3p2 sinh(p2t)]e−p1(x+x′)

ge21xx(x|x′) =
1

jωε1
2Λ̃ε1

ζ2

p1p2

[
e−p1x

′

2
+
δ(x− x′)
p1

]

·{ε2p3 sinh[p2(x+ t)] + ε3p2 cosh[p2(x+ t)]}

ge21xz(x|x′) =
1

jωε1
jζΛ̃ε1{ε2p3 sinh[p2(x+t)]+ε3p2 cosh[p2(x+t)]}e

−p1x′

p2

ge21zx(x|x′) =
1

jωε1
2Λ̃ε1

ζ2

p1

[
e−p1x

′

2
+
δ(x− x′)
p1

]

·{ε2p3 cosh[p2(x+ t)] + ε3p2 sinh[p2(x+ t)]}

ge21zz(x|x′) = − 1
jωε1

Λ̃ε1{ε2p3 cosh[p2(x+t)]+ε3p2 sinh[p2(x+t)]}e−p1x′

ge31xx(x|x′) =
1

jωε1
2Λ̃ε1ε2

ζ2

p1

[
e−p1x

′

2
+
δ(x− x′)
p1

]
ep3(x+t)

ge31xz(x|x′) =
1

jωε1
jζΛ̃ε1ε2e−p1x

′
ep3(x+t)

ge31zx(x|x′) =
1

jωε1
2Λ̃ε1ε2p3

jζ

p1

[
e−p1x

′

2
+
δ(x− x′)
p1

]
ep3(x+t)

ge31zz(x|x′) = − 1
jωε1

Λ̃ε1ε2p3e−p1x
′
ep3(x+t)

gh11yx(x|x′) =
jζ

p1

[
e−p1|x−x

′|

2
+
e−p1(x+x′)

2
+

2δ(x− x′)
p1

]
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gh11yz(x|x′) =
1
2

[
sgn(x− x′)e−p1|x−x′| − e−p1(x+x′)

]
gh12yx(x|x′) = −2Λ̃ε1[ε2p3 cosh(p2t) + ε3p2 sinh(p2t)]

· ζ
p21

[
j
e−p1x

′

2
+
δ(x− x′)
p1

]
e−p1x

gh12yz(x|x′) = Λ̃ε1[ε2p3 cosh(p2t) + ε3p2 sinh(p2t)]
e−p1(x+x′)

p1

gh21yx(x|x′) = 2Λ̃ε2
jζ

p1p2

[
e−p1x

′

2
+
δ(x− x′)
p1

]

·{ε2p3 sinh[p2(x+ t)] + ε3p2 cosh[p2(x+ t)]}

gh21yz(x|x′) = −Λ̃ε2{ε2p3 sinh[p2(x+ t)] + ε3p2 cosh[p2(x+ t)]}e
−p1x′

p2

gh31yx(x|x′) = 2Λ̃ε2ε3
jζ

p1

[
e−p1x

′

2
+
δ(x− x′)
p1

]
ep3(x+t)

gh31yz(x|x′) = −Λ̃ε2ε3e−p1x
′
ep3(x+t)
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