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Abstract—Presented herein is a coupled-mode formulation for
coupled microstrip lines on a magnetized ferrite substrate. The
formulation discussed here is an extension of the coupled-mode theory
for microstrip lines on an isotropic substrate. Since the magnetized
ferrite exhibits a biaxial anisotropy in its permeability, the guided-
wave fields in the magnetized ferrite are not subject to the conventional
reciprocity relation for fields in an isotropic medium. Thus, a
generalized reciprocity relation is first derived from two sets of guided-
wave fields, which propagate in ferrite magnetized transversely along
the strip surface. The reciprocity relation is then used to derive
coupled-mode equations for coupled microstrip lines on a ferrite
substrate. As a basic numerical example, the new formulation is
applied to two coupled microstrip lines on a ferrite substrate.
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1. INTRODUCTION

Multi-layered coupled-microstrip lines are being used widely at present
in designing microwave integrated circuits. The use of coupled
microstrip lines, especially, on substrates of magnetized ferrites has
come to attract great attention because of magnetized ferrite’s wide
range of applications to nonreciprocal integrated devices. However,
since magnetized ferrite exhibits a biaxial anisotropy in permeability,
it is often extremely difficult to analyze the electromagnetic fields which
propagate in it, hence there are few theoretical studies [1–4] of coupled
microstrip lines on anisotropic substrates.

That which is presented in this paper is a coupled-mode
formulation for coupled microstrip lines on a ferrite substrate
magnetized perpendicular to the direction of electromagnetic wave
propagating along strip surface — a formulation which is an extension
of the coupled-mode theory for microstrip lines on an isotropic
substrate [5–7]. It should be noted that the structure analyzed
here is different from those treated in [8] and [9], which dealt with
microstrip lines on a ferrite substrate magnetized longitudinally along
strip lines. Therefore, an isolated microstrip has a nonreciprocal
propagation characteristic, since the magnetized ferrite exhibits a
biaxial anisotropy in its permeability. Thus, the guided-wave fields
in the magnetized ferrite which analyzed here are not subject to the
conventional reciprocity relation fields in an isotropic medium. First
of all, a generalized reciprocity relation is derived for guided-wave
fields which propagate in anisotropic media from two sets of Maxwell
equations: one is satisfied by the guided-waves propagating in the +z
direction as shown in Fig. 1(a) and the other is satisfied by the guided-
waves propagating in the −z direction as shown in Fig. 1(b). This is an
essential point of this paper. It should be noted that a coupled mode
formulation is very important to design of microwave applications,
since it is well known that the coupled-mode theory can extremely
reduce the time of theoretical and numerical analyses of complicated
coupled microstrip line structures such as multiple microstrip lines on
multilayered or anisotropic substrates.

The reciprocity relation is used to obtain coupled-mode equations
for the modal amplitudes which are peculiar to each isolated line on
a magnetized ferrite substrate. Note here that when the formulation
above is combined with the spectral domain method, the Galerkin
moment method procedure may be used to calculate the coupling
coefficients for each isolated microstrip. The present approach that
we have developed is applied to the analysis of two coupled-microstrip
lines on a magnetized ferrite substrate. Moreover, the numerical results
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Figure 1. Two sets of guided-wave fields propagate in the ferrite.
(a)The guided-wave (E(+),H(+),J (+)) propagate in the +z direction,
(b)The guided-wave (E(−),H(−),J (−)) propagate in the −z direction.

for mode propagation constants are compared with those obtained by
the Galerkin moment method procedure. It should be noted, therefore,
that both results are in a good agreement.

2. GENERALIZED RECIPROCITY RELATION

The guided-wave fields in a ferrite magnetized in the x direction
considered, the permeability tensor of the ferrite may be summarized
by the following equations:

[ ¯̄µ(+)] = µ0

[1 0 0
0 µ iκ
0 −iκ µ

]
(1)

with

µ = 1− ω0ωM
ω2 − ω2

0

, κ = − ωωM
ω2 − ω2

0

. (2)

Note that in the above equations ω0 = −γµ0Hi, ωM = −γµ0Mi, Hi is
the internal dc magnetic field; Mi, the saturation magnetization; and
γ, the gyromagnetic ratio.

The electric field E(+), the magnetic field H(+), and the current
source J (+) — all associated with the guided wave propagating in the



222 Matsunaga

+z direction in the magnetized ferrite — are defined as follows:

E(+) = e(+)(x, y)e−iβz = [e(+)
t (x, y) + ẑe(+)

z (x, y)]e−iβz (3)

H(+) = h(+)(x, y)e−iβz = [h(+)
t (x, y) + ẑh(+)

z (x, y)]e−iβz (4)

J (+) = j(+)(x, y)e−iβz = [jt(x, y) + ẑj(+)
z (x, y)]e−iβz. (5)

Note that e(+)(x, y), h(+)(x, y) and j(+)(x, y) represent the eigenmode
fields and current, and β denotes the mode propagation constant.
Therefore, E(+), H(+) and J (+) satisfy the following Maxwell
equations: {

∇×E(+) = −iω[ ¯̄µ(+)]H(+)

∇×H(+) = iωεE(+) + J (+) (6)

in which the parameter ε is the permittivity of the ferrite. At the
same time, the new set of fields and current source E(−), H(−) and
J (−), which are associated with the guided wave propagating in the
−z direction, and are defined using the respective components of
e(+)(x, y), h(+)(x, y) and j(+)(x, y) as follows:

E(−) = e(−)(x, y)eiβz = [e(+)
t (x, y)− ẑe(+)

z (x, y)]eiβz (7)

H(−) = h(−)(x, y)eiβz = [−h(+)
t (x, y) + ẑh(+)

z (x, y)]eiβz (8)

J (−) = j(−)(x, y)eiβz = [j(+)
t (x, y)− ẑj(+)

z (x, y)]eiβz. (9)

These fields and the current source (E(−), H(−), J (−)) will not satisfy
the Maxwell equations in the same way as those for (E(+), H(+),
J (+)), because a medium supporting the guided waves is anisotropic.
Transformations (7)–(9) of the field variables substituted for (6), and
the equations thus obtained compared with (6) term by term, it follows
that the electric field E(−), the magnetic field H(−), and the current
source J (−) — all associated with the guided wave propagated in the
−z direction in the magnetized ferrite – satisfy the following Maxwell
equations: {

∇×E(−) = −iω[ ¯̄µ(−)]H(−)

∇×H(−) = iωεE(−) + J (−) (10)

in which the matrix [ ¯̄µ(−)] represents the permeability tensor of the
ferrite magnetized in the −x direction and is related to the original
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permeability tensor of the ferrite magnetized in the +x direction [ ¯̄µ(+)]
as follows:

[ ¯̄µ(−)] = µ0

[1 0 0
0 µ −iκ
0 iκ µ

]
= [¯̄µ(+)]T . (11)

Let us assume that E and H are electric and magnetic fields
produced by the current source J in a medium with ε(y) and [ ¯̄µ(y)], and
thatE′ andH ′ are electric and magnetic fields produced by the current
source J ′ in another medium with ε(y) and [ ¯̄µ′(y)]. Each set of these
fields thus satisfies the corresponding set of the Maxwell equations as
follows: {

∇×E = −iω[ ¯̄µ(y)] ·H
∇×H = iωε(y)E + J (12)

{
∇×E′ = −iω[ ¯̄µ′(y)] ·H ′
∇×H ′ = iωε(y)E′ + J ′. (13)

Thus, the following equation may be derived from vector calculus done
for (12) and (13):

∇ · (E ×H ′ −E′ ×H) =− iωH ′ ·
(
[ ¯̄µ(y)]− [ ¯̄µ′(y)]T

)
·H

−E · J ′ +E′ · J . (14)

When (14) is applied to a cylindrical geometry which is translationally
invariant in the z direction, we obtain

∂

∂z

∫
S
(E ×H ′ −E′ ×H) · ẑdxdy

= −iω
∫
S
H ′ · ([ ¯̄µ(y)]− [ ¯̄µ′(y)]T ) ·Hdxdy

+
∫
S
E′ · Jdxdy −

∫
S
E · J ′dxdy

(15)

where S denotes the cross-sectional area in the transverse x-y plane.
When the fields (E,H,J) are the guided fields (E(+),H(+),J (+)) and
thus satisfy (6), and when the fields (E′,H ′,J ′) are the guided fields
(E(−),H(−),J (−)) and thus satisfy (10), the first term in the right
hand side of (15) is canceled out, and (15) leads to

∂

∂z

∫
S
(E ×H ′ −E′ ×H) · ẑdxdy =

∫
S
E′ · Jdxdy −

∫
S
E · J ′dxdy.

(16)
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It should be noted that the above equation is a generalized reciprocity
relation for two sets of guided wave fields in a magnetized ferrite. It
might also be noted here that the above equation yields the same
reciprocity relation for the two sets of guided-wave fields (E,H,J)
and (E′,H ′,J ′) as those [5] in the isotropic medium.
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Figure 2. Cross section of N coupled microstrip lines on a Magnetized
ferrite substrate.

3. COUPLED-MODE EQUATIONS

Using the reciprocity relation (16), the coupled-mode equations for
N coupled microstrip lines on the substrate of magnetized ferrite
whose permeability tensor is fixed at [ ¯̄µ(+)] as shown in Fig. 2 can be
formulated in the same way as in the case of equations for an isotropic
substrate [5–7]. This illustrates, therefore, that if the eigenmode fields
and current in the original coupled structure are applied to the first set
of solutions (E,H,J) in (16), these solutions may be approximated to
the following equations:

E =
N∑
ν=1

aν(z)e(+)
ν (x, y)

=
N∑
ν=1

aν(z)[e
(+)
ν,t (x, y) + ẑe(+)

ν,z (x, y)] (17)

H =
N∑
ν=1

aν(z)h(+)
ν (x, y)

=
N∑
ν=1

aν(z)[h
(+)
ν,t (x, y) + ẑh(+)

ν,z (x, y)] (18)

J =
N∑
ν=1

aν(z)j(+)
ν (x, y)
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=
N∑
ν=1

aν(z)[j
(+)
ν,t (x, y) + ẑj(+)

ν,z (x, y)] (19)

where eν(x, y), hν(x, y) and jν(x, y) (ν = 1, 2, ...N) are eigenmode
functions for the fields and current propagating in the +z direction
along each of the N microstrip lines in isolation, and in which aν(z)
is an unknown amplitude function. It should be noted that all
components (E,H,J) can be expanded with the same aν(z), since
the expressions in (17)–(19) correspond to the modal expansions in
terms of the N fundamental modes of each of the N isolated microstrip
lines. Note that the following solutions may be obtained if both the
eigenmode fields and the current, which propagate in the −z direction
along each N isolated microstrip line on a ferrite substrate which
contains [ ¯̄µ′(y)] = [ ¯̄µ(−)], are applied to the second set of solutions
(E′,H ′,J ′) in (16):

E′ = e(−)
ν (x, y)eiβ

(0)
ν z

= [eν,t(x, y)− ẑeν,z(x, y)]eiβ
(0)
ν z (20)

H ′ = h(−)
ν (x, y)eiβ

(0)
ν z

= [−hν,t(x, y) + ẑhν,z(x, y)]eiβ
(0)
ν z (21)

J ′ = j(−)
ν (x, y)eiβ

(0)
ν z

= [jν,t(x, y)− ẑjν,z(x, y)]eiβ
(0)
ν z (22)

(ν = 1, 2, ..., N)

where β
(0)
ν is the propagation constant of the isolated ν-th microstrip

line.
Finally, if the (17)–(19) and (20)–(22), which are the expressions

obtained for each of the N isolated microstrip lines, are substituted into
the reciprocity relation (16), the following coupled-mode equations for
the amplitude functions aν(z) (ν = 1, 2, ..., N) are obtainable:

d

dz
a = −i[C]a (23)

with

a = [a1 a2 ...aN ]T (24)

[C] = [M ]−1[K] (25)

Kνµ = β(0)
ν Mνµ + Qνµ (26)
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Mνµ =
1
2
(Nνµ + Nµν) (27)

Nνµ =
1
2

∫
S
[eν(x, y)× hµ(x, y)] · ẑdxdy (28)

Qνµ = − i

4

∫
lµ

[eν,x(x, h1)jµ,x(x)− eν,z(x, h1)jµ,z(x)]dx

(ν, µ = 1, 2, ..., N) (29)

where lµ denotes the cross-sectional contour of the µ-th line, and the
eigenmode fields and current in the isolated lines are normalized so
that Nνν becomes 1. It should also be noted here that Qνν = 0 since
eν,x(x, y) = eν,z(x, y) = 0 on the surface of the ν-th line. As a result
of obtaining the coupled-mode equations, an analysis of N coupled
microstrip lines becomes just an analysis of each of the N isolated
microstrip lines.

Solutions to the coupled mode equations (23) are the propagation
constants of N coupled modes propagating in the forward and
backward directions. Note here that although there are various
numerical techniques [9], the eigenmode fields and currents for isolated
microstrip lines — all have different values in forward and backward
waves — which appear in equations (28) and (29) may be calculated by
the spectral domain method combined with Galerkin moment method
procedure [5–7]. However, in order to calculate eigenmode fields and a
current for an isolated microstrip line, the fields equations for it should
be obtained. Therefore, the process of obtaining the fields equations
is shown in the following section.

4. FIELDS EQUATIONS FOR AN ISOLATED
MICROSTRIP LINE

The electromagnetic fields in the magnetized ferrite with the relative
permittivity εr and the permeability tensor [ ¯̄µ(+)] satisfy the following
Maxwell equations: {

∇×E = −iω
[
¯̄µ(+)

]
H

∇×H = iωε0εrE + J . (30)

Since x represents the principal axis, the fields may be expressed in
terms of Ex and Hx. Therefore, several manipulations to (30) will lead
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to the following equations:

∇2
tEx +

∂2

∂x2
Ex + k2

0εrµefEx = −k0
κ

µ

∂

∂x
H̄x (31)

∇2
t H̄x +

1
µ

∂2

∂x2
H̄x + k2

0εrH̄x = k0εr
κ

µ

∂

∂x
Ex. (32)

And the transversal field components Et = ŷEy + ẑEz and H̄t =
ŷH̄y + ẑH̄z are expressed in terms of Ex and H̄x as follows:

[¯̄γ] ·Et = −ik0[ ¯̄µt] · (∇tH̄x × x̂) +
∂

∂x
∇tEx (33)

[¯̄γ] · H̄t = ik0εr(∇tEx × x̂) +
∂

∂x
∇tH̄x (34)

with

∇t = ŷ
∂

∂y
+ ẑ

∂

∂z
(35)

[¯̄γ] =


k0εrµ +

∂2

∂x2
ik2

0εrκ

−ik2
0εrκ k0εrµ +

∂2

∂x2


 (36)

[ ¯̄µt] =
[

µ iκ
−iκ µ

]
(37)

where µef = µ− κ2

µ
, η0 =

√
µ0

ε0
, H̄ = η0H, and in which the subscript

t denotes the transverse y and z components of the indicated vectors.
The z dependence of electromagnetic fields is assumed to be e−iβz

where β is the propagation constant along the microstrip line. Here
the Fourier transform with respect to the x coordinate for the electric
and magnetic fields may be defined as follows:

E(x, y, z) =
1
2π

e−iβz
∫ ∞
−∞

Ẽ(ζ, y)e−iζxdζ (38)

H̄(x, y, z) =
1
2π

e−iβz
∫ ∞
−∞

˜̄H(ζ, y)e−iζxdζ. (39)
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Therefore, (31) and (32) may be rewritten in the Fourier transformed
domain as follows: [

∂2

∂y2
+ P

]
Ẽx = k0

iκ

µ
ζ ˜̄Hx (40)[

∂2

∂y2
+ Q

]
˜̄Hx = −k0εr

iκ

µ
ζẼx (41)

where

P = k2
0εrµef − β2 − ζ2, Q = k2

0εr − β2 − 1
µ
ζ2 . (42)

If ˜̄Hx is eliminated from (40) and (41), the following Fourier-
transformed Helmholtz equation for Ẽx can be derived:[

∂4

∂y4
+ (P + Q)

∂2

∂y2
+ (PQ− k0εr

κ2

µ2
ζ2)

]
Ẽx(ζ, y) = 0. (43)

The solution to (43) may be expressed in the following form:

Ẽx(ζ, y) = A+e−iκ1y + A−eiκ1y + B+e−iκ2y + B−eiκ2y (44)

with

κ1 =

√√√√P + Q

2
+

√
(P −Q)2

4
+ k0εr

κ2

µ2
ζ2, (45)

κ2 =

√√√√P + Q

2
−

√
(P −Q)2

4
+ k0εr

κ2

µ2
ζ2 , (46)

where A+, A−, B+ and B− are unknown coefficients. And the
substitution of (44) into (41) can lead to:

˜̄Hx(ζ, y) =
k0εr(iκ/µ)ζ

κ2
1 −Q

[A+e−iκ1y + A−eiκ1y]

+
k0εr(iκ/µ)ζ

κ2
2 −Q

[B+e−iκ2y + B−eiκ2y].
(47)

Note that the expressions for Ẽy, Ẽz, ˜̄Hy and ˜̄Hz may now be deduced
with ease from (33), (34), (44) and (47). In this case, the unknown
coefficients above are determined by the application of the boundary
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conditions to the resulting field expressions. Thus, the dyadic Green
functions, which relate Ẽx(ζ, h1) and Ẽz(ζ, h1) to the current densities
˜̄Jx(ζ) and ˜̄Jz(ζ), may be obtained in the spectral domain as follows:

Ẽx(ζ, h1) = G̃xx(ζ, h1)˜̄Jx(ζ) + G̃xz(ζ, h1)˜̄Jz(ζ) (48)

Ẽz(ζ, h1) = G̃zx(ζ, h1)˜̄Jx(ζ) + G̃zz(ζ, h1)˜̄Jz(ζ). (49)

Note that the detailed descriptions of G̃xx, G̃xz, G̃zx and G̃zz are
omitted here because of the limited space available in this paper.
Finally, equations (48) and (49) are solved to determine Ẽ, ˜̄H and
˜̄J using the Galerkin moment method in the spectral domain. The
solutions thus obtained are substituted into (28) and (29) to calculate
the elements of the coupling matrix [C] in the spectral domain.

h1
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r0

d

1

W1

2

W2

x

y

z
Hi

[µ]
ε ε

ε

Figure 3. Cross section of two coupled microstrip lines on a
magnetized ferrite substrate.

5. NUMERICAL RESULTS

As an example of numerical computations, we considered two coupled
microstrip lines on a ferrite substrate as shown in Fig. 3, where the
height of the substrate, the width of the microstrip lines, the relative
permittivity, internal dc magnetic field, and saturation magnetization
of the ferrite are h1 = 0.254 mm, w1 = w2 = 0.254 mm εr = 12.6,
µ0Hi = 0.0275 T and µ0Mi = 0.275 T respectively. It is noted that
these examples of parameters are chosen as those in [2]. Figure 4 shows
the frequency dependence of the normalized propagation constants
β/k0 of the two coupled-modes for the forward wave and the backward
wave when the separation distance between the microstrip lines is
d = 0.5 mm. In this figure the results obtained by Galerkin moment
method procedure are also plotted. It is noted that both results are in
a good agreement. The normalized propagation constants β/k0 at the
frequency f = 10 GHz are shown in Fig. 5 as functions of the separation
distance d. It should be also noted that those results of the present
analysis are in a good agreement with the results which obtained by
Galerkin moment method.
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Figure 4. Forward and backward normalized propagation constants
of two identical microstrip lines as functions of frequency, where
w1 = w2 = 0.254 mm, h1 = 0.254 mm, εr = 12.6, d = 0.5 mm,
µ0Hi = 0.0275 T, and µ0Mi = 0.275 T. Note that CMT refers to the
coupled-mode theory which presented here, and MOM refers to the
Galerkin moment method.
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Figure 5. Forward and backward normalized propagation constants
of two identical microstrip lines as functions of the separation distance
d, where w1 = w2 = 0.254 mm, h1 = 0.254 mm, εr = 12.6, f = 10 GHz,
µ0Hi = 0.0275 T and µ0Mi = 0.275 T. Note that CMT refers to the
coupled-mode theory which presented here, and MOM refers to the
Galerkin moment method.
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6. CONCLUSION

A coupled-mode formulation for coupled microstrip lines on a
magnetized ferrite substrate has been presented. The proposed
coupled-mode formulation is an efficient analytical and numerical
technique, which yields the approximate dispersion characteristics of
coupled microstrip lines on a ferrite magnetized transversely along the
propagation direction of guided-wave fields with high enough accuracy.
The guided-wave fields in a magnetized ferrite are not subject to
a conventional reciprocity relation like the fields propagating in an
isotropic medium. However, when guided-wave fields propagating in
the opposite direction in ferrite magnetized in the reverse direction
of the target structure are introduced as another set of guided-wave
fields for a reciprocity relation, this creates a generalized reciprocity
relationship between the guided-wave fields in the target structure
and those in a complementary configuration. Therefore, a generalized
reciprocity relation has been used to derive coupled-mode equations
for coupled microstrip lines on a ferrite substrate magnetized in a
transverse direction along strips. In conclusion, the extension of the
coupled-mode theory to a formulation of the coupled microstrip line
on a magnetized ferrite has been done, even if guided-wave fields
in the magnetized ferrite demonstrate nonreciprocal nature of mode
propagation in forward and backward directions. It is also noted that
further extension of the present formulation to multiple microstrip lines
on a multi-layered ferrite substrate is straightforward.
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