
Progress In Electromagnetics Research, PIER 42, 247–259, 2003

MPI-BASED PARALLELIZED PRECORRECTED FFT
ALGORITHM FOR ANALYZING SCATTERING BY
ARBITRARILY SHAPED THREE-DIMENSIONAL
OBJECTS

L.-W. Li † and Y.-J. Wang‡

Department of Electrical and Computer Engineering
National University of Singapore
Kent Ridge, Singapore 119260

E.-P. Li

Institute of High Performance Computing
Science Park, Singapore 117528

Abstract—In this paper, how to parallelize the Pre-corrected FFT
algorithm for solving the scattering problem of large scale is presented
and discussed. The P-FFT technique developed by our group earlier
was extended in the current analysis. To show the efficiency of the
MPI-based parallelization algorithm, the experiment results are given
in the latter part of the paper and various comparisons are made for
such a demonstration.

1 Introduction

2 Fundamental Knowledge
2.1 The Pre-Corrected FFT Algorithm
2.2 Parallel 3-D FFT Algorithm
2.3 MPI (Message Passing Interface)
2.4 The Platform

3 Parallelized Pre-Corrected FFT Algorithm
3.1 The First Way of Parallelization
3.2 The Second Way of Parallelization

† Also with High Performance Computation for Engineered Systems (HPCES) Programme,
Singapore-MIT Alliance (SMA), Singapore/USA 119260/02139
‡ Also with Institute of High Performance Computing, Science Park, Singapore 117528

248 Li, Wang, and Li

4 The Experimental Results
4.1 Parallelization of the First Way
4.2 Parallelization of the Second Way (Only Parallelizing

FFT)
4.3 Parallelization of the Second Way (Parallelizing Correc-

tion and FFT)

5 Conclusion

Acknowledgment

References

1. INTRODUCTION

With the growth of the new technologies, the operating frequencies
of various electrical and/or electronic systems have been moving
toward the higher end of the frequency spectrum. As a result,
the scale of electromagnetic problems is becoming much larger, with
respect to the resulted smaller wave length. For solving a practical
problem of very large scale, the computation of various desired physical
quantities is usually very expensive, requiring a large amount of CPU
time and computational complexity [1, 2]. Although the capability
of a Personal Computer (PC) has been greatly improved, it still
cannot meet the actual computational requirement for large scale
electromagnetic systems. This paper presents the parallelization of our
existing Pre-corrected FFT (P-FFT) algorithm and its implementation
for computing three-dimensional electrically large scaled scattering
problems on high performance multiprocessor platforms and clusters.

The Pre-corrected FFT algorithm is a kind of fast code originally
developed for analyzing a wide variety of electrostatic fields of printed
circuits [3, 4] and its best cost is to O(N logN). Nie-Li-Yuan-Yeo have
successfully used the pre-corrected FFT (P-FFT) method to analyze
electromagnetic scattering of arbitrarily shaped three-dimensional
objects [5, 6]. The code for computing this kind of scattering problems
usually runs on a PC. As compared with fast multipole algorithm [1],
less execution time and memory requirement are needed in P-FFT
approach. It still takes a very long time to get the results, however,
when the number of unknowns becomes very large although the pre-
corrected FFT is an efficient fast algorithm. We may need a long
time to obtain comprehensive results from a normal PC when the
current distributions on the surfaces of an airplane are calculated. For
example, it takes 9 hours to obtain the results of physical quantities
on a Pentium 1G PC if the object has 21240 unknowns [5, 6]. To

MPI-based parallelized precorrected FFT algorithm 249

increase the computational speed, we need to parallelize [7, 8] the
existing pre-corrected-FFT algorithm for electrically large systems. In
this algorithm, FFT occupies most of CPU time (up to about 75%).
So it is important to parallelize the FFT part of the code in order to
speed up the pre-corrected FFT algorithm.

At a single incident angle, solving the equation of ZI = V with
FFT occupies most of the CPU time when the scattering of an incident
plane wave by an arbitrarily shaped scatterer is characterized. In
reality, 360 scanning angles are needed so as to obtain a complete
distribution of scattering by a common object. Of course, step sizes
can be reduced by half when the object is a single-symmetric object
such as an airplane, and sometimes even by a quarter when the object
double-symmetric (for instance, a dielectric or conducting sphere). In
the pre-corrected FFT algorithm, the computational steps are reduced
as computing the scattering results at the next incident angle refer to
the result of the front incident angle.

Obviously, we can shorten the running time if we can fully utilize
the potential capability of a supercomputer or a cluster of computers.
In this paper, the way of parallelizing the serial pre-corrected FFT
code is given, and the computational time of both serial and parallel
algorithms is compared and discussed.

2. FUNDAMENTAL KNOWLEDGE

2.1. The Pre-Corrected FFT Algorithm

Similarly to those of other algorithms such as the fast multipole
algorithm (FMM), the main difficulty in P-FFT is also how to
approximate the potentials over a large range and how to compute
the near-zone and far-field interactions. The basic idea of P-FFT
is that uniform grid potentials are used to represent the large
distance potentials and directly calculate the nearby interactions. This
procedure includes four steps, namely,

• to project the element singularity distributions to point
singularities on the uniform grid,

• to compute the fields at the grid points due to the singularities at
the grid points using the FFT,

• to interpolate the grid point fields onto the elements, and
• to directly compute nearby interactions.

This procedure is summarized in Figure 1 in terms of steps (1) to (4).

250 Li, Wang, and Li

Figure 1. The 3-D representation of the procedures of the pre-
corrected FFT algorithm (p = 2).

2.2. Parallel 3-D FFT Algorithm

The 3-D Discrete Fourier Transform (DFT) is defined by the following
equation [7]:

X�1,�2,�3 =
N1−1∑
�1

N2−1∑
�2

N3−1∑
�3

x�1,�2,�3ω
r1�1
N1

ωr2�2N2
ωr3�3N3

(1)

where ωrj�jNj
denotes the twiddle factor and is defined as follows:

ωr �N = exp
(

2πr�
N

)
, (2)

while rj = 0, 1, 2, · · · , Nj − 1 and �j = 0, 1, 2, · · · , Nj − 1 with j being
either 1, 2, or 3; and N1, N2, and N3 stand for the dimensions along
x-, y-, and z-directions, respectively.

The sequential computation of 3-D DFT can be carried out in the
following 3 steps:

• Firstly, form a series of (ordered) 1D-FFTs on the N2 ×N3 rows
(of length N1 each).
• Secondly, construct a series of (ordered) 1D-FFTs on the N1×N3

rows (of length N2 each).
• Thirdly, make a series of (ordered) 1D-FFTs on the N1×N2 rows

(of length N3 each).

MPI-based parallelized precorrected FFT algorithm 251

The computing cost is thus in the O[N1N2N3 log(N1N2N3)].
With the parallel 3-D FFT algorithm, each processor can execute

some 1D-FFTs in each step simultaneously. For example, if we assume
that there are n processors available, then the N3×N2 rows (of length
N1 each) in first step can be divided by n into n groups of 1D-FFTs.
Therefore, each processor does one group of 1D-FFTs independently.
In addition, the data of 3D-FFTs should be divided, distributed to
each processor before each step, and gathered after each step.

2.3. MPI (Message Passing Interface)

Message Passing Interface (MPI) was proposed as a standard by a
broadly based committee of vendors, implementors, and users [9, 10].
Now, it becomes a definition of interfaces among a cluster of computers
or the processors of a multiprocessor parallel computer. It provides a
platform on which users can reasonably distribute a task to a cluster
of computers or the processors of a multiprocessor parallel computer.

The key problem that MPI-based programming relates is how to
distribute the tasks of users to processors according to the capability
of each processor and reduce the communications among processors as
little as possible where the communication time is expressed as follows:

Communication time = Latency +
Message size
Bandwidth

.

There are two main types of MPI-based supercomputers: shared
memory and distributed memory (i.e., local memory) machines. For
the later kind of computers, reducing the communications is especially
crucial as the speed of communication is far slower than that of
computation.

One of MPI-based platforms’ virtues is that it is easy to write
programs on the MPI-based platforms. Only eight functions in MPI
library are indispensable. Below shown is the list of these functions
[9, 10]:

• MPI Init() — initializes MPI
• MPI Comm size() — finds out how many processors there are;
• MPI Comm rank() — finds out which processor it is;
• MPI Send() — Sends a message;
• MPI Recv() — Receives a message;
• MPI Scatter() — distributes distinct messages in the group;
• MPI Gather() — gathers distinct messages in the group;
• MPI Finalize() — Terminates MPI.

252 Li, Wang, and Li

2.4. The Platform

The parallel code of this work is written in Fortran 90 format and runs
on an IBM supercomputer which belongs to IHPC (Institute of High
Performance Computing, a National Laboratory in Singapore). The
parameters of the IBM supercomputer are listed below:

• 7-node IBM p690 model 681,
• PowerPC POWER4 CPU 1.3 GHz,
• 32 processors per node,
• 64 GBytes memory per node, and
• AIX 5L version 5.1 operating system

The MPI library is linked into the executable code.
There are mainly four programming modes on parallel comput-

ers: Single Instruction, Single Data Stream (SISD), Single
Instruction, Multiple Data Stream (SIMD), Multiple Instru-
ction, Single Data Stream (MISD), and Multiple Instruction,
Multiple Data Stream (MIMD). In this paper, we only consider the
architecture SIMD. That is, we only write one code, then use the same
data files, and finally distribute one copy of code and data to each
available processor.

3. PARALLELIZED PRE-CORRECTED FFT
ALGORITHM

In view of the problem of electromagnetic scattering, parallelization
can be carried out in two ways. One is done according to incident
angles and the other is parallelization of P-FFT algorithm.

3.1. The First Way of Parallelization

Generally, 180◦ × 360◦ scanning need be done to get a complete
distribution of scattering for asymmetric objects. Of course,
computational expenses can be reduced by half when objects are
symmetric, e.g., a plane, and even to one angle when object is a
uniform ball. So for a real object, the scattering on an object due
to an incident plane wave needs to be characterized from a range of
continuous incident angles. The whole incident angles can be divided
into n groups by the sum of available processors as equally as possible.
Each processor is responsible for the computation of one group.

For example, assuming that there are 10 available same processors
which are numbered as p0, p1, · · · , p9 and the angle of incidence in the

MPI-based parallelized precorrected FFT algorithm 253

electromagnetic scattering varies from 0◦ to 90◦ at an angle step of 1◦,
we can get the angle cycles that each processor is allocated:

p0 : angles from 0◦ to 8◦;
p1 : angles from 9◦ to 17◦;

...
...

p9 : angles from 81◦ to 90◦.

For p0, p1, · · · , p9, the scattering cross sections at angles of
0◦, 9◦, · · · , 81◦ at a step of 9◦, respectively, need be computed inde-
pendently and simultaneously. Then the scattering at the other angles
in each group is achieved dependently on the above result of the same
group.

Pay attention to that p9 needs to operate an angle scanning for
10 times while the other processors only do 9 times. This is because
there are totally 91 angles and they cannot be equally divided by 10.
So the final running time relies on the operation of p9. In this layer of
parallelism, the computational results from all processors are collected
with the function MPI GATHER(•) provided in MPI library, and written
into a file in hard disk for future use.

When the parallelization of the first layer is implemented, there
exists one problem that must be seriously treated. Generally for
arbitrarily shaped three-dimensional objects, the convergence speed
of convolution of scattering at an angle of incidence is different from
that at another angle of incidence. The convergence speed is therefore
related to the shapes of objects. If the speeds have much difference
from each other, the algorithm should be improved according to the
following method. We allocate first n incident angles to n processors
one by one, then next n angles to n processors again, and etc., until
the end of line where incident angles are reached.

Assume that in terms of running time, a fraction p of a code can
be parallelized and that the remaining 1 − p cannot be parallelized.
According to Amdahl’s law, the parallel running time required will be
1− p+ p/n of the serial running time in the ideal situation if there are
n processors available.

3.2. The Second Way of Parallelization

Theoretically, each of four steps in the pre-corrected FFT algorithm
can be parallelly executed. However, the statistics of the execution
time of each step shows that the third step (interpolating grid
potentials) and the fourth step (correction) occupy most of CPU

254 Li, Wang, and Li

Figure 2. Relationship between grids spacing and execution time.

time, about 10–30% and 40–60%, respectively. Although the P-
FFT algorithm reduces the convolution computation by using coarse
grids, Fast Fourier Transforms (FFTs) still cost much time. On the
other hand, more corrections need to be done in order to obtain high
enough accuracy when the grids spacing becomes larger. Although
the P-FFT approach can use coarser grids in order to reduce FFT
execution time which used to be long, it does not mean that the
bigger the grids spacing is, the less the execution time. When the
grids spacing increases, the computational time of precorrection also
increases because the threshold of nearby area becomes bigger. There
is a balance between nearby correction area and the grids spacing. The
following example shows in Fig. 2 the relationship between these two.
Only one processor is used to compute scattering effects of a sphere
whose radius is 1 meter. The wavelength is set to be 1 meter for
obtaining all the dimensions in wavelength. The surface of the sphere
is divided into 3692 elements, with 5538 unknowns and 1848 nodes.

Let the variable rank represent the number of processors and the
first processor in a group of processors is numbered as p0 while the
other processors in this group are numbered as p1, p2, · · ·, pn, respec-
tively. Then the algorithm of the second way can be described as
follows using pseudo code (by scanning a 3-D object):
IF (rank .eq. p0) THEN
!Project the panel charges to the grid charges
CALL MPI Scatter() !scatter data from p0 to p0 − pn
ENDIF

Project the panel potentials to the uniform grids ! p0 to

MPI-based parallelized precorrected FFT algorithm 255

p0 − pn

!start to compute convolution

! p0 − pn, compute FFT
CALL 1-D FFT() for m times ! along axis x
CALL 1-D FFT() for n times ! along axis y
CALL 1-D FFT() for k times ! along axis z

! p0 − pn, compute FFT−1

CALL 1-D FFT() for m times ! along axis x
CALL 1-D FFT() for n times ! along axis y
CALL 1-D FFT() for k times ! along axis z

!end of convolution

Interpolate the grid potentials to the panels ! p0 to p0−pn

Correction(Compute nearby interactions) ! p0 to p0 − pn

IF (rank .eq. p0) THEN
CALL MPI Gather() !gather data from p0 − pn to p0

ENDIF

4. THE EXPERIMENTAL RESULTS

4.1. Parallelization of the First Way

In this way, the electromagnetic scattering by a metallic spheric model
is considered and its scattering cross sections are computed. The
wavelength λ is set to be 1 meter, so all the other dimensions are given
in terms of the wavelength. The surface of the sphere whose radius
is 1 meter is divided into 3692 elements (also called triangles), 5538
unknowns and 1848 nodes. The grids spacing is set to be 0.167λ as P-
FFT can use less number of grids (generally of size ranging from 0.15λ
to 0.3λ) than AIM in order to reach good enough accuracy [1, 5, 6].
So the grids that are used to represent the long-range potentials are
28λ × 28λ × 28λ. Obviously, only one incident angle needs to be
computed for a sphere. However, 16 angles from 180◦ to 165◦ are
utilized in computation in order to show the effectiveness of the parallel
algorithm. Fig. 3 shows the experimental results of parallelization of
the first layer. In each column, the value of CPU Time corresponds to
the number of processors used in an experiment. Here, the ideal CPU

256 Li, Wang, and Li

Figure 3. Parallel computing time.

time is equal to the value of practical CPU time of a single processor
divided by the number of multiple processors.

4.2. Parallelization of the Second Way (Only Parallelizing
FFT)

As a second way of parallelization, we will parallelize the FFT first.
Only one angle of 180◦ is computed in the second way of parallelization.
Figure 4 shows the experiment result of parallelization of the second
way. The grids spacing is set to be 0.167λ.

From Fig. 4, it is depicted that the efficiency is not improved.
There are two factors contributing to this result. One is that
FFT computation generally occupies 10 to 30 percent of total
running time with appropriate grids spacing. The other is that
the resultant computational time of FFT is small as compared with
the communication time between processors. When the number of
processors increases, the communication time also extends. So when
the number of processors reaches 8, it spends more time than that with
1 processor.

Shown in Fig. 5 is another example. The grids spacing is set to
be 0.077λ. It shows in Fig. 5 that the parallel FFT has good efficiency
of reducing the execution time. This is because the FFT dimension
changes from 28λ× 28λ× 28λ to 56λ× 56λ× 56λ. The execution time
of FFT is obviously far more than the time spent on communications
between processors.

MPI-based parallelized precorrected FFT algorithm 257

Figure 4. Parallel computing time.

Figure 5. Parallel computing time.

4.3. Parallelization of the Second Way (Parallelizing
Correction and FFT)

As the last approach, we tried to consider an alternative way for the
parallelization by parallelizing both correction and FFT in the P-FFT
method. Again, only one angle of 180◦ is computed and the grids
spacing is set to be 0.167λ. The corresponding results are provided
and shown in Fig. 6.

258 Li, Wang, and Li

Figure 6. Parallel computing time.

5. CONCLUSION

In this work, we proposed several ways of making parallel codes of
P-FFT algorithms. From the present analysis, it is found that the
actual CPU time after parallelization can be close to our expected
ideal time. Also, it shows that the parallelization of the first way is
successful. Figures. 4-6 provide, however, dissatisfactory results to us
as the real time is much longer that the expected time. There might be
two aspects that incur this result. First, FFT and correction occupy
approximately 10%-30% and 40%-60% of the total computation time
respectively. So only part of the whole computation is parallelized in
the second way while the whole part of the computation is parallelized
in the first way. Second, there are more communications between
processors in the second way. This contributes to extra execution
time. The experimental results show that the running time is shortened
greatly after the computation is parallelized. This proves that the
algorithm proposed in this paper is efficient and can be utilized to
reduce the CPU time and our other computational efforts.

ACKNOWLEDGMENT

The authors are grateful to Dr. Xiao-Chun Nie in Temasek
Laboratories, and Mr. Wei-Bin Ewe in Dept. of Electrical and
Computer Engineering both at National University of Singapore for
his useful discussion and suggestions. This work is partially sponsored

MPI-based parallelized precorrected FFT algorithm 259

by a joint project of Temasek Laboratories and Institute of High
Performance Computing, Singapore.

REFERENCES

1. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast And
Efficient Algorithms In Computational Electromagnetics, Artech
House, Norwood, MA, 2001.

2. Umashankar, K. and A. Taflove, Computational Electromagnetics,
Artech House, Norwood, MA, 1993.

3. Phillips, J. R. and J. K. White, “A pre-corrected FFT method for
electrostatic analysis of complicated 3-D structures,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems,
Vol. 16, No. 10, 1059–1072, Oct. 1997.

4. Aluru, N. R., V. B. Nadkarni, and J. White, “A parallel
precorrected FFT based capacitance extraction program for signal
integrity analysis,” Proc. of 33rd Design Automation Conference,
DAC 96-06/96 Las Vegas, NV, USA.

5. Nie, X., L.-W. Li, N. Yuan, and Y. T. Soon, “Pre-corrected
FFT algorithm for solving combined field integral equations in
electromagnetic scattering,” Journal of Electromagnetic Waves
and Applications, Vol. 16, No. 8, 1171–1187, 2002.

6. Nie, X., L.-W. Li, and N. Yuan, “Fast analysis of scattering
by arbitrarily shaped three-dimensional objects using the pre-
corrected FFT method,” Microwave and Optical Technology
Letters, September 20, 2002.

7. Chu, E. and A. George, Inside The FFT Black Box : Serial And
Parallel Fast Fourier Transform Algorithms, CRC Press, Boca
Raton, Fla., 2000.

8. Nussbaumer, H. J., Fast Fourier Transform And Convolution
Algorithms, Springer-Verlag, New York, 1981.

9. Guiffaut, C. and K. Mahdjoubi, “A parallel FDTD algorithm
using the MPI library,” IEEE Antennas and Propagation
Magazine, Vol. 43, No. 2, 94–103, April 2001.

10. Gropp, W., E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming With The Message-Passing Interface, 2nd
ed., MIT Press, Cambridge, MA, 1999.

