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Abstract—The diffraction and scattering of a first-order ultra-
wideband TE X-wave by a perfectly conducting circular disk is
investigated using an augmented time-domain incremental theory of
diffraction. The analysis relies on a pulsed plane wave representation of
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1. INTRODUCTION

Localized waves are ultra-wideband pulsed fields that propagate with
little dispersion and exhibit extended focus depths [1–15]. Because
of these properties, it is expected that such pulses can be employed
in the detection of buried objects, high-resolution imaging, and
identification of scattering structures [16]. Localized waves encompass
a large number of known pulses that are essentially based on two
types of solutions, namely focus wave modes (FWM) and X-waves
[11]. To determine the effectiveness of using localized waves in the
aforementioned applications, one has to study the scattering and
diffraction of such pulses. In earlier work [16, 17], the diffraction of an
electromagnetic X-wave by a perfectly conducting infinite wedge has
been studied using the uniform theory of diffraction (UTD) [18, 19].
The results of that analysis have been extended to the scattering of
an X-wave from a conducting circular disk [16, 17]. Although features
of the scattered field calculated using the UTD appear to be quite
acceptable, such an approach presents difficulties; specifically, the
appearance of singularities at caustics and the formation of cylindrical
diffracted wavefronts in the far field region [16, 17]. These difficulties
arise because within the framework of the UTD the edges of the circular
disk are effectively represented as a combination of infinite wedges
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[18, 19]. This physically contradicts the finiteness of the size of the disk.
For this reason, it is more appropriate to express the total diffracted
field as a superposition of incremental diffracted fields due to each
point on the edge plus a superposition of incremental physical optics
scattered field due to each illuminated point on the surface of the body.
This approach is based on the incremental theory of diffraction (ITD)
developed by Tibero et al. [20–23]. The resulting incremental fields
yield the same results as the UTD in the limit as the structure takes
the form of an infinite wedge.

An X-wave can be expressed in terms of an azimuthal angular
superposition of pulsed plane waves whose wave vectors form circular
conic surface defined by the apex angle θ0 [24]. If the spectral content
of each pulsed plane wave component is restricted to high frequencies,
then asymptotic techniques like the time-domain incremental theory
of diffraction (TD-ITD) can be used to calculate the scattered field
due to each individual component. After determining the scattering
of each individual pulsed plane wave component, one can add up
the contributions from all components incident at different azimuthal
angles. It will be shown that the backscattered field due to an
electromagnetic X-wave incident on a circular disk is free from
singularities at caustics. Furthermore, unlike results based on the
UTD, the wave front of the backscattered X-wave acquires a spherical
shape as it travels away from the scattering structure.

The azimuthal symmetry of the scattered X-wave suggests that
one can employ a correlated detection scheme, whereby multiple
sensors are used to receive the backscattered signal. This scheme is
highly sensitive in detecting the position of the edges of the scatterer.
Consequently, one would expect that it would have high-resolution
capabilities when the backscattered signal is produced by two disks
placed close to each other. A study of a four-sensor correlated detection
scheme shows that X-waves can be superior to regular pulsed plane
waves when it comes to the discrimination between two scattering
circular disks separated by a small distance.

Our aim in this work is to study the scattering of a transverse
electric (TE) X-wave from a perfectly conducting circular disk using a
TD-ITD approach. The incident TE X-wave is formulated in Section 2
and the scattered field is calculated in Section 3. Numerical examples
demonstrating the effectiveness of the TD-ITD method are provided
in Section 4. Taking into consideration the results of Section 4, we
introduce a four-sensor correlated detection scheme that appears to
be particularly effective in detecting the edges of a scattering disk. In
Section 5, a four-sensor detected signal is simulated as the source of the
X-wave sweeps the region containing the scattering disk. Subsequently,
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in Section 6, it is shown that the scattering of X-waves from two nearby
disks produces a four-sensor output having an exceptional resolving
power in comparison with a regular pulsed plane wave. Comments
and concluding remarks are provided in Section 7.

2. THE INCIDENT TRANSVERSE ELECTRIC (TE)
X-WAVE

The incident transverse (azimuthal) electric field component of the first
order X-wave can be written as an azimuthal angular superposition,
viz., [16]

Ei
φ(ρ, z, t) = Re


Z0 sin θ0

4π2c2

2π∫
0

dφinc�aφ · �ei(φinc)

∞∫
0

dωω3e−ωa0/cejω((t−t0)−(�R−�R0)·�si(φinc)/c)


 , (1)

where c and Z0 denote the speed of light in vacuum and the intrinsic
impedance of free space, respectively, and a0 is a positive parameter.
The polarization vector �ei(φinc) and the propagation direction vector
�si(φinc) of each azimuthal component have been chosen as follows:

�ei(φinc) = − sinφinc�ax + cosφinc�ay, (2a)
�si(φinc) = − cosφinc sin θ0�ax − sinφinc sin θ0�ay − cos θ0�az, (2b)

�aφ = − sinφ0�ax + cosφ0�ay. (2c)

The expression given in Eq. (1) represents a φ-polarized X-wave pulse
moving in the negative z-direction. The propagation unit vectors
�si(φinc) lie on a conic surface having an apex angle θ0, known as the
axicon angle. Each individual �si(φinc) is characterized by the azimuthal
angle φinc in a plane perpendicular to the axis of propagation of the
X-wave and is inclined to the axis of propagation by an angle θ0. The
X-wave can, therefore, be perceived as consisting of azimuthally tilted
pulsed plane wave components with propagation directions specified
by �si(φinc). The integration over ω in Eq. (1) yields

Ei
φ(ρ, z, t) =

Re


6Z0 sin θ0

4π2c2

2π∫
0

dφinc
cos(φinc − φ0)[

(a0/c)−j((t− t0)−(�R− �R0) · �si(φinc)/c)
]4


.(3)
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Figure 1. Incident first order TE X-wave (x0 = 0, y0 = 0, z0 =
10 cm); a0 = 10 cm, θ0 = 10◦ and t = 0 ns. The divisions along the ρ
coordinate equal 50 cm.

The vector �R = x�ax + y�ay + z�az specifies the observation point and
�R0 = x0�ax + y0�ay + z0�az corresponds to a reference point on the
wavefront of the incident pulsed plane wave component at the initial
time t = t0. In addition, ρ =

√
(x− x0)2 + (y − y0)2, �ρ0 = x0�ax +

y0�ay, φ0 = tan−1((y − y0)/(x − x0)). An alternative representation
for the incident X-wave field given in Eq. (1) is the following spectral
superposition [16]:

�Ei(�R, t;φinc) =
Z0 sin θ0

2πc2
Re

 ∞∫
0

dωω3J1((ω/c)|�ρ−ρ0| sin θ0)e−(ω/c)a0ejω{(t−t0)−(z−z0) cos θ0/c}�aφ


.(4)

The incident first order TE X-wave is plotted in Fig. 1. A reference
point at t0 = 0 is (x0 = 0, y0 = 0, z0 = 10 cm). The parameters
characterizing the incident field are a0 = 10 cm and θ0 = 10◦.
The total field is normalized with respect to the peak value of the
incident pulsed plane waves and is plotted using a sixteen-level gray-
scale. The divisions along the ρ coordinate equal 50 cm. The spectral
amplitude of each azimuthally dependent pulsed component has the
form E0(ω) ∝ ω3 exp(−ωa0/c). This temporal spectral dependence
has the advantage of allowing the derivation of closed form TD-ITD
expressions for the diffracted pulsed plane wave components.

3. SCATTERING OF TE X-WAVES FROM A
PERFECTLY CONDUCTING CIRCULAR DISK USING
A TD-ITD APPROACH

In Ref. [25], a time-domain incremental theory of diffraction (TD-ITD)
was formulated and applied to the scattering of pulsed plane waves
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from a circular disk. In this section, that analysis will be extended
to the scattering of a first order TE X-wave from a circular perfectly
conducting disk. As discussed in Refs. [22] and [25], the ITD requires
that one evaluates the physical optics, the shadow boundary line, and
edge diffraction contributions to the scattered field. The last two
have common characteristics and, hence, they are treated together.
The physical optics part due to an incident X-wave can be obtained
directly from the closed form expression of the field without the need
to decompose the X-wave into a superposition of pulsed plane waves.
This is due to the fact that the physical optics method depends on
the tangential magnetic field or the current distribution at each point
of the scattering body, which does not depend on the direction of
incidence. This property is quite useful for saving the integration over
the azimuthal directions of the pulsed plane wave components of the
X-wave. However, both the shadow boundary line and the diffraction
parts depend on the direction of the ray of incidence. Therefore, these
two parts will be calculated using the pulsed plane wave representation
of the X-wave [26].

3.1. The Physical Optics Field

The physical optics scattered field is determined using the surface
electric current density on the scattering object. This current density
is obtained from the tangential magnetic field on the surface. The
spectral amplitude of the incident first order TE X-wave magnetic field
at a scattering point is calculated as follows:

�H i(�R, t) = (j/ωµ0)∇× �Ei(�R, t). (5)

The spectral representation for the incident electric field given in
Eq. (4) yields

�H i(�Rs, ω) = H i
ρ(�Rs, ω)�aρ + H i

z(�Rs, ω)�az

=
jω3

2c2
sin θ0 cos θ0 exp(−a0(ω/c)

+j(zs − z0)(ω/c) cos θ0)J1 (|�ρs − �ρ0|(ω/c) sin θ0)�aρ

+
ω3

2c2
sin2 θ0 exp(−a0(ω/c)

+j(zs − z0)(ω/c) cos θ0)J0 (|�ρs − �ρ0|(ω/c) sin θ0)�az, (6)

where (x0, y0, z0) is the center of the localization region of the incident
X-wave at the starting time, �aρ = cosφs�ax + sinφs�ay, and φs =
tan−1[(ys − y0)/(xs − x0)]. The physical optics approximation of the
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induced electric current on the surface of an electrically large scattering
structure due to a magnetic field yields

�J(�Rs, ω) = −2�n× �H i(�Rs, ω) = −2�aZ × �H i(�Rs, ω), (7)

where �n is the normal direction to the scattering surface at the
scattering point which corresponds to the local Z direction at this
point. In the far field region, the radiated electric field due to an
infinitesimal current source is given by [27]:

�E(�R, �Rs, ω) = −j(ω/c)
exp(−j(ω/c)|�R− �Rs|)

4π|�R− �Rs|
Z0

[
�aR×(�aR× �J(�Rs, ω))

]
.

(8)
Using Eqs. (7) and (8), it can be shown that the physical optics radiated
electric amplitude due to an elementary point on the scattering
structure can be expressed as a function of the incident magnetic field,
viz.,

�FPO
s (�R, �Rs, ω) =

−U(π/2 − Θ′)
2π|�R− �Rs|

��SPOs (�Rs)

·
(
j(ω/c) exp(−j(ω/c)|�R− �Rs|)Z0

�H i(�Rs, ω)
)
, (9)

where ��SPOs (�Rs) is the scattering dyadic expressed in terms of the local
scattering spherical coordinates as follows:

��SPOs (�R, �Rs) = cos Θ sin Φ�aΘ�aX − cos Θ cos Φ�aΘ�aY
+ cos Φ�aΦ�aX + sin Φ�aΦ�aY . (10)

The local Cartesian coordinates XY Z on the surface of the scattering
body are defined so that the local Z direction is the normal to the
scattering body and the X and Y coordinates are two arbitrary
orthogonal tangential directions to the surface of the scattering
structure at the scattering point �Rs. The coordinates (R,Θ,Φ) are
the local spherical coordinates at the same point. It should be pointed
out that the dyadic given in Eq. (10) is different from the one used
in Eq. (3.2.c) of Ref. [25]. In that reference, the scattered field was
derived in terms of the incident electric field expressed in the local
spherical coordinates. In the present analysis, we prefer to express the
incident magnetic field in terms of the local Cartesian coordinates at
the scattering point. This can be done using the transformation


H i
X

H i
Y

H i
Z


 = Π




H i
x

H i
y

H i
z


 =




cos ν sin ν 0
− sin ν cos ν 0

0 0 1







cosφsH i
ρ

sinφsH
i
ρ

H i
z


 , (11)
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where 0 ≤ ν ≤ 2π specifies the azimuthal angle of different points on
the surface of the disk. Following the analysis provided in Appendix I
of Ref. [25] to relate the scattered field components transformed from
the local spherical coordinates to the local Cartesian coordinates, we
obtain

��SPOs (Rs) · �H i =

[
Π−1[P2(Θ,Φ)]

[
cos Θ sin Φ − cos Θ cos Φ

cos Φ sin Φ

]

[
1 0 0
0 1 0

]
Π




cosφsH i
ρ

sinφsH
i
ρ

H i
z





T 


�ax
�ay
�az


 (12)

The time-domain physical optics part due to an incident X-wave can
be expressed as

�EPO
s (�R, t) =

∫∫
S

�FPO(�R, �Rs, t)dS, (13)

where the elementary time domain physical optics field amplitude due
to a point source on the surface of the scatterer is given by the analytic
Fourier transform

�FPO(�R, �Rs, t) =
1
π

Re




∞∫
0

dωejωt �FPO(�R, �Rs, ω)




=
−2Z0U(π/2 − Θ′)

8π2c3|�R− �Rs|
��SPOs (�R, �Rs) · �ℵ(�R, �Rs, t), (14a)

where

�ℵ(�R, �Rs, t) = ℵρ(�R, �Rs, t) [�ax cosφs + �ay sinφs] + ℵz(�R, �Rs, t)�az.
(14b)

The functions ℵρ(�R, �Rs, t) and ℵz(�R, �Rs, t) acquire the following
explicit form after a few manipulations:

ℵρ(�R, �Rs, t) = sin θ0 cos θ0Re


∂4

∂t4

√
β2(�Rs)+α2(�R, �Rs, t)−α(�R, �Rs, t)

β(�Rs)
√
β2(�Rs) + α2(�R, �Rs, t)




= sin θ0 cos θ0Re

[
15

(
−3α
A5

+
10α3

A7
− 7α5

A9

)]
, (15a)
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ℵz(�R, �Rs, t) = sin2 θ0Re


−j

∂4

∂t4
1√

β2(�Rs) + α2(�R, �Rs, t)




= sin2 θ0Re

[
−j

(
105α4

A9
− 90α2

A7
+

9
A5

)]
. (15b)

Here

α(�R, �Rs, t) =
{
a0 − j(ct− |�R− �Rs| + (zs − z0) cos θ0)

}
/c, (15c)

β(�Rs) = (|�ρs − �ρ0| sin θ0) /c, (15d)

and
A(�R, �Rs, t) =

√
β2(�Rs) + α2(�R, �Rs, t). (15e)

These results have been obtained after applying identity (6.611.1) in
Ref. [28]

∞∫
0

Jν(βx) exp[−αx]dx =
β−ν

[√
α2 + β2 − α

]ν
√
α2 + β2

,

Re ν > −1, Re(α± jβ) > 0,

to evaluate the integration in (14a). Substituting in Eq. (13), we obtain
the time-domain expression for the physical optics field.

3.2. The Shadow-Boundary-Line and the Edge-Diffracted
Fields

The spectral components of the incident electric field of the first order
TE X-wave can be considered as a superposition of obliquely incident
plane waves in all azimuthal directions, as given in Eq. (1). Explicitly,
we have the following spectral components incident on the diffraction
edge:

�Ei(�Re, ω)=
Z0 sin θ0

4πc2

2π∫
0

dφincω
3e−(ω/c)[a0+j(�Re−�R0)·�si(φinc)]�ei(φinc). (16)

Following the same analysis as that given in Ref. [25], the shadow-
boundary-line and the edge-diffraction parts of the incident first
order TE X-wave are given by the following azimuthal angular
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superpositions:

�FPO
SBL(�R, �RSBL, t) =

Z0 sin θ0

8π3c2
1

|�R− �RSBL|

2π∫
0

dφinc

×Re


 ∞∫

0

ω3e−(ω/c)[a0+j(ct−(�RSBL−�R0)·�si(φinc)−|�R−�RSBL|)]

��SPOSBL(�R, �RSBL, ω) · �ei(φinc)dω
]

(17a)

�F d(�R, �Re, t) =
Z0 sin θ0

8π3c2
1

|�R− �Re|

2π∫
0

dφinc

×Re


 ∞∫

0

ω3e−(ω/c)[a0+j(ct−(�Re−�R0)·�si(φinc)−|�R−�Re|)]

��Sd(�R, �Re, ω) · �ei(φinc)dω
]
. (17b)

In these expressions, ��SPOSBL(�R, �RSBL, ω) · �ei(φinc) and ��Sd(�R, �Re, ω) ·
�ei(φinc) are determined for each azimuthal angle φinc using the incident
polarization vector �ei(φinc) and the wave vector �si(φinc) for each
plane wave component, as discussed in Appendix II in Ref. [25].
Consequently, we obtain

�FPO
SBL(�R, �RSBL, t) =

Z0 sin θ0

8π3c2|�R− �RSBL|

2π∫
0

dφinc
∐−1[P2(β, ϕ)]


 ΣSBL

ββ′ (�R, �RSBL, t) ΣSBL
βϕ′ (�R, �RSBL, t)

ΣSBL
ϕβ′ (�R, �RSBL, t) ΣSBL

ϕϕ′ (�R, �RSBL, t)


 [

eiβ
eiϕ

]

(18a)

and

�F d(�R, �Re, t) =
Z0 sin θ0

8π3c2|�R− �Re|

2π∫
0

dφinc
∐−1[P2(β, ϕ)]


 Ξdββ′(�R, �Re, t) Ξdβϕ′(�R, �Re, t)

Ξdϕβ′(�R, �Re, t) Ξdϕϕ′(�R, �Re, t)


 [

eiβ
eiϕ

]
, (18b)



TD-ITD scattering of TE X-waves 113

where

ΣSBL
ββ′ =

2∑
!=1

Re
[
I2(�R, t;XSBL

! , φinc)
]
LE! U(π − ϕ′), (19a)

ΣSBL
βϕ′ = −U(π − ϕ′)Re[I1(�R, t, φinc)] cosβ, (19b)

ΣSBL
ϕβ′ = 0, (19c)

ΣSBL
ϕϕ′ =

2∑
!=1

Re
[
I2(�R, t;XSBL

! , φinc)
]
LM! U(π − ϕ′), (19d)

and

Ξdββ′ = (1/n)
4∑
!=1

Re
[
I2(�R, t;Xe

! , φinc)
]
KE
! , (20a)

Ξdβϕ′ = 0, (20b)

Ξdϕβ′ = 0, (20c)

Ξdϕϕ′ = (1/n)
4∑
!=1

Re
[
I2(�R, t;Xe

! , φinc)
]
KM
! . (20d)

The parameters KM
! , KE

! , L
M
! and LE! have the same definitions as in

[25]. In the above expressions, the quantities I1(�R, t) and I2(�R, t;X∗
! )

are given explicitly by

I1(t, �R, φinc) =
∞∫
0

ω3e−(ω/c)[a0−j(ct−(�RSBL−�R0)·�si(φinc)−|�R−�RSBL|)]dω

=
6[(

a0−j(ct−(�RSBL− �R0) · �si(φinc)−|�R− �RSBL|)
)
/c

]4

(21)

and

I2(t, �R;X∗
! , φinc) =

1
2

√
πq(�R)

∞∫
0

ω3√ωe−ω[p(t, �R,φinc)−q(�R)]erfc

(√
ωq(�R)

)
dω, (22a)

where

p(t, �R, φinc)=−j
((

ct−(�R∗− �R0) · �si(φinc)−|�R− �R∗|
)
+ja0

)
/c, (22b)

q(�R)=j
(
|�R− �R∗| sin2 β0αi(ϕ,ϕ′)

)
/c. (22c)
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Here, Eqs. (10)–(14) and (18)–(20) have been used, while the asterisk
in �R∗ and X∗

! refers to either the edge or the shado-boundary-line.
Notice that the integrand in (22a) differs from the corresponding one
for pulsed plane waves [cf. Eq. (3.18a) in Ref. 25] by the quantity ω3

which is equivalent to j∂3/∂t3. Therefore, Eq. (22a) can be rewritten
as

I2(t, �R, φinc) =
1
2

√
πq(�R)

j∂3

∂t3

∞∫
0

√
ωe−ω[p(t, �R,φinc)−q(�R)]erfc

(√
ωq(�R)

)
dω.

(23)
Using the result derived for a pulsed plane wave incident on a circular
disk [25], it can be shown that the above integration reduces to

I2(t, �R, φinc) =
1

2q(�R)
j∂3

∂t3


tan−1

√
N(t, �R, φinc)

(N(t, �R, φinc))3/2

− 1
N(t, �R, φinc)(N(t, �R, φinc) + 1)

]
, (24)

where N(t, �R, φinc) = (p(t, �R, φinc) − q(�R))/q(�R). Evaluating the
dfferentiation in Eq. (24), it follows that

I2(t, �R, φinc) =
−1

2[q(�R)]4

[
1

N2(N+1)

(
7.125
N2

+
2.75

N(N+1)
+

1
(N+1)2

)

−13.125
tan−1

√
N

N4.5
+

6
N(N + 1)

·
(

1
N3

+
1

N2(N + 1)
+

1
N(N + 1)2

+
1

(N + 1)3

)]
.(25)

Substituting Eqs. (21) and (25) into Eqs. (18)–(20), one can obtain
the time domain shadow-boundary-line and the edge-diffracted field
amplitudes after numerically evaluating the integrations over φinc. The
total time-domain field is obtained by combining these two parts with
the physical optics part given in Eqs. (14)–(15); specifically [22],

�Etot
s (�R, t) =

∫∫
S

�FPO
s (�R, �Rs, t)dS

−
∫

SBL

�FPO
SBL(�R, �RSBL, t)dl +

∫
e

�F d(�R, �Re, t)dl. (26)
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4. TD-ITD RESULTS FOR THE DIFFRACTION OF A TE
X-WAVE NORMALLY INCIDENT ON A PERFECTLY
CONDUCTING CIRCULAR DISK

In this section, we shall discuss the backscattered field due to a
first order TE X-wave normally incident on a perfectly conducting
disk, which has been calculated by the TD-ITD method. Fig. 2
shows the φ-component of the total backscattered field for different
initial locations of the X-wave localization region. The parameters
characterizing the incident X-wave are a0 = 10 cm and θ0 = 10◦. The
backscattered fields are normalized to the peak value of the incident
TE X-wave and are plotted using a sixteen-level gray-scale at t = 6 ns.
The circular disk has a radius L = 50 cm, it lies on the xy plane
with its center on the origin of the coordinate system. The axis of
propagation of the X-wave passes through the points x0 = 0, 50, 75
and 100 cm. If these plots are compared to the scattered X-waves
fields calculated using TD-UTD [17], one can conclude that the results
obtained using TD-ITD show more continuity. This behavior is not
only due to modifications in the calculation of the diffraction part of
the field, but is mainly due to the inherent continuity of the physical
optics components contributing to the backscattered field of TD-ITD.
Essentially, the physical optics solution, unlike the geometrical optics
one, is continuous at the reflection shadow boundaries. This is true
even without taking into consideration the diffraction due to the edge
or the shadow boundary line. The plots in Fig. 3 show that the main
contribution to the backscattered field is due to the physical optics
component. The field plotted in Fig. 3a, which is magnified by a
factor of eighty, illustrates that contributions due to scattering from
the shadow boundary line and the edges are negligible by comparison
to the physical optics part. One should also note that unlike the fields
resulting from the application of TD-UTD [17], the fields shown in
Figs. 2 and 3 are free of singularities that appear at the caustics.

Another feature displayed by TD-ITD calculations is the existence
of a noticeable field trailing behind the main scattered wavefront. The
same effect has been noted in relation to the scattering of pulsed
plane waves from a circular disk. In contrast, this trailing part of
the backscattered field has not appeared in calculations using TD-
UTD. The reason for the existence of such a trailing field has been
discussed in Refs. [16] and [25]. The behavior of the backscattered X-
wave of Fig. 2a, as it moves away from the scattering circular disk, is
illustrated in Fig. 4. The fields plotted at t = 8 and 10 ns show that at
farther distances from the disk, the shape of the scattered field starts
changing from that of a localized X-wave to that of a spherical wave.
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Figure 2. The total backscattered field of a TE X-wave (φ component)
incident normally on a perfectly conducting circular disk of radius
L = 50 cm at time t = 6 ns. The parameters characterizing the incident
X-wave are a0 = 10 cm and θ0 = 10◦. The plots are calculated for
different initial (t = 0) reference points (x0, y0, z0): a. (0, 0, 110 cm),
b. (50, 0, 110 cm), c. (75, 0, 110 cm) and d. (100, 0, 110 cm).



TD-ITD scattering of TE X-waves 117

x

z

x

z

(a)

(b)

Figure 3. (a) Edge-diffracted and (b) physical optics parts of the
total field (φ component) corresponding to Fig. 2a. The two fields
are normalized to the peak value of the incident TE X-wave. The
amplitude of the field in (a) is multiplied by a factor of eighty.
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Figure 4. Total Eφ field in the backscattering region of a TE X-wave
normally incident on a perfectly conducting circular disk at t = 8 and
10 ns. All parameters are the same as in Fig. 2a.
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Figure 5. Total Eφ field in the backscattering region of a TE X-
wave normally incident on a perfectly conducting circular disk of radius
L = 15 cm at different observation times. The reference point at t = 0
is (x0, y0, z0) = (0, 0, 110 cm). The parameters of the incident X-wave
are a0 = 10 cm and θ0 = 10◦. The plotted field is normalized to the
peak of the incident TE X-wave and multiplied by a factor of five.

Such behavior can be emphasized either by increasing the distance
traveled by the backscattered field or by decreasing the diameter of
the disk, as shown in Fig. 5, where the radius is reduced to L = 15 cm.
Again, this behavior is more realistic than the preservation of the plane
wavefronts displayed by TD-UTD calculations.
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5. FOUR-SENSOR CORRELATED DETECTION OF
X-WAVES SCATTERED FROM A CIRCULAR DISK

It has been shown in the previous section that the scattered field due
to a TE X-wave normally incident on a finite scattering structure
becomes a spherical wave in the far region. Such behavior indicates
that the backscattered field loses the initial localization of the incident
X-wave at farther distances from the scattering object. Therefore, the
localization property of the X-wave is essentially useful for focusing the
incident wavefield on the scattering target. For the backscattered X-
wave field, there is another important property that can be useful for
detection schemes. Specifically, the X-wave is azimuthally symmetric
around its center of localization with respect to its axis of propagation.
This symmetry can be retained in the scattered field of the X-wave
which is symmetrically incident on the disk. We suggest that in order
to detect such a field symmetry in two orthogonal directions, at least
four electric dipoles should be arranged on the circumference of a circle
whose axis coincides with the axis of the incident X-wave. Although
the ideas considered in this section apply to a large number of dipoles,
we choose to discuss them in relation to four sensors only. If the
localization region of a normally incident X-wave strikes an axially
symmetric portion of the scattering structure, the reflected signals
detected by the four sensors will have the same shape at the same time.
The four-sensor scheme advocated here is based on multiplying the
amplitudes of the signals detected by the four dipoles. Consequently,
if the four dipoles capture the same signal at the same time there is
a non-zero total output. On the other hand, if one or more of these
sensors do not receive a signal, then the multiplied level of the four-
dipoles becomes equal to zero. Similarly, if one or more of the detected
signals is shifted in time by a period more than the temporal width
of the captured signal, the total output reduces to zero. For a more
practical detection scheme, however, one has to allow for deviations
from perfectly symmetric scatterers. Therefore, slight temporal delays
should be accounted for using signal-processing techniques. One should
also be aware that although this concept can be generalized for a
larger number of sensors, correlated detection of the backscattered
signal by multiple sensors may become very sensitive, thus reducing
the reliability of this method.

The most appropriate radius of the four-sensor circle, where
the signal detected by each sensor attains maximum value, is
equal to the height of the sensors above the scattering structure
multiplied by tan θ0. Therefore, the separations between the sensors
become impractical for large detection heights. To demonstrate the



120 Attiya et al.

effectiveness of the proposed detection scheme, we assume that the
four sensors are arranged around the azimuthal φ direction on a circle
of a diameter equal to one meter. The field is to be detected at a
height of thirty meters above the scattering structure. The normal axis
of symmetry of the four sensors is adjusted to coincide with the axis
of the incident X-wave. The common axis of the X-wave and the four
sensors move transversally and the multiplied-output signal of the four-
sensors is plotted as a function of time at each transverse observation
point. The observed field is characterized by spherical wave fronts with
spreading factors proportional to 1/r. Thus, the field detected by each
dipole is normalized to the peak value of the incident X-wave and is
multiplied by the distance r from the scattering object. The resulting
signal amplitude is multiplied by an additional factor to eliminate
the spreading effect. This factor is of the order unity for a small
scattering structure and decreases gradually for increasing dimensions
of the scattering structure. Fig. 6 shows the four-sensor output for
a normally incident first order TE X-wave as a function of time and
space for scattering disks of different radii. The parameters of the
incident X-wave are a0 = 10 cm and θ0 = 10◦. The field distribution
of the incident TE X-wave is the same as shown in Fig. 1. For such
parameters, the localization region is at ρMAX ≈ 21 cm from the axis of
the X-wave. The horizontal scale in Fig. 6 represents the x-axis and the
vertical axis represents the observation time. The horizontal scale is
divided into steps of 10 cm. The predicted observation time is the time
taken by the X-wave to travel from its starting point to the scattering
body plus the time for the backscattered spherical wave to reach the
detectors. The starting and the detection points are at a height of
thirty meters above the scattering body. In this case, the predicted
observation time is equal to tobs = (z0/(c/ cos θ0)) + (z0/c) ≈ 198.5 ns.
Consequently, the time axis in Fig. 6 starts at t = 195 ns and ends at
t = 202 ns, so that the predicted observation time lies at the center of
the time axis.

The field captured by each dipole of the four sensors is calculated
using the time-domain incremental theory of diffraction. It should
be noted that for scattering disks with radii smaller than the four-
sensors output is localized above the edges of the disk as shown in
Figs. 6a and 6b, where the radii of the scattering disks equal 15 and
20 cm, respectively. This can be explained in terms of the null in the
field of the incident TE X-wave along its axis of propagation. Thus,
when the center of the incident X-wave coincides with the center of
the scattering disk, the disk is illuminated by the weak central part of
the X-wave localization region. However, as the axis of the incident X-
wave moves slightly away from the axis of the scattering disk, half of the
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Figure 6. Four-sensor multiplied output of the backscattered fields
due to a first order TE X-wave normally incident on a perfectly
conducting disk. The observed signal is plotted as a function of x and
t for disks of different radii. The time scale starts at t = 195 ns and
ends at t = 202 ns. Each division in the x-direction represents 10 cm.
The parameters of the incident X-wave are a0 = 10 cm and θ0 = 10◦.
The localization center at time t = 0 is located at (x0 = variable,
y0 = 0, z0 = 30 cm). The center of the four-sensor detector coincides
with the localization center at t = 0 and x0 varies from −75 cm to
+75 cm.

localized region illuminates the disk. Thus, the scattered field in this
case is increased. Due to the obliqueness of the arms of the X-wave [cf.
Fig. 1], the field distribution on the disk is not uniform. Consequently,
the outputs of the four sensors coincide only in a very short period as
shown in Fig. 6a. The output of each sensor is normalized to the peak
value of the incident X-wave and is multiplied by the distance r ≈ z0 to
eliminate the spherical spreading effect. To quantify the directivity of
the scattered signal at the sensors, an additional multiplication factor
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is used. The multiplication factor is chosen to make the maximum
value of the four-sensor output multiplied by the distance z0 equal
nearly the peak value of the incident X-wave. This factor can be used
as a measure for the decay of the four-sensor output as the dimension
of the scattering body is decreased. In Fig. 6a, where the radius of
the disk is 15 cm, the additional multiplication factor is nearly 12.6.
In Fig. 6b, where the radius of the disk is increased to 20 cm, the
additional multiplication factor is reduced to be nearly 7.2. In Fig. 6c,
the radius of the disk is increased to 30 cm and the multiplication
factor is reduced to be 3.3. In this case, it can be pointed out that
the detected output of the four-sensor scheme is localized above the
edges of the disk as well as above its center. The localization above
the edges can be explained following the same line of reasoning as in
Figs. 6a and 6b. The detected localized field appears above the center
when the radius of the scattering disk becomes slightly larger than
ρmax, the location of the maximum field of the incident X-wave. In
this case, the axis of the incident X-wave coincides with the axis of
the scattering disk and the outer parts of the disk are illuminated by
a high intensity field that can then be detected simultaneously by the
four sensors. Fig. 6d shows the four-sensor observed signal for a disk
of radius R = 50 cm. The additional multiplication factor in this case
is reduced to 1.2. It should be noted in this case that the observed
field is only concentrated over the center of the scattering disk. This
is due to the fact that the localization region of the incident wave is
completely reflected by the disk when the axis of the incident X-wave
coincides with the axis of the circular disk. Consequently, the observed
field attains a large value when the axis of localization lies above the
center of the disk. The observed field near the edges in this case is
negligible in comparison to the field detected at the center. When the
axis of the X-wave is near the edge, the field distribution along the
disk is nonuniform, causing the fields detected by the four dipoles to
be separated in time so that the multiplied output of the four-sensor
scheme becomes negligible.

6. RESOLVING POWER OF THE FOUR-SENSOR
SCHEME FOR AN INCIDENT TE X-WAVE

The plot in Fig. 7 shows the output of the four-sensor arrangement for
the case of two scattering circular disks of radii L = 15 cm separated
by 100 cm. All the other parameters are the same as in Fig. 6a.
The multiplied output of the four sensors is plotted as a function
of time as the centers of both the incident X-wave and the four-
sensor arrangement move in the x-direction. By comparing Figs. 7
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Figure 7. Four-sensor multiplied output of the backscattered fields
due to a TE X-wave normally incident on two perfectly conducting
disks of radii L = 15 cm and separated by 100 cm. The other
parameters are identical to those used in Fig. 6.

and 6a, it can be seen that the received signal due to each disk is
completely separated from that of the other. Such behavior is due
to the localization of the incident X-wave and constitutes the main
advantage for using the four-sensor scheme together with an incident
X-wave in high-resolution detection applications.

To emphasize the advantage of using an X-wave, the four-sensor
scheme is applied to a normally incident pulsed plane wave scattered
both by one and two disks. The field captured by each dipole of the
four sensors is calculated using the time-domain incremental theory of
diffraction [25]. The backscattered field measured by the four dipoles
is shown in Fig. 8. To simplify the comparison, the radii of the disks
are L = 15 cm, as in Figs. 6a and 7. The incident pulsed plane wave
is characterized by a spectral function E0(ω) = exp[−a0ω/c], with
a0 = 3 cm. The peak of the wavefront of the pulsed plane wave at
time t = 0 is assumed to be at a height z0 = 30 m above the plane
of the scattering disks, the same as the position of the four-sensor
detector. Thus, the predicted observation time is approximately given
by t = 2z0/c = 200 ns. The observed signal due to the scattering
of the pulsed plane wave is plotted in time in the range from 199 to
201 ns. In the present case, the incident field is not characterized by a
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a. A single scattering disk of radius 15 cm.

b. Two perfectly conducting disks of 
radii 15 cm and separated by 100 cm.
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Figure 8. Four-sensor multiplied output of the detected fields due to
a normally incident pulsed plane wave. The observed signal is plotted
as a function of x0 and time. The time scale starts at t = 199 ns and
ends at t = 201 ns. The spectrum of the incident pulsed plane wave
is E0(ω) = exp[−a0ω/x], with a0 = 3 cm. The peak of the incident
pulsed wave at time t = 0 is located at z0 = 30 m. The center of the
four-sensor detector is located at (x0 = variable, y0 = 0, z0 = 30 m),
x0 varies from −75 cm to +75 cm.
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reference point along the x-axis. Thus, the observed signal is plotted as
a function of moving the center of the four-sensor detector only along
the x-axis. The spreading factor of the incident pulsed plane wave is
unity. However, the backscattered field from a finite scattering body
has a spherical wave form which decays as 1/z0. Consequently, the field
of each of the four detector dipoles is normalized to the peak value of
the incident pulsed plane wave and is multiplied by z0 as in the case
of the X-wave. An additional multiplication factor of 12.6 is also used
to account for the area of the scattering structure as discussed in the
case of an incident X-wave.

The multiplied detected signals of the four-sensor for the case of
a single disk is shown in Fig. 8a. The time of the received signal
is related to the transverse distance by a parabolic relation. This is
a main feature of the usual ground penetrating radar (GPR) signal
due to a finite scattering body. In the region above the scattering
structure, where x � z0, the transverse distance can be approximated
by the parabolic relation d1 = z0(1 + 0.5x2/z2

0). The intensity of the
four-sensor output decreases when the center of the sensors is far from
the center of the scattering disk due to the increase in the time shifts
between the four detected signals. By comparing Figs. 8a and 6a, it
can be seen that the measured output due to a pulsed plane wave is
strong over a transverse distance much larger than the radius of the
scattering disk. On the other hand, the output of the X-wave is limited
to the extension of the disk and displays an exceptional capacity for
detecting the position of the edge of the scatterer.

Fig. 8b shows the multiplied output of the four sensors for the
case of two identical disks separated by 100 cm and illuminated by a
pulsed plane wave. In this situation, the discrimination between the
two disks from the received signal is impossible. By comparing Figs.
8a and 8b, it can be concluded that the output shown in the second
figure resembles the product of the four detected signals arising from
a larger disk centered at the mid-distance between the two disks. This
behavior is due to the small separation between the two disks relative
to the distance of the observation point. For a smaller observation
distance, the parabolic shape of the output due to each disk could
be resolved. Comparing Figs. 8b and 7, one can clearly appreciate
the higher resolving capability of X-waves over pulsed plane waves
when using the four-sensor detection scheme. In particular, a system
using X-waves can become particularly advantageous if the four-sensor
detector is mounted on a platform hovering at a large distance over
the scatterers.
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7. CONCLUDING REMARKS

In this paper, the diffraction and scattering of a TE X-wave by
circular disk has been investigated using the time-domain incremental
theory of diffraction (TD-ITD). This technique was introduced in
Ref. [25] and was applied to the scattering of a pulsed plane wave
from a circular disk. The frequency-domain incremental theory of
diffraction of a plane wave (ITD) was introduced by Tiberio et al.
[21–23], who also formulated a time- domain version of the theory.
However, their TD-ITD formulation utilized transition functions from
the geometrical theory of diffraction. In contrast, the version of the
TD-ITD expounded in Ref. [25] was based on the uniform theory
of diffraction. In Ref. [25], as well as in this paper, it has been
demonstrated that the TD-ITD can be extremely effective in dealing
with the scattering of pulsed fields having a Laplace-type spectral
content.

The TD-ITD analysis of the diffraction and scattering of a TE
X-wave relies on the use of the pulsed plane wave representation of
the X-wave introduced in Refs. [8, 16] and [26]. In this case, the
diffraction and scattering of each pulsed plane wave component of the
incident X-wave is calculated at the observation point. The azimuthal
angular superposition of the diffracted and scattered pulsed plane wave
components yields the diffracted and scattered field of the X-wave. The
TD-ITD technique was developed mainly for studying the behavior
of the backscattered field far from finite scattering structures and to
estimate the relative importance of the edge-diffracted field compared
with the physical optics reflected and transmitted parts of the total
field. Comparing the results of TD-ITD obtained in this work to those
derived on the basis of the TD-UTD [17], we find that the results of
both techniques have common characteristics. The main difference
between the results of the two techniques is that, away from the
scattering body, the backscattered field changes into a spherical wave
and gradually loses its initial localization. This behavior is absent from
the results based on the TD-UTD. Furthermore, no singularities are
formed at caustics when the TD-ITD is used to calculate the scattered
field.

In order to make use of both the localization and symmetry
properties of the incident field, four-sensor detection technique has
been introduced. This scheme utilizes four detection electric dipoles
located on the circumference of a circle whose axis coincides with the
axis of the incident X-wave. The signals received simultaneously by the
four sensors are multiplied. When the localization region is incident
on the scattering structure, the signals detected by the four sensors are
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registered at the same time. Thus, the output of the four-sensor system
does not vanish in this case. However, if the incident localization region
does not illuminate the scattering structure effectively, the signals
detected by the four sensors are shifted in time, or some of the signals
vanish completely. In this situation, the multiplicative output of the
four sensors vanishes. Numerical results illustrating the effectiveness of
the advocated four-sensor system have been presented. The response
of the four-sensor output for an incident X-wave has been simulated.
For the sake of comparison, the four-sensor detection scheme has also
been applied to the case of an incident pulsed plane wave. It has been
shown that for an incident pulsed plane wave, the output of the four
sensors has very low resolution in comparison to the X-wave. This
behavior emphasizes the effectiveness of X-waves for ultra-wideband
radar applications.
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