Progress In Electromagnetics Research, PIER 44, 169-195, 2004

EFFECTIVE PERMITTIVITY OF A STATISTICALLY
INHOMOGENEOUS MEDIUM WITH STRONG
PERMITTIVITY FLUCTUATIONS

N. P. Zhuck

Unique Broadband Systems, Inc.
300 Edgeley Blvd., Concord, ON, L4K 3Y3 Canada

K. Schiinemann

Arbeitsbereich Hochfrequenztechnik
Technische Universitdt Hamburg-Harburg
Postfach 90 10 52, D-21071 Hamburg, Germany

S. N. Shulga

Department of Theoretical Radiophysics
Kharkov National University
Svobody Sq., 4, Kharkov-77, 61077 Ukraine

Abstract—Most previous multiple-scattering theories for electromag-
netic waves in strongly fluctuating media are limited by the assumption
of statistical homogeneity of media. In the paper, a lossy electrically
isotropic random medium is considered whose mean permittivity distri-
bution, as well as the multipoint permittivity’s moments are invariant
under arbitrary rotations about and translations along a fixed sym-
metry axis, and are inhomogeneous in the radial direction. The goal
of the paper is to calculate the effective permittivity operator (EPO)
for such medium in the case of strong permittivity fluctuations. For
this purpose, one has to eliminate the secular terms from the spectral
representation of the-EPO in the basis set of waves suited to a statis-
tically inhomogeneous medium. This is achieved via a renormalization
approach which takes into proper account a delta function singularity
of the spectral Green’s function (rather than that of the spatial Green’s
function accounted for in the past) referring to a spatially inhomoge-
neous electrically anisotropic background medium. On this basis, the
permittivity matrix of the background medium is explicitly found, a
full perturbation series solution and a bilocal approximation for the
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EPO are derived, the macroscopic properties of the spatially disper-
sive effective medium are studied, and a perturbative solution for the
propagation constants of guided modes of the mean field is obtained.

Introduction

Statement of the Problem
Renormalized Equation of Scattering
Calculations

Illustrative Examples

S U R W N =

Conclusions
Acknowledgment
Appendix A.
Appendix B.
Appendix C.

References

1. INTRODUCTION

The effective permittivity plays a fundamental role in the electromag-
netic (EM) theory of random media [1]. By knowledge of the effective
permittivity it becomes possible to account for the “accumulating” ef-
fects which arise in the multiple scattering of EM waves in random
media and which lead to strong distortions of the EM field. In ear-
lier theoretical work most of the results have been obtained by the
approach of Ref. [2] which invokes a volumetric integral equation of
scattering and a bilocal approximation and is restricted to weakly fluc-
tuating media. A new prospective line was initiated by the works [3, 4]
where a renormalization approach was proposed referring to random
media with strong permittivity fluctuations. Formally, it is grounded
on taking into proper account the delta-function constituent of the spa-
tial Green’s function (GF). It was further developed in [5,6] leading
to contemporary strong fluctuation theory. An instance of generaliza-
tion of this technique to random media with (bi)anisotropy of electric
and magnetic properties is furnished by [7,8]. The renormalization
approach employed in all of the above mentioned studies is capable of
handling statistically homogeneous media with small-scale perturba-
tions only. It can also be applied to describe the mean-field properties
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of a “composite” random medium by dividing it into large subregions
which can be approximately viewed as statistically homogeneous. This
is always possible if the characteristic scale of random perturbations
and the wavelength are much less than the dimensions of the aforemen-
tioned subregions. Clearly, said approximation does not work when the
characteristic scale of regular inhomogeneity becomes comparable with
that of random perturbations or a wavelength. In this case the multiple
scattering of EM waves is essentially shaped by the regular inhomo-
geneity of the medium, and the model of a statistically inhomogeneous
medium should be applied.

To accommodate, as regards the calculation of the effective
permittivity operator (EPO), the statistical inhomogeneity of a
random medium, one must recognize in full the following points
[9]. First, a departure from statistical homogeneity gives rise to
a completely different basis set of waves for the mean EM field as
compared with the plane wave modes of [2-7]. Second, to achieve
characterization of the mean-field properties of a random medium the
very thing we need is not the EPO itself but its spectral representation
in the appropriate basis set. Last, it is just the spectral-domain EPO
that should be free from secular (in the meaning of [5]) terms to cover
the case of strong permittivity fluctuations. All this has served as
a starting point for the modification of the renormalization approach
begun by work [9] and continued in [10, 11]. Cited attempts refer to the
model of a statistically layered medium with uniaxial [9, 10] or general
[11] anisotropy of EM properties.

In this paper which may be thought of as a natural extension of the
works [9-11] we will develop a systematic multiple-scattering approach
for a more sophisticated model of a statistically inhomogeneous
medium. Namely, we here consider a strongly fluctuating medium
which is cylindrically inhomogeneous in the statistical sense. The
random media of such kind are distinguished by the fact that their
electrophysical properties are, on the average, invariant under circular
rotations about and longitudinal motions along a fixed symmetry
axis, and may vary with distance from the aforementioned axis.
This model is practically related to, for instance, design of artificial
dielectrics for optical and radio wavebands, polariton propagation,
plasma diagnostics, fiber optics etc. The problem, however, attracts
our attention not only for practical reasons but also for the wealth of
theoretical content pertinent to scattering phenomena in statistically
inhomogeneous media.

In the present paper, a harmonic time dependence exp(—iwt) of
the sources and fields is assumed, with the corresponding time factor
not printed. The whole of the three-dimensional space is referred
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to a cylindrical coordinate system p,p,z, (0 < p < 400, 0 <
Y < 27, —o00 < z < 400). Algebraic vectors x = (p,¢,2) and
' = (p,¢,7) correspond to the points of space characterized by
the respective values of their cylindrical coordinates. For a vectorial
function A(z), the values of the physical coordinates at point x in this
coordinate system will be designated as A,(x) where the subscript p
assumes the values 1, 2, 3 corresponding to the coordinates p, p,z. A
3 x 3 matrix composed of elements B, is designated as B, and C
stands for a column matrix col[C1, Co, C3]. Finally, the symbol o is
used to denote the matrix product.

2. STATEMENT OF THE PROBLEM

Let us assume that the entire space is filled with an inhomogeneous
dielectric medium of permittivity (") () which is a random function of
spatial variable . The EM field E™)(z), H")(z) set up in the medium
by the deterministic impressed sources of the electric type J(z) obeys
Maxwell’s equations

V x HO(2) + ikoe " (2) BT (z) = —JT)(x), (1)

V x EM(z) —ikoH") (2) = 0, (2)

the continuity condition for the tangential EM field at the interfaces,
and the radiation condition at infinity. Here kg = w/c, cis the speed of
light in vacuum, and the subscript “r” accompanies random quantities
referring to the disordered medium. Note that V should be interpreted
as a matrix differential operation, since we have chosen to deal with
the vector’s components [in a cylindrical coordinate system]| rather
than the vector itself.
The EPO £(¢) which works on z is defined by the identity [1-11]

(ED@EN (@) = £ o (B (a)). (3)

From Eq. (3) and Egs. (1), (2) it follows that the equations obeyed by
the mean EM field

E(z)=(EM(2)), H(z)=(H"(2)) (4)
have the form characteristic of an “effective” deterministic medium

with the nonlocal permittivity matrix g(e), viz.

V x H(x) +ikoe' o E(z) = —J (), (5)

C

Y x E(x) - ikoH(x) = 0. (6)



Effective permittivity of a statistically inhomogeneous medium 173

Within the framework of the present paper, the random function
(" is assumed to fulfill the following fundamental conditions: i) its
first statistical moment, i.e., the mean permittivity profile ((")(z))
does not depend upon ¢,z and is a function of p variable only,
ii) the statistical moments of higher order, i.e., the quantities
(e (21)eM (29) ... e (x,)), n = 2,3,..., depend on z1,z9,...2,
through p1, po, . .. pn and the differences 1 — 2, Yo — Y3, ... Yn—1—¢n
and z1 — 22, 29 — 23,...2n—1 — 2p only. In other words, we consider
a random field £(")(z) whose multipoint probability distributions of
all orders are invariant under arbitrary rotations about the z-axis
and translations along this axis. It is natural to term such media as
cylindrically inhomogeneous, or cylindrically-layered in the statistical
sense. Under these conditions, it is almost intuitively obvious that the
EPO represents an integral operator

+o0 2 +o0
= / pldp/ / di/ / A7 (p,pl o~ 2= 7). ..
0 0 —00 -

E/dV’g(e)(p,p’,go—cp’,z—z’)... (7)

1)

whose kernel £()(p, p/, p — ¢, z— 2') depends on = and 2’ through p, o/
and the difference variables ¢ — ¢’ and z — 2/. [This property follows
rigorously from subsequent Egs. (24) and (26)]. Let the impressed
sources J(x) be a spatial harmonic of the form

J(x) = J(p) expli(ng + hz)], (8)

where n is an arbitrary integer, h is an arbitrary complex quantity, and
J(p) is a given spectral source amplitude. Then the mean EM field, in
view of Egs. (5)—(7), will have the form of a spatial harmonic as well:

E(xz) = E(p) expli(ny + hz)],

H(z) = H(p) expli(np + hz)], 9)

where E(p), H(p), are the spectral field amplitudes. In verifying this
claim, we are assisted by taking note of the fact that

—+00
£ 0 B(w) = explilng +h)] [ £ (p,p'n, ) o E()ldyf
= , =
= expli(np + h2)]e (. h) o E(p). (10)
Here g(e) (n,h) is a spectral counterpart of the EPO, and

e (p,p'n,h) = FeD(p,plio—¢ 2 —2)
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2 +o00o
- / d@/ dzexp{—iln(p — ¢') + h(z — 2]}
0 — 00
£p,po— 2 — 7). (11)

Spatial harmonics (9) form a natural basis set of waves for the class
of media under study, since a general mean field can be represented
as a proper superposition of waves like (9). The spectral-domain
EPO £(®)(n, h) provides an exhaustive characterization of the random
medium properties with respect to the mean field (9). The calculation
of said operator constitutes the main goal of the present paper. In
the next Section, we will prepare the mathematical tools which are
indispensable for manipulating the random EM fields in a (statistically)
cylindrically-layered medium.

3. RENORMALIZED EQUATION OF SCATTERING

We here first concentrate on the distributional nature of the spectral-
domain matrix GF for wave equation in an inhomogeneous anisotropic
medium, and then substitute a conventional integral equation of
scattering with a renormalized equation in a new field variable. What
distinguishes our renormalization approach from previous versions used
in [3-6] is that it is the delta function singularity of the spectral-
domain GF rather than that of the spatial-domain GF which is
accounted for in the renormalized formulation. Also, in order to
meet the requirement (37) in the next Section, we have to work with
an electrically anisotropic background medium in spite of electrical
isotropy of the random medium. This is a direct consequence of the
statistical inhomogeneity assumption as contrasted to [9-11] where
electrical anisotropy of the background medium arises due to statistical
and/or electrical anisotropy of the random medium.

Let us introduce an inhomogeneous anisotropic background
medium whose permeability equals 1 and the permittivity tensor in
the cylindrical coordinate system assumes a diagonal form

e(p) = diagle(p)eL(p),e1L(p)], (12)

where ¢(p),e1(p) are piecewise-smooth functions of variable p.
Physically, this model describes a locally uniaxial medium whose
principal dielectric constants vary with distance from the symmetry
axis p = 0. The matrix G(z,2’) for this medium is defined as solution
to an equation o

VXV xG(x,2")=ke(p)oG(z, &) = I6(p—p)d(p—¢")d(2—=2")/p, (13)
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which depicts an outgoing wave as p — +o0o. Here [ is the unity matrix,
and ¢ is a one-dimensional Dirac delta function. It is expressible as a
double inverse Fourier transform of the spectral-domain Green’s matrix

G(p,p',n, h):

G(z,a") = F'G(p,p',n, h)
n +00
= Z / exp{i[n(p — ¢)
—|—h(2 -z )]}g(/%ﬂ ) 1, h)dh (14)

Here, it is presumed that the poles and the branch points of
G(p,p',n,h) as function of variable h lie off the real axis in the complex
h-plane (see Appendix A for more details). The spectral GF is a
generalized function of variables p, p’ which includes a regular term
G'(p, p';n, h) and a singular term proportional to 6(p — p'):

5(p—p')
—|‘k20 eNp)

In this formula IH = diag[1,0,0], and the quantity G'(p,p’,n,h)

represents an integrable function of each of the variables p, p’ which
experiences a step-like discontinuity at p = p’ and assumes finite
limiting values as p — p/ + 0. TIts explicit expression is derived
in Appendix B. A spatial-domain counterpart of representation (15)
acquires, in view of Eq. (14), the following characterization:

G(p,p',n,h) = G'(p, p'sn, h) — (15)

’ / ’ d(p — pl>(5(90 - 90/>6(Z —2')
G(z,7) = G(@2) — k3p'e)(p) ’

with G'(z,2") = F~'G'(p,p’,n, h) being a generalized function. Note
that in contrast to previous authors [3-6] we do not associate G'(z, )
with the principal-value part of the spatial GF. In fact, its precise
mathematical nature is unimportant in future reasoning.

The solution for the random electric field vector can be written
in terms of the matrix GF by regarding the random medium as a
perturbation of the background medium [2-6]:

(16)

EN(z) = E®(2) + k2 / G(z,2) o {E(T)( N —e(p )] o EM (z/)aV".

(17)
Here E(z) is the electric field created in the background medium by
the impressed sources J(z). By taking care of the representation (16)
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and introducing a new field quantity F(x) and random perturbation

£(x),

F(x) = diag [¢") () /e(p), 1,1] 0 E")(w), (18)
§(x) = diag |¢(x), €1 (2), 61 (2)] (19)
&i(@) = ()1 —el(p)/eP(@)], €1(2) =M (@) —e1(p), (20)

equation (17) now takes the renormalized form

F(z) = EO(2) + k2 / G(a,2) 0 €@) o E@)aV' (21
= EO(z) + kG’ o §o F(x). (22)

Below, in much the same way as the strong fluctuation theory for
statistically homogeneous media [3-7], this new distributional equation
is applied to the effective permittivity calculation for a statistically
inhomogeneous medium.

4. CALCULATIONS

To derive the spectral-domain EPO we apply a two-step procedure [3—
7] which consists first of solving for the effective perturbation operator

¢(©) which is defined by the identity

(¢(@) 0 F(z)) = £ 0 (F(2)), (23)

and then making use of the relation
e —e=¢90 (12(6) ol + £L> ! (24)

- €l
I, =1- £| , which links §(e) with ¢(®). Eq. (24) can easily be arrived

at by inserting into Eq. (23) the expressions

(@oE@) = (29 —g)o (B ),
(F(x)) = (i§(e) o iH +£J_> o <E(7") (:E)> ,

consequent to Egs. (18)-(20).
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Taking note of the formal solution to Eq. (22) F(z) = (I — k3G’ o
)~ to E®(z) in identity (23) affords a means to determining é(e).
There follows, by elimination of E®) (z),

-1

€= (e (1-Hg o) )o((L-Keo) ) . @)

An inspection of Eq. (26) reveals that the effective perturbation
operator admits characterization §(e) =/ dV’é(e) (p, o= 2—2") . ...

The substitution of integral representations for operators g(e),f(e)

followed by Fourier transformation relative to angular and longitudi:nal
variables yields an integral equation counterpart to Eq. (24)

3(p—p')
0

+00
+/0 £, p" n,h) 0 (0", pin h) o Lei M (0")p"dp", (27)

£ (p, o'\, 1) —e(p) = £ p, 0 nh) o L

where £ (p, p/,n, h) = FE (p, o/, o—¢', z—2'). Note that in the case
of statistically homogeneous media an equation analogical to (24) could
be replaced [3—-7] by an algebraic equation via a three-dimensional
Fourier transformation. By contrast, we have to deal with an integral
equation, said complication being in keeping with a more sophisticated
model of random medium analyzed in the paper.

Solution (26) for £¢) does not put an end to our work, since it
contains the inverse operators which are not easy to find. Thus we
resort to a perturbation technique by expanding the right-hand side
in Eq. (26) in powers of £&. This in conjunction with a customary

assumption [3-7] that the perturbation is small on average, (€) =
0, which assures the fastest rate of convergence of the resulting
expansions, gives § (©) the following representation:

+00
é(e) = Z Q(m)’ (28)
m=2

where Q(m) ~ ™ are defined by the recurrence formulae [11]

60 = (zog), 09 =(0g), (29)
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v="hki€o G, (31)

(the quantity v should not be confused with the operator v given by
Eq. (B6) in Appendix B). Relying on the expression (28), solution to
the equation (24) for the EPO can be exhibited in the explicit form:

+oo
m=2
with
V) = gm <€—”§ol +l¢> , (m=2,3), (33)

m—2
v = g (Loor 11 )4 S aWo LymRor
- - \g A= -
m=4,5,...). (34)

As a final step, one can easily rewrite expansions (28), (32) in a
spectral-domain version:

£9p, p',n, h) Z 0" (p, o, n, 1), (35)
5 _
£, ) = 20 L2 = o, )
+oo
m=2

so that a perturbational scheme for determining the spectral-domain
EPO is thereby completed.
On recalling the definition of £ given by Eqgs. (19), (20) we find

that the requirement (§) = 0 allows an explicit determination of the
permittivity of the background medium,

This is to be contrasted to the strong fluctuation approach of [3-7]
where the background medium’s permittivity is unavailable in closed
form. Eq. (37) clearly evidences that the background medium appears
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to be anisotropic (namely — locally-uniaxial, with radially-oriented
optic axis), since in general | # ¢ . It is useful to note that the right-
hand side in Eq. (37) is independent of ¢, z due to the (statistically)
cylindrically-layered character of the random medium. The physical
contents of ¢ is revealed by Eqs. (32), (36) after noting that the sums
on the right determine a purely non-local contribution to the EPO,
thus delivering ¢ the meaning of a local component of the EPO.
Having truncated the infinite series (28), (32) or (35), (36),
there results a workable approximate representation for £ (e), g(e). In
particular, retaining there the first nonvanishing term yields the bilocal
approximation [2]: §(e) ~ Q(2), g(e) ~ g—l—g(2), with the spectral-domain

characterization

0 (p, p/,m, ) ~ 0P (p, o/, ) =

n'=+c0 Yoo sor
(ko/27)? Z / dh’/_ dz/o dpexp{—il(n —n')p + (h — ')2]}
(&lpr .2 ogw,p,n,h')og(p',o,o», (38)
v(p,p'ynh) =€ (p, oy, h), (39)

where a designation §(p 0, z) = 5( ) is used. Representation (38)

is valid under assumption that the singularities of G'(p,p’,n, )
as function of complex variable A’ [which coincide with those of
G'(p,p/,n', 1) are shifted off the real-axis path of integration into
the complex h'-plane, e.g., by introducing infinitesimal losses into
an originally lossless background medium. Explicit formulae for
the components of matrix 6 (p,p',n,h) are given in Appendix C.
We remark in passing that the statistical topology of random
perturbations enters the bilocal approximation through spectral
densities Byy(p, p’,n, h) which are defined as Fourier transforms,

Buv(p7 p/,n, h) = (27[-)_2]:Buv(p7 plvcp - gp/’z - Z,)’ (40)

of correlation functions

<€u(w)§v($/)> = Buv(pap,a Y — 90/7 Z = Zl)? (u,v =1, H) (41)

The truncation of series (28), (32), (35) or (36) to a finite number of
terms implies that contribution of the terms discarded is negligible.
Let us examine legitimacy of this procedure in more detail. For
calculational simplicity we shall consider a situation where the random



180 Zhuck, Schiinemann, and Shulga

function {(x) is Gaussian. Due to the well known properties [1] of

Gaussian random fields the terms in the aforementioned series with
m odd vanish, and, in the remaining terms, the statistical moments
of random perturbations are expressible through correlation functions
(41). At this stage it is convenient to introduce a positive constanto
which is intended to measure the intensity of random perturbations,
and to make a further simplifying assumption that the correlation
functions are independent of the angular and longitudinal variables
and tend to zero sufficiently fast as the distance between p and p’
exceeds | — a characteristic scale of random perturbations in radial
direction. This is tantamount to the claim that

Bu(p.p o — ¢ 2= 2)=*®ulp+ 0, (p—p')/1], (42)

where ®,,[A, u] are the functions of the order of unity which assume
zero values when |u| > 1. Then by recourse to Eqgs. (29)-(31) there
obtains the following coarse estimate for the non-zero terms in series
(35), (36):

6 (p, s ) o~ o (kol) ™,

v (p, p',n, h) ~ o™ (kol)™ 2,

(m =2,4,6,...). As a consequence, the series on the right of Eqgs. (35),
(36) acquire the status of asymptotic expansions in powers of o2 (kol)?
and thus can be legitimately truncated for sufficiently small values of
said parameter,

(43)

o?(kol)? < 1. (44)

It is essential to note that the requirement (44) is met in case of
strong fluctuations (o > 1) provided their characteristic scale in radial
direction is small enough, (kol < o~2).

5. ILLUSTRATIVE EXAMPLES

We here do two things. First, to further our understanding of
the multiple scattering phenomena in a statistically inhomogeneous
medium under consideration, we analyze, relying on the bilocal
approximation, the macroscopic properties of a spatially dispersive
medium with the non-local permittivity £(¢). Then the role of multiple
scattering effects is given a final emphasis by calculating a shift of
propagation constants of the guided modes of the mean field. The
respective solution refers to a general model of a lossy inhomogeneous
medium with strong permittivity fluctuations and allows for complex
values of the discrete spectrum. In this regard, it extends the
multiple scattering solution of [16] for an optical fiber with the weak
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fluctuations, and the classical coupled mode theory combined with the
small perturbation approach in [17].

On applying expressions (38), (39) and the relationship [12]
G(x,2') = GT (', ) one can readily confirm the equalities

oo o =9 2= =Moo - 22, (45)

ep.pnh) = 9N (0 p, =, ~h), (46)

which rest on similar relations for the effective perturbation operator
and point to a reciprocal character of the spatially dispersive medium
[12-18]. Here T denotes the matrix transposition operation. On
consulting Eqgs. (B14)—(C4), one can readily show that if a waveform
(9), with E(p) = col[E1, Es, E3], H(p) = col[Hy, Ha, H3] and given
n, h satisfies the source-free (J = 0) Maxwell’s equations (5), (6) then

these equations also allow for a solution of the form

E~(x) = E™ (p) expli(ny — hz)]

DR | ’ (47)
H™(z) = H™ (p) exp[i(ng — hz)],
whence
Ei(p) = COl[El, EQ, —Eg], (48)
H™(p) = col[—Hy, —Ha, Hs],
or, alternatively,
?(93) = E~(p) expli(—ney + hz)], (49)
H(z) = H(p) expli(—nep + h2)],
with ~
E(p) = COl[El, —EQ, Eg], (50)

E(P) - COZ[_H17 HQ, _H3]7

provided all of the correlation functions in Eq. (41) are even functions
of variable z — 2’ or ¢ — ¢/, respectively. Eqgs. (47), (49) represent the
mean field harmonics which travel in the opposite direction or possess
a complex-conjugate azimuthal dependence compared to an original
weaveform (9).

In the next instance, we shall examine the dissipative properties
of the effective medium which are described by the hermitian operator
E(e)”,

1109

(e — <£(6) _ g(6)T) /2i. (51)
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Here the dagger symbolizes the hermitian conjugate of an z-acting
operator. The significance of £©” is uncovered, e.g., by an expression
for the time-average power ) dissipated by a passive medium (Q <
0) or generated by an active medium (¢ > 0) with the nonlocal
permittivity £(®) : Q = (w/87) [ E*T(x) 0 €9 o E(x)dV, the asterisk
denoting a complex conjugate of the function to which it is appended.
When the permittivity operator has the form (7) and the EM field is
given by Eq. (9), the divergence of an integral over z in the appertaining

expression for Q = (w/87) [T dz 027r dpq signals a preferable status
of the density quantity

+oo “+o0o T
q= / pdp / pdp E* (p) o (p,p',n,h) 0 E(p))  (52)
0 0 -
and a kernel g(e)”(p, p',n, h) of the spectral-domain counterpart of g(e)”,

g(e)//(p’ p/7 n, h) = |:§(6) (p7 p/7 n, h) _ g(e)*T(p’ pl7 n, h)] /217 (53)

as the energetic characteristics. Unless otherwise stated, parameter
h assumes here the real values. We focus our attention on the
case where the random medium is free of dissipative losses and is
characterized with a positive permittivity function £(". Also, to afford
a relative simplicity in calculations without incurring any significant
loss of generality it is further assumed that the random medium’s
fluctuations are confined to a region 0 < p < pg, (pg = const), and the
deterministic region pg < p < 400 is homogeneous with permittivity
. On this basis, it follows from Eq. (37) that the background medium
is characterized by real positive functions ¢)(p),e1(p) which assume
constant positive value ¢ if p > pg. Turning to Appendix A, one can
consequently deduce that the continuous spectrum I'. of Egs. (A2)-
(A5) consists of the imaginary semiaxis from k = +ico to K = 0 and
an interval on the real axis from k = 0 to kK = k, (k = koy/e). The
latter interval together with the discrete spectrum points on the real
axis [which may occur to the right from the point x = k] constitute the
real-valued part I',(n) of spectrum that corresponds to the propagating
eigenmodes (of given n) in the background medium.

Egs. (38), (39) make plain that in the present circumstances £(¢)”

eyt

coincides with §( , the latter operator defined in full analogy with

Eq. (51). It suffices accordingly to calculate (e) (p,p',n,h) and then

find the desired quantity g(e)’ "(p, p', n, h) via formula similar to Eq. (53).
To effect the passage to a lossless background medium in the real-axis
integral over h' which figures on the right of Eq. (38), it is expedient to
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express G'(p, p/,n/, h') in terms of G(p, p/,n’, k') via Egs. (15), (A11),
and displace the contour of integration by an infinitesimal shift from
the real axis into the second and fourth quadrants in the complex h/'-
plane to avoid integration through the singularities of G(p, p/,n’, h’)
contributed by I',(n'). If one now lets the losses vanish, it follows that
the new path of integration should be indented around the poles of
G(p,p',n',h') on the real axis into the second and fourth quadrants
and pass along the right side of the parts —k < b/ < 0, 0 < b/ < k
of the respective branch cuts I'g., I'c. As regards the computation of
the new contour integral, the portion over a semicircular arc of the
circle of an infinitesimal small radius about each pole on the real axis
is expressed through the respective residues given by Eq. (A12), and
the limiting value of G(p, p’,n/, ') on the right side of the branch cuts
are determined by Eq. (A13). On using the resultant representation of

é(e)(p, p',n, h) for the calculation of é(e)”(p, p',n, h) we obtain

e (p,p'im, k)= €V (p, pl,m, h) (54)
n’ =—400

Z 2, [t (o, il W)+ (o, pl s Bl )]

with
+ / 1o
a“(p,p'sn, hn', k')

kO +00 27 )
= 877P(n’,/€’)/oo dz ) dpexp{—i[(n —n")p + (h T &')z]}

(€0 0.2) o [Ex(p.nf W) £ By(p.nf )
o [By(p,n',w) £ Eylpf ', k)] 0 £(p',0,0)). (55)

Here x’ stands for an eigenvalue of a problem obtainable from
Egs. (A2)—(A5) after replacing n with n/, ¥, denotes “summation”
over spectral points in I'y(n'), ie., the standard summation over
the real-valued points of discrete spectrum I'y(n’) and the operation

> i—ab fok dr’ ... referring to a (degenerate) part 0 < k' < k of the
continuous spectrum, £, and E; determine the transverse and the
longitudinal constituents of an eigenmode in the background medium,
P is the normalization constant (see Appendix A for more details). In
the derivation of Eqgs. (54), (55) we are aided by taking note of the fact
that in the case under consideration the eigensolutions to Egs. (A2)—
(A5) belonging to real (and consequently positive) eigevalues can
always be chosen in such a way that the components Ei, Ho, Hs are
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real, Fs, F3, H; are purely imaginary, and the quantity P is real and
positive. Accounting for representations (54), (55) in Eq. (52) shows
that ¢ > 0, as should be for a passive medium.

Egs. (54), (55) serve in a useful capacity to highlight a physical
origin of “dissipative” losses in the effective medium. According to
these equations, the quantity £(©)”(p, p/, n, h) which is responsible for
said losses is formed as “sum” of contributions o®(p, p’,n, h|n', &’)
due to scattering into the eigenwaves in the background medium with
different n’, k" which propagate in the positive (+) and negative (—) z-
directions. The absence of contributions due to evanescent modes in
Eq. (54) is in keeping with common sense, for these waves do not
transfer energy in the longitudinal direction and consequently cause
no attenuation of the mean field in the process of scattering.

We will now discuss another feature of wave propagation through
a statistically inhomogeneous medium, namely the distortion of the
guided, or discrete spectrum modes. For brevity, we shall concentrate
on only one aspect of said distortion concerned with the propagation
constants of the guided modes of the mean field. For this, we return to
a general model of a lossy random medium and consider a sourceless
waveform (9) of the mean field with fixed n and arbitrary complex h. It
will determine a guided mode of the mean field if its spectral amplitudes
E(p), H(p) multiplied by factor p'/? tend to zero sufficiently fast as
p — +oo. Following the substitution of Eq. (9) into source-free
Maxwell’s equations (5), (6) and the introduction of column matrix

s(p), .
s(p) = /0 v(p,p'sn,h) o E(p')p'dp, (56)

where v(p, p’,n, h) is defined by Eq. (36), the arising equations for the
components of E(p), H(p) can be recast in the form which is obtainable
from Eqs. (A2)—(A5) after replacing there £ with h and adding in their
right-hand sides the terms ikgsa, —tkos1, —(0/0p)(s3/e1), —inss/pe L
and s3/e; respectively. We now have everything to derive a standard
formula relating the discrete spectrum propagation constants h,x of
two arbitrarily chosen guided modes (with the same azimuthal number
n) in the effective and background media. Taking as a specimen the
calculations in [16], we find a rigorous formula

h = £(k + koq'/2p"), (57)
where
T
q —/ pdp pdp [Et(p,n k) F Ei(p,n, %)] ov(p,p',n,h) o E(p'),
(58)
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+oo
2 = ; pdp|E1(p)Ha(p,n, k) + Ea(p)H1(p, 1, k)

iEl(pvnv H)Hz(p) iEQ(pana H)Hl(p)] (59)

The quantity E,(p,n,k) which figures in Eq. (58) is defined after
Eq. (A11). The convergence of the integral in Eq. (59) on the upper
limit is secured by vanishing of the integrand at infinity. This implies
that neither of the guided modes involved is in the cut-off regime. We
recall that, according to a convention in Appendix A, there should
be 0 < argk < mw. Said convention, however, does not apply to the
quantity h.

Within the framework of the renormalization approach the first-
order effect of strong permittivity fluctuations is absorbed in the
permittivity of the background medium defined by Eq. (37). Treating
the quantity v as small parameter, let choose the mean-field guided
mode (9) in such a way that E(z) — E*(x|n, k), H(z) — H (z|n, ),
and h — +k when v — 0. Here the quantities E* (z|n, k), H*(z|n, k)
determine a guided mode in the background medium which travels in
the +z(—z) direction — see Eq. (A8) for explicit characterization; the
upper or lower signs should be selected simultaneously. In establishing
the aforementioned relationship we utilize the fact that the discrete
spectrum eigenvalues of the unperturbed problem (A2)—(A5) are non-
degenerate. The implementation of perturbation approach in Egs.
(58), (59), as well as the employment of Eq. (39) leads to a second,
approximate formula

Sh* = h F k ~ £koq" /2P (n, k), (60)

for a shift of propagation constant of a guided mode progressing along
the z-axis (6h™) or in the opposite direction (64 7). In this formula,

" too +oo / /| T T
q 2/0 pdp/o pldp [Et(p,n,ﬂ)qtﬂz(p,n,n)]

06O (p. . n, 1) o [Ey(p.n.k) £ Epom,k)] . (61)

+o0
P(n, k) :/0 [E1(p,n, k)Ha(p,n, &) + Ea(p,n, &) Hi(p,n, )] pdp.

(62)
The quantities Redht define the displacement of the phase velocity,
and Smedh® that of attenuation of the eigenmode. Reference to
expressions (B14)—(C4) shows that, in the situation in which Eqgs. (47),
(48) hold, the following relation takes place: dh~ = —dh™, i.e., the
shifts 6h* are different as regards the sense of propagation only. For
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a more general situation however 6h~ # —d6h'. 1In the case of a
lossless random medium which is described by Egs. (54), (55), for

- T
real £ one can replace in Eq. (61) [Et(p,n, K) :FE(p,n,/i)] with

[E,(p,n, k) £ Ej(p,n,x)]*", and the quantity P(n,x) altered by a
factor ¢/87m can be identified with the total energy flux of the guided
mode through the transverse cross section of a background medium in
the direction of propagation which is obviously a positive value. Thus
one gets from Eq. (61) Smedh® = +kySmq” /2P (n, k), where

“+o0o
Smg" = /0 p'dp [E,(p,n, k) + Ey(p,n, k)"
0 (p,p',n, 1) o [Ey(p,n, k) £ Eyp,n, )] > 0. (63)

This in conjunction with expressions (54), (55) leads to inequalities
SmdhT >0, Imdh~ < 0 indicative of attenuation of guided modes of
the mean field in a lossless random medium due to scattering losses. It
is interesting to note that in the weak fluctuation case when one may
disregard the difference between the permittivity of the background
medium and the original medium in absence of fluctuations i.e., the
difference between 1/(c(") and (1/¢("), and the difference between the

random quantities ¢ and (" — (¢("))I the resulting expressions for

Iméh™ can be arrived at via a coupled mode approach of [17]. This
clearly extends the applicability of the coupled mode calculations of
the attenuation in lossless weakly fluctuating media to the case where
the multiple scattering effects play an essential role. We conclude
this Section with a remark that the presence of dissipative losses in
a random medium should complicate the manifestation of multiple
scattering effects, especially in the strong fluctuation case, and might
lead, under certain circumstances, to a decrease in attenuation (Smdh™
or —Smdh~ < 0). However, this point needs separate consideration.

6. CONCLUSIONS

In the paper, a strong fluctuation approach for the mean EM field is
developed referring to a lossy electrically isotropic random medium
whose physical and probabilistic properties possess rotational and
translational symmetry with respect to a fixed axis, and vary in
arbitrary manner with the distance from this axis. The main emphasis
of the approach is devoted to the elimination of secular terms in
the spectral representation of the EPO in the basis set of waves
associated with the aforementioned type of random media which is
completely different from a plane-wave basis set relevant to statistically
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homogeneous media. The aforesaid problem is resolved by invoking
a renormalized integral equation of scattering whose kernel has been
obtained by extracting a delta function singularity from the spectral
Green’s function in the background medium. As a consequence of such
renormalization, the arising perturbation series solution for the EPO
acquires, in the spectral domain, the status of an asymptotic expansion
in powers of a classical small parameter of the strong fluctuation theory
which does not presuppose the weakness of permittivity fluctuations.
The background medium appears to be spatially inhomogeneous and
electrically anisotropic, and its permittivity matrix is found in the
explicit form in contrast to the existing strong fluctuation theories for
statistically homogeneous media. Within the framework of a bilocal
approximation, the basic physical properties of the effective medium
are interpreted, and a distortion of the guided mode spectrum of the
mean field is analyzed.
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APPENDIX A.

A spectral expansion for G(p,p’,n,h) over the eigenfunctions
pertaining to a background medium is presented here.

First, following the well known approach toward spectral problems
in open regions [12-14] we introduce suitable transverse eigenfunctions

Et(pa n, ’{) = COl[El(pvna H)a EQ(F’?”? 5)70]?

(A1)
ﬂt(pﬂla H) = COZ[Hl(IOa n, /1)7 HQ(ﬂ?”v H)’ 0]

for the simultaneous equations
0 0 1
n > {

dp kop

0 . .
p —ikoe) (p)| B2 = ikHy, (A2)

p ikop Op
, n? n 0
i [kOEH(P) - W] + Wa—ppE2 =

0 n 0 1 0
_9_n G —iko| Hy = —irEy, (A4
dp kope L (p) [ Pt 0} 2 inBr, (A4)

dpikope L (p) Op

n? n 0
k- — B +— " 9 H, = —ikEy, (A5
2[ 0 koﬁ@.(ﬂ)] 1+ ikE2, (AD)
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that satisfy the condition of continuity of Fo, Ho and of the quantities

1 0
E = —— |inH — —pH A
3(P, n, K‘) ikope 1 (p) {Zn 1(10a n, ’{') 6pp 2(p7 n, "{)] ( 6)
1 [0 .
H3(p,n, k) = % 8_ppE2(’0’ n, k) —inki(p,n, fi)] ) (A7)

are bounded at p = 0 and when multiplied by p'/2 remain finite as
p — +oo. Here k is an eigenvalue, and n is an arbitrary integer which
remains fixed throughout this Appendix. In subsequent considerations
the eigenvalues of Egs. (A2)—(A5) will be identified with the respective
points in the complex h-plane. It can be easily seen that if £,, H, is a
solution to the above problem related to the eigenvalue « then E,, —H,
will form a solution associated with an eigenvalue —«. For our purposes
it suffices accordingly to restrict the admissible set of eigenvalues by the
condition that x belong to a complex set D = {h : 0 < argh < 7}. The
physical meaning of the eigenfunctions (Al) is revealed after noting
that

E*(aln, ) = [Eq(p.n, k) £ Ey(p,n, )] expli(ng + #2)], AS)
H*(xln, ) = [£H,(p,n, k) + Hi(p, n, k)] expli(ng + £2)]

satisfy source-free Maxwell’s equations for the background medium
and thus represent the fields of eigenmodes progressing (or evanescent)
in the 42z and —z directions with the propagation constant x. Here
A; = Ase;, (A= E,H), and ¢; stands for a matrix col[0, 0, 1].

The spectrum we seek, I', has the discrete part I'y(c) which
consists of finite number of points k = k¢(n), ¢ = 1,2,..Q(n), and
gives rise to guided modes, and the continuous part I'. associated
with the radiation modes [12-14]. It is now assumed for the sake
of simplicity that ¢|(p),e1(p) take constant value ¢ if p is sufficiently
large say p > po. This requirement suggests, via Eq. (37), that the
random medium fluctuations are constrained to the region 0 < p < pg
whilst the outer space p > pg is deterministic and homogeneous. In this
circumstance T, comprises the roots of equation Sm(k3e — h?)Y2 =0
in D. Anticipating further needs it is convenient to view I'. as
oriented contour drawn from infinity to the origin. In what follows the
discrete spectrum points x, [for a fixed n| are treated as nondegenerate,
since otherwise the degeneracy can be escaped by introducing a
proper infinitesimal perturbation into the background medium. In
contrast to this, each k from the continuum I, is associated with two

linearly independent eigensolutions which we denote as Eﬁ“), H Ea) and

Egb),ﬂ Eb). By invoking an orthogonalization procedure, it is always
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possible to render them mutually orthogonal, i.e., secure the property

< B (p,n,5), HY (p, 1, ') > (A9)
+o0o
= [ B om0 B (0., w') + B (oo k) (. )] pp =0,

for all x, ' € T,  Then it is easy to verify, by utilizing
standard techniques [12-14] that the eigenfunctions (A1) satisfy the
orthogonality conditions

< Ei(p,n, k), H(p,n, k") > = P(n,K)0xu, (k, & € Ty),
<L Eip,n, k), H(p,n, k") > = 0, (ke€Ty, v €T,),
g9

< BV (p,n,w), HY (p,n,K') > = PU(n, k)0(k — &)p,.
(j=a,b;r, k" €T.). (A10)

Here 0, is Kronecker’s delta, o, is complex Dirac delta function

[15] associated with contour T'., and P, PU) are the normalization
constants.

If we now Fourier transform Eq (13) and eliminate ;0G(p, p', 1, h)
in favour of (I — ¢ o e o G(p,p',n,h) the resultant equation lends
itself pretty easy to analytic solutlon via eigenfunction expansion
technique involving functional set (A1l). Subsequent reconstruction
of the spectral GF yields the representation that we are seeking:

T 0(p— )
G(p,p',n,h) = —¢, 0ef ———"—-
- )= a e ()

- T
Et(p? n, KV) © [Hﬁt(p/> n, H) - hEl(plv n, ’%):|

1
* zk: ko P (=, ) (12 — 2) {
+ Ey(p,n, k) o [REy(p,n, 5) = KEy(/,n, )| }. (A11)

Here E,(p, n, k) is obtainable from E,(p,n, k) by replacing in Eq. (A1)
Ey with —FEs, T denotes the matrix transposition operation, X
indicates the standard summation over the discrete spectrum points
kq and integration along contour I' (with contribution of both linear
independent eigenfunctions included), the respective superscripts j =
a,b are dropped to save on notation. It should be remarked for the
sake of clarity that expansion (A1l) rests upon a premise that neither
h not —h belong to the spectral set I'. It appears on taking note of
Eq. (15) and the results in Appendix B that the “sum” on the right
of Eq. (A11) represents a generalized function of variables p, p’ which
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consists of an integrable function G'(p,p’,n,h) and a singular part
3o — pViero 1 (0) — Ly )RR

The display (A11) makes clear that a discrete spectrum eigenvalue
kq of Egs. (A2)—(A5) bears responsibility for the occurrence of simple
poles h = £k, of spectral GF in the complex h-plane, with the
concomitant residues

1
resg(p7pl7n7 h) = im[ﬂt(pvnaﬁq)iﬂl(pvnv Kq)]

o (B0, . rg) F Eilp mo )T (A12)

Also, from the theory of the integrals of Cauchy type [19] one can
infer that the continuous spectrum contribution endows G(p, p’,n,h)
with two branch points h = +kg+/c and the branch cuts along the line
Smi(kde — h?)1/2 = 0. The latter consists of contour I'. and another
contour I's. which is symmetric to I'. with respect to the point h = 0.
When the Plemelj-Sokhotskii theorem [19] is applied to calculate a
limiting value of spectral GF as h approaches an arbitrary point h’ on
I'. (Tse) it turns out that

Glp.p.n. k) = GP)(p o n. k' ki
G(p,p',n, 1) = G¥(p,p',m, )+j§b2koP(J)(n,ih’)

B (p,n, 1) + B (p,n, £1)]
. . T
o [ED (i) 7 EP )] (a13)

if the passage h — h' is made along a path lying to the right of the
oriented contour I'. (I's.). The notation g(p”)(p7 p',n,h’) denotes the

quantity which follows from Eq. (A8) if we adopt the Cauchy principal

value of the integral along I'¢, in which the integrand has a pole on the

path of integration contributed by the denominator b’/ 2 _ K2

APPENDIX B.

Here we derive a regularized representation for the spectral Green’s
matrix G(p, p’,n, h) as generalized function of p, p/.

It may be directly verified that the expression obtainable via
scalarization technique [12]

G(p, pla n,h) = _é(p,)

3(p—p')
o
—i_k()_1 {Q o <@TGee - @TGmm) +wo (@TGmm — :TGme):| (Bl)
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meets all the stipulations laid down for the spectral-domain GF,
including the Fourier-transformed version of Eq. (13), provided the
scalar GFs Go3 = Gag(p,p',n,h), (o, = e,m), satisfy a coupled
system of equations

Dll _D12 Gee Gme _ 5(/) B Pl) 10
[Dm D22:|o|: ]_ P 0 1] (B2)

Gem Gmm

remain bounded as p — —+o00, preserve continuity together with the
quantities

1 nh . 0G,

— [Gmﬁ — ikozy (p) ﬁ} ,

xi(p;h) Lp dp (B3)
1 (nhG ik 8Gm5> (ﬂ )

N - € /L M = e7m b

xa(p.h) \p T gy

at the interfaces of the background medium, and demonstrate an
outgoing wave behaviour with p — +o00. In these relations,

N 1 1
Ap) = diag [mpxm’ Xl(Plah)’O} (B4)

xi1(p,h) = kgey(p) —h*, xa(p,h) = kgeL(p) —h*,  (B5)

v,w and ¥, w are matrix differential operators which act on variables
p and p/, respectively:

ih 0 nh

L= o el ?,1}, (0)
[k ik

w = col :pxj(hfi h) ’(;x:(p?hlza_p’ } ’ (B7)

o = col Xl(ZP’ah)W’ P'X.;ﬂ(bplah)a’_l} ’ (3%

L= col ._p’xT(];O”h)’ Xz(”;'()a h)a_p”o} ’ (B9)

(B10)

and Dj, (j,k = 1,2), are scalar differential operators acting on p:

10 peylp) 0 n*ei(p)

ppxi(p.h) dp  p*x2(p, h)
inh 1 0 0 1

Diy — g_2_- |, B12
2 p Lx2(p,h)0p  Opxi(p,h) (B12)

kalDll = +5J_(P)7 (Bll)



192 Zhuck, Schiinemann, and Shulga

D11 — Daz, D12 — Do, (g1 — 1, X1 < Xx2)- (B13)

Physically, —iGe3 and —iG,,3 give, respectively, the z components
of the spectral electric and magnetic field amplitudes created in the
background medium by spatially harmonic impressed sources of the
electric ( = e) or magnetic (f = m) type with zero transversal
components and the z component equal to exp[i(ny + hz)]0(p —p')/p.

Due to presence of a Dirac delta function in the right-hand side
of Eq. (B2) the quantities G, G as well as the differential operations
which figure on the right of Eq. (B1) should be properly interpreted in
the spirit of the generalized function theory [15]. The latter point is
only essential with regard to the second mixed derivatives 0?G../9p0p’
and 0?G.m /0pdp’. Each of them contains the usual derivative signified
by proper index and the Dirac delta function, e.g.,

82G66(p7 plana h) _ 82G€e(pv p,7n7 h) _ _ ,0/ Xl(p,vh)
8p8,0/ |gen apapl |usu k‘(]p/EH (10/)
(B14)

(similar formula for Gy, which follows from Eq. (B13) after replacing
gl — 1, x1 — Xa, is omitted). This claim is verified by applying
a well-known method of differentiating a function with a step-like
discontinuity [15] to 0Gee/0p, OGmm/Op characterized by such a
discontinuity at p’ = p. Said discontinuity can be found explicitly
by integrating Eq. (B2) over p within an infinitely small interval
containing p’. On collecting delta functions in Eq. (B1), one arrives
at the regularized representation (15). The regular constituent
G(p,p',n,h) is formally obtainable from the expression (B1) after
letting out the first term with the Dirac delta and replacing, in
the remaining terms, the generalized derivatives with usual ones.
Evidently, the result will be a finite-valued integrable function of each
variable p, p’ which has a discontinuity at p = p/. This should be
contrasted to the case of spatial GF where the regular, or principal-
value constituent appears to be a non-integrable function with a polar
irregularity, and is defined non-uniquely — see, e.g., [3-6]

APPENDIX C.

The elements 0](031)(p, plin,h) = kylGy, of matrix 83 (p, p/,n, h) are
determined by the expressions:

B 2 121.2
Z/ |20 Gee  07hy o
dpdyp’ /

X1X1 PP
190G 10G
in' W'k, (— me _ m)} dn’
B VA P P ’
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B 5 2Gm  n/*h'?
CQQZ—Z/ LL[ ,—i—n,Gee

X2X32 dpdp pp
10Gme 10Gem
+ in'h'k (p’ 9 " p op )} dh’, (C1)
BHJ_ 82Gem n'%koh!
<12 - Z/ [ 3p8p’ - pp, Gme
h’2 0Gee k2 OG
ee 0 mm dhl
+ in/ (p’ ap + ) op )1 )
BL” 1 P Gime n'%koh!
CQl - Z/ [ apap, - pp, Gem
h’2 ce | g OGmm
—in/ (785), +;‘}a(;p )1 dn/, (C2)

B /
G = X [ S (g = e

B !/
(31 = —Z/ l” ( 8Gee npkOGem> dn’, (C3)

B AN,
Go3 = —Z/ = ( 8G;w +nph Gee) dn’,

B 0Gem B
C32 = Z/ = < 0 8 T np, Gee) dhl7 (04)
(33 = _Z/BJ_J_Geedh/' (C5)

In these equations, the summation is carried out over all integral n’ i.e.,
n’ = 0,41, +2,..., integration over h’ is performed within the ranges
—00 < b/ < 400, the quantities Go3 = Gaglp, o', 7, 1), o, =e,m),
are defined in Appendix B, x; = x;(p, /'), Xj = X](p’,h’), (j=1,2),
with x;(p, h) given by Eq. (B5), differentiation with respect to p, p’ is
understood in the classical (and not distributional) sense, and

Buv = Buv(ﬂa pl7n - T'L/, h - h/)u (U, U= J—7 ||)) (06)

where the spectral densities By, (p, p’,n,h) are defined by Eq. (40).
Also, Egs. (B14)—(C4) contain a tacit assumption that the poles and
the branch cuts of Gs(p, p',n', ') as function of complex variable h’
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do not lie on the real-axis path of integration — e.g., due to presence
of small dissipative losses in the background medium.
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