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Abstract—Continuous current spectrum of an integrated open
waveguide structure is identified as the branch cut contribution to
singularity expansion of those currents in the complex axial transform
plane. Those singularities in that plane include poles associated
with the guiding structure and branch points contributed by layered
background environments. The manner in which singularities in
background environments manifest themselves as branch points in the
complex axial transform plane is reviewed.

Based on spectral integral equation formulation, approximate and
analytical expression for spatial microstrip current is obtained. That
approximation is based on Maxwellian distribution for the transverse
current profile. This result is the representation of currents in terms
of proper propagation mode spectrum. During the integration around
branch cuts, singularities in the transverse transform plane migrate in a
complicated manner. The trajectories of this migration are identified
and suitably accommodated during the real axis integration in that
plane. This overall procedure leads to a decomposition of the total
currents into bound modes and continuous spectrum contributions.
This representation is validated by real axis integration in the axial
transform plane. The quasi TEM characteristic impedance of bound
mode is calculated and validated by comparison with well-known
empirical formula.
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1. INTRODUCTION AND GEOMETRICAL
CONFIGURATION

The existence of leaky modes on the integrated open waveguide
structure has recently received considerable attention [1–14]. However,
the proper continuous and discrete spectrum currents of the
integrated open microstrip waveguide have been until recently neither
conceptualized nor quantified adequately. That spectrum can be
identified as the branch cut contribution to a singularity expansion
of those currents in the complex axial transform plane (ζ-plane). It
is recognized that singularities in that plane include poles associated
with the guiding structure and branch points contributed by layered
background environments. The manner in which singularities in
background environments manifest themselves as branch points in the
complex ζ-plane is reviewed.

Based on a spectral EFIE (electric field integral equation)
formulation [15–17], both approximate and analytical expressions for
the spectral microstrip current are obtained. A δ-gap field feed
model is exploited as an excitatory source [18–21]. It is noted that
the current approximation is based on the Maxwellian distribution
for the transverse current profile. Microstrip currents are recovered
from the spectral representation by integration contour deformation
on the top sheet of the complex ζ-plane. As a result, microstrip
currents are obtained in terms of the proper propagation mode
spectrum. That spectrum consists of bound propagation modes
associated with pole singularities and a continuous spectrum [22, 23]
which is associated with integration around branch cuts contributed
by background layer environments. During integration around the
branch cuts, singularities in the complex transverse transform plane
(ξ-plane) tend to migrate in a complicated manner. The trajectories
of ξ-plane migration are identified and suitably accommodated during
the real axis integration in the complex ξ-plane. This overall procedure
leads to a decomposition of the total currents into bound mode
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Figure 1. Geometrical configuration of open microstrip structure
immersed in layered background environment.

and continuous spectrum contributions. The result is numerically
validated by real axis integration in the complex ζ-plane. The quasi
TEM characteristic impedance of bound modes associated with pole
singularities is calculated and is validated by comparison with well-
known empirical formulas [24].

Extensive numerical results are obtained, which can compare
bound mode and continuous spectrum contributions to microstrip
currents. It is recognized that currents are dominated by bound
propagation modes. Physically, it is acceptable since the microstrip
current is directly associated with the conducting microstrip rather
than the background layer environment. Even if the continuous current
spectrum is maximal near the feed point and decays rapidly with
axial distance from the feed, it contributes negligibly to the total
spectrum since the dominant contribution comes from the discrete
current spectrum contributed by the bound propagation mode.

The geometrical configuration of integrated microstrip waveguide
immersed in a planar-layered background environment is depicted in
Fig. 1 and its cross-sectional view is also depicted in Fig. 2. Each
of the planar layers is assumed to be non-magnetic, isotropic and
homogeneous with complex permittivity εl, l = 1, 2, 3 for the cover,
film, and substrate layers with ε3 → −j∞ or σ → ∞. The guiding
structure is embedded in the cover layer adjacent to the cover/film
interface.
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Figure 2. Cross-sectional view of immersed microstrip structure.

2. CONTINUOUS SPECTRUM CURRENT

The microstrip current is formulated under the assumption of
Maxwellian transverse current distribution in [25] and it will not be
repeated here. The current is given by [26]

Jz(z) =
∫ ∞

−∞

L̃g(ζ)∫ ∞

−∞
η̃2(ξ)

[
jη

k1

˜̃Czz(ξ, ζ)
]
dξ
ejζzdζ (1)

The parameters L̃g(ζ), η̃(ξ) and ˜̃Czz(ξ, ζ) are given by

L̃g(ζ) = e−(ζd)2/2

η̃(ξ) =

{
J0(ξw/2) · · · w/t < 2
sin c(ξw/2) · · · w/t ≥ 2

˜̃Czz(ξ, ζ) =
(
k2

1 − ζ2
)

Zh(λ)
+
ζ2p1(λ)

(
N2

21 − 1
)

Zh(λ)Ze(λ)
(2)

Zh(λ) = p1(λ) + p2(λ) coth[p2(λ)t]
Ze(λ) = N2

21p1(λ) + p2(λ) tanh[p2(λ)t]
λ2 = ξ2 + ζ2, N2

21 = (n2/n1)2

where d, w and t denote the effective gap width, microstrip width
and film layer thickness respectively. It is also noted that ξ and ζ
are transverse and longitudinal transform variables respectively. As
discussed in [27], pl(λ) =

√
λ2 − k2

l (l = 1, 2) yield branch point
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Figure 3. Singularities in the complex ζ-plane contributed by the
planar-layered background environment. The branch points λs = ±k1

to the branch points ±k1 mapping and the poles λs = ±λTM0 to the
branch points ±λTM0 mapping in the low low-loss limit.

singularities at λ = ±kl. It is observed that the branch points
contributed by inner layers are removable [28] but those contributed
by most-outer layers are non-removable.

Pole singularities of ˜̃Czz(ξ, ζ) contribute simple-pole singularities
associated with the planar-layered background environment. Then,
Zh(λ) = 0 leads to simple poles at λ = ±λp associated with TE-odd
surface waves and Ze(λ) = 0 leads to simple poles associated with
TM-even surface waves.

Hence, complex λ-plane singularities of the integral representation
for the microstrip current consist of branch points at λ = ±k1 and poles
λ = ±λp. Since λ2

s = ξ2s + ζ2 (conventionally, λs and ξs denotes λ- and
ξ-plane singularities),

±ξk1 = ∓j√ζ − λs
√
ζ + λs = ∓j√ζ − k1

√
ζ + k1

±ξTM0 = ∓j√ζ − λs
√
ζ + λs = ∓j√ζ − λTM0

√
ζ + λTM0

(3)
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Figure 4. Migration of complex transverse transform plane (complex
ξ-plane) branch-point singularities ±ξk1 in conjunction with changing
spatial-frequency ζ along branch cuts associated with a logarithmic
type branch point k1 and a square-root type branch point λTM0 in the
complex ζ-plane in the low-loss limit.

which clearly implicates the branch points at ζ = ±λs in the complex
ζ-plane with λp = λTM0 being the fundamental proper surface-wave
mode as depicted in Fig. 3. It is assumed that k0t is sufficiently
small that the TM0 pole is the only mode on the top sheet of
the complex λ-plane. Singularities associated with the background
layer environment consist of branch points in the complex ζ-plane.
The proper continuous spectrum is contributed by detouring about
logarithmic and square-root type branch cuts arising from the k1

branch point and the proper background pole λTM0 as depicted in
Fig. 3. Then, as evident from Eqn. (3), branch point and surface-
wave pole singularities in the complex ξ-plane migrate in conjunction
with changing spatial-frequency ζ along branch cuts associated with a
logarithmic type branch point k1 and a square-root type branch point
kTM0 in the complex ζ-plane as depicted in Figs. 4 and 6 respectively.
For a point along a branch cut contour in the complex ζ-plane, Re{ξ}-
axis inversion contour integration is implemented for its corresponding
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Figure 5. Complex-phasor diagram for branch-point singularities
±ξk1 in the complex ξ-plane for points 2 and 5 in the complex ζ-plane
in Fig. 3 and evolution of Cξ.

branch-point singularities ±ξk1 . The integration detour about branch
cuts from a point 4 to a point 6 is in an opposite sense to that from
a point 1 to a point 3 as depicted in Fig. 3. Thus, the corresponding
Re{ξ}-axis inversion contour Cξ’s are also in an opposite sense to each
other as depicted in Fig. 4, but their integral contributions are not
annulled by each other since p1(ξ, ζ) takes different values along them
on the top sheet of the complex ξ-plane and must be evaluated with
respect to different branch-point singularities in the complex ξ-plane
for corresponding different ζ’s in the complex ζ-plane. For example,
ξk1 (2) and −ξk1 (2) in Fig. 5 imply positive and negative branch-point
singularities ξk1 and −ξk1 respectively for a point 2 in Fig. 3.

p1(ξ, ζ) =
√
ξ2 + ζ2 − k2

1 =
√
ξ + ξk1

√
ξ − ξk1 (4)

Regarding ξk1 as a fourth-quadrant singularity leads to

ξk1 = −j
√
ζ − k1

√
ζ + k1 (5)
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Figure 6. Migration of complex transverse transform plane (complex
ξ-plane) surface-wave pole singularities ±ξTM0 in conjunction with
changing spatial-frequency ζ along branch cuts associated with a
logarithmic type branch point k1 and a square-root type branch point
λTM0 in the complex ζ-plane in the low-loss limit.

For π1 in Fig. 5,

π1 = ξ + ξk1(2) = γ1e
jϕ−

(6)

γ1 =
√

[Re {ξ + ξk1(2)}]2 + [Im {ξ + ξk1(2)}]2
ϕ− = −φ

= − tan−1
(

Im{ξ + ξk1(2)}
Re{ξ + ξk1(2)}

)
+
π

2
(sgn[Re{ξ + ξk1(2)}] − 1) (7)

where

sgn[Re{ξ + ξk1(2)}] =

{
1 · · ·Re{ξ + ξk1(2)} > 0
−1 · · ·Re{ξ + ξk1(2)} < 0

Similar analysis can be implemented for π2, π3 and π4. Therefore, for
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a point 2 in Fig. 3, p1(ξ, ζ) is defined by

p1(ξ, ζ) =
√
γ1γ3e

j(ϕ−+ϕ+)/2 (8)

where γ1, ϕ
− are determined by Eqn. (7) and γ3, ϕ

+ can be obtained
for complex phasor analysis for π3. Thus, throughout the integration
detour about branch cuts from a point 1 to 6 in Fig. 3, the
corresponding overall procedure for Re{ξ}-axis inversion contour Cξ’s
leads to∫

6∑
m=1

Cξ(m)

(· · ·)dξ =
∫

3∑
m=1

Cξ(m)

(· · ·)dξ −
∫

6∑
m=4

Cξ(m)

(· · ·)dξ (9)

where Cξ(m) indicates Re{ξ}-axis inversion contour for a correspond-
ing point m in Fig. 3. Then, Eqn. (9) implicates Re{ξ}-axis inversion
contour integral contribution excluding surface-wave pole singularities
on Re{ξ}-axis defined by Eqn. (3).

As evident from Eqn. (3), in addition to branch-point singularities
±ξk1 , there exist surface-wave pole singularities ±ξTM0 in the complex
ξ-plane for corresponding points on the branch-cut contour in Fig. 3.
As the integration contour detours from a point 1 to a point 6 about
branch cuts in the complex ζ-plane as depicted in Fig. 3, one of surface-
wave pole singularities, ξTM0 , in the complex ξ-plane, migrates from
−∞ to ∞ on Re{ξ}-axis in the low-loss limit as depicted in Fig. 6. The
symbol × denotes the surface-wave pole singularity in the complex ξ-
plane for a corresponding point on branch cuts in the complex ζ-plane.
The superscript + denotes the positive surface-wave pole singularity
ξTM0 and the number does its corresponding position on the branch-
cut contour in the complex ζ-plane. For example, 1+ implies that
a point 1 in the complex ζ-plane as depicted in Fig. 3 maps into a
positive surface-wave pole singularity ξTM0 in the complex ξ-plane.
Similarly, the negative surface-wave pole singularity, −ξTM0 , migrates
exactly conversely from ∞ to −∞ on Re{ξ}-axis as depicted in Fig. 6.
Therefore, there is a continuum of surface-wave pole singularities in the
complex ξ-plane for corresponding points on the branch-cut contour in
the complex ζ-plane. The location of a surface-wave pole singularity
is a little exaggerated for clarity in Fig. 6. In the low-loss limit, a
positive surface-wave pole singularity ξTM0 approaches infinitesimally
close to Re{ξ}-axis from the below as depicted in Fig. 6 since it
is necessary that Im{ξTM0} < 0 to satisfy the radiation condition.
Conversely, a negative surface-wave pole singularity −ξTM0 approaches
infinitesimally close to Re{ξ}-axis from the above in Fig. 6 since
it is necessary that Im{−ξTM0} > 0. If physical continuity of the
surface-wave is to be maintained during Re{ξ}-axis inversion contour
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integration, Re{ξ}-axis inversion contour must remain disposed above
the positive surface-wave pole singularity ξTM0 . Then, the half residue
contributed by ξTM0 leads to a surface-wave contribution. From a
point 1 to a point 3 about the branch cut in the complex ζ-plane
as depicted in Fig. 3, the corresponding positive surface-wave pole
singularities 1+, 2+, 3+ in Fig. 6 are in a clockwise sense however from
a point 4 to a point 6 about the branch cut in Fig. 3, the corresponding
positive surface-wave pole singularities 4+, 5+, 6+ in Fig. 6 are in a
counter-clockwise sense since the branch cut integration contour from
a point 4 to a point 6 in Fig. 3 is in an opposite sense to that from
a point 1 to a point 3. Conversely, Re{ξ}-axis inversion contour
must remain disposed below the negative surface-wave pole singularity
−ξTM0 and the half residue contributed by −ξTM0 leads to a surface-
wave contribution. From a point 1 to a point 3 about the branch cut in
the complex ζ-plane as depicted in Fig. 3, the corresponding negative
surface-wave pole singularities 1−, 2−, 3− as depicted in Fig. 6 are in
a counter-clockwise sense however from a point 4 to a point 6 about
the branch cut in Fig. 3, the corresponding negative surface-wave pole
singularities 4−, 5−, 6− as depicted in Fig. 6 are in a clockwise sense.
Hence the overall procedure leads to a full residue contribution for
two corresponding points on the branch cut contour in Fig. 3. More
importantly, since all the residues on a positive Re{ξ}-axis are in
a counter-clockwise sense and those on a negative Re{ξ}-axis in a
clockwise sense, the overall residue contribution will not be annulled.

Hence, both branch-point and surface-wave pole singularities
contribute to the proper continuous spectrum since the branch cut
contour never violates the branch-cut as depicted in Fig. 3.

3. THE CHARACTERISTIC IMPEDANCE

As is evident from Eqn. (1), the discrete spectrum or the bound-mode
spectrum is associated with bound- or guided-mode pole singularities
ζp in the complex ζ-plane in Fig. 3 determined by

∫ ∞

−∞
η̃2(ξ)

[
jη1

k1

˜̃Czz(ξ, ζp)
]
dξ = 0 (10)

It is noted that the characteristic impedance of the microstrip
waveguide is not unique since it supports quasi TEM-modes. However,
a meaningful characteristic impedance can be calculated by exploiting
the discrete (bound-mode) spectrum current. The discrete current ID
is propagating longitudinally with a voltage V . It is important to
observe that voltage V can be decomposed into V/2 at z = 0 since
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Figure 7. The dispersion of the fundamental surface-wave pole
singularity λTM0 and the bound or guided-mode pole singularity ζp
through operating frequency ranges.

infinitesimally equally and oppositely separated discrete currents can
flow at z = 0 [29]. Then, the characteristic impedance Zc is derived by

Zc =
V/2

ID(z = 0)
=

V

2ID(z = 0)
(11)

where ID(z = 0) is the discrete (bound-mode) current at z = 0. The
fundamental proper surface-wave mode λTM0 and the bound-mode
pole singularity ζp are dispersed through operating frequency ranges
(1∼38 GHz) as depicted in Fig. 7. The characteristic impedance Zc of
the microstrip waveguide excited by a δ-gap is depicted in Fig. 8 and
compared with the well-known empirical formula [24].

4. NUMERICAL RESULTS

Numerical results are obtained using the integrated microstrip
configuration with

microstrip width : w = .1016 mm ⇒ w/λ0 = .0051
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Figure 8. The characteristic impedance of the microstrip waveguide
calculated by the longitudinal discrete or bound-mode current
spectrum through operating frequency ranges.

effective gap width : d = w/10 mm ⇒ d/λ0 = (w/λ0)/10
film thickness : t = 1.27 mm ⇒ t/λ0 = .06

operating frequency : f = 15 GHz

The microstrip current is composed of the continuous spectrum
current contributed by the background layer environment (branch
points) and the discrete spectrum current contributed by the guiding
structure (poles). As depicted in Fig. 9, the microstrip current is
dominated by the discrete spectrum current rather than the continuous
spectrum current. It is noted that physically, the microstrip current is
associated with the guiding structure rather than the background layer
environment. Furthermore, the total microstrip current spectrum can
be validated by Re{ζ}-axis inversion contour integration as depicted
in Figs. 10 and 11. The corresponding ξ-singularity migration will not
be repeated here. Fig. 12 depicts the microstrip current amplitude
profile with various electrical strip widths. The continuous (IC) and
discrete (ID) spectrum current amplitude-ratio with various electrical
strip widths is depicted in Fig. 13. Fig. 14 depicts the continuous (IC)
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Figure 11. Re{ζ}-axis inversion contour validation of microstrip
current phase profile contributed by the continuous spectrum current
and the discrete spectrum current.
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and discrete (ID) spectrum current amplitude-ratio versus electrical
film thickness with various electrical strip widths. Finally, Fig. 15
depicts the microstrip current amplitude versus electrical film thickness
with various electrical strip widths.

5. CONCLUSION

It is observed that singularities in the complex ζ-plane include poles
associated with the guiding structure and branch points contributed by
the layered background environment. Singularities associated with the
background layer environment manifest themselves as branch points in
the complex ζ-plane. The continuous spectrum current is contributed
by the integration contour about branch cuts associated with those
branch points. The discrete spectrum current is contributed by
residues at pole singularities associated with the guiding structure.
The characteristic impedance of the microstrip was obtained using
the discrete- or bound-mode spectrum current and was validated by
comparison with a well-known empirical formula.
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Microstrip current is composed of the continuous spectrum current
and the discrete spectrum current. Numerically it is observed that
the total microstrip current is dominated by the discrete spectrum
current rather than that of the continuous spectrum. The microstrip
current was validated by comparison with Re{ζ}-axis inversion contour
integration.

Based upon the microstrip current and the proposed methodology,
the fields in the background layer environments will be presented in a
forthcoming paper.
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