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Abstract—The theory of scattering in open and closed areas by a
novel structure of a dielectric-metallic post is developed with the use
of a combination of a modified iterative scattering procedure and an
orthogonal expansion method. The scattered field pattern for open
structures and frequency responses of the transmission and re ection
coefficients in a rectangular waveguide are derived. The turn and
displacement of the post in a waveguide allows to change the resonance
frequency of the circuit. A good agreement is obtained between the
results of our method and those received from FDTD simulations and
measurements. The proposed model is much faster than the FDTD
method used for comparison. The computation time is independent of
the kind of dielectric material the post is made of.
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1. INTRODUCTION

For decades the dielectric and metallic resonators have been extensively
investigated for applications in microwave communication systems [1–
10]. Numerous different methods of analysis are used to examine the
resonators depending on their shapes and type of excitation. For plane
wave scattering, where the posts are in free space, one can distinguish
several developed techniques such as partial differential equation with
the eigenfunction expansion method [3], integral equation formulation,
[4] and the iterative algorithm [6]. For waveguide structures one can
mention the modal expansion method [5] and the orthogonal expansion
method [8, 9].

In recent years the space-discretization techniques such as FDTD
or FEM employed in professional simulators have become more popular
thus enabling to investigate the structures with arbitrary cross section
or profile. Nevertheless, these techniques are not very efficient,
considering the time of analysis for the structures with high complexity
where extremely fine discretization is needed. In this paper we would
like to show the analytical solution for the dielectric-metallic cylindrical
obstacles with complex shapes.

The mathematical model from [1] and [2] based on a combination
of an iterative scattering procedure and an orthogonal expansion
method [6–10] is modified on the investigated structures. The proposed
procedure enables to analyze the electromagnetic wave scattering of TE
waves from two-dimensional posts in both open and closed structures.
In the former the posts are placed in free space and the far scattered
field patterns are investigated. For the latter the frequency responses
of the transmission and re ection coefficients in a rectangular waveguide
describing the resonances of the posts on the dominant waveguide mode
are derived. For both problems the cylindrical interaction region is
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Figure 1. Schematic representation of the scattering by cylindrical
posts with metallic strips in a) waveguide junction, b) open area; c)
single post in local coordinate system.

separated (see. Fig. 1) where a total scattered field from all posts
is found. The analysis of scattering of TM waves can be perform
analogously but different boundary conditions and basis functions have
to be considered. The methodology presented in this paper can be
easily developed into circular waveguides and resonators containing
dielectric rod with metallic strips.

The investigated cylindrical structure consists of one, two or three
conducting strips with finite thickness attached to the central dielectric
or conducting cylinder as shown in Fig. 1.

As distinct from common cylindrical dielectric resonators, the
investigated structure enables to vary the resonant frequency of the
waveguide structure and scattered field by simple rotation of the post.
This effect is especially useful in closed structures where it can be used
in filter structures to tune a circuit to the demanded frequency. The
tuning feature can also correct the resonance frequency resulting from
the defects or improper dimensions of the dielectrical resonators. In
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order to analyze the considered structure the procedure in [1] should
be modified by applying the scattered field found from a single bow-tie
post. Then it allows to obtain the multimodal scattering matrix for
the considered waveguide structures.

The theory of scattering in open and closed areas by the posts and
the description of the fields in a local coordinate system of the single
post are reviewed in Section 2. The estimation of numerical error with
the convergence of scattering parameters are described in Section 3.
The method is verified with the calculation of FDTD simulator for
several plane wave scattering configurations and waveguide structures
where the comparison with measurement was also carried out. The
results on the computation of the radiation patterns and scattering
parameters are presented in Section 4. Additionally, the theory
and analysis of propagation in periodically loaded waveguide, as an
application of investigated structures, are described in Section 4.2.

2. THEORY

The procedure assumes that the posts are excited by an unknown
incident field defined as an infinite series of Bessel functions of the
first kind with unknown coefficients an. A total scattered field from
all posts in interaction region on contour R is determined by these
unknown coefficients. This approach allows to match the obtained
total scattered field with other known incident fields and to define a
scattering matrix of the considered structure.

Incident electric field Ez excites a number of posts and therefore
it has to be defined in their local coordinates. For the ith post the
electric field has the form

E
inc(0)
zi =

∞∑
m=−∞

am

∞∑
p=−∞

Jp(k0ri)ejpφi · Jp−m(k0dio)ej(m−p)φio (1)

where dio and φio are the distance and the angle between the center of
local and global coordinate system.

The scattered and transmitted field components for the ith post
are also described as a series of Bessel functions with unknown
coefficients bm (Region III in Fig. 1) for the scattered field, and cn
and c′n for the transmitted field in Region II:

E
s(0)
zi =

∞∑
m=−∞

bimH
(2)
m (k0ρ)ejmφ (2)

Et(0)
z (ρ, φi) =

∞∑
n=1

(
cjnJlj (kiρ) + cj

′
n Ylj (kiρ)

)
sin

(
nπ(φi − φj,i)
2(π − θj,i)

)
(3)
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where H(2)
m is a Hankel function of the second kind of order m, Jlj and

Ylj are Bessel functions of the first and second kind, respectively, of
order lj , lj = nπ/2(π − θj), j = 1, 2 and ki = k0

√
εri.

Applying the continuity of the tangential components of electric
and magnetic fields on the surface of each contour Ri, and using the
orthogonalization method, the unknown coefficients bm are obtained.
Truncating the series expansion to m = M the solution is expressed as

[b] = [G][Tio][a] (4)

where [b] and [a] are vectors of the length (2M + 1), [G] is a relation
matrix between the unknown coefficients bm and am, and [Tio] is the
transformation matrix of Bessel functions from global coordinates to
the local coordinates of the ith post [2].

Following the procedure described in [2, 6] the total electric and
magnetic fields on the surface of the interaction region are determined
and described by matrix [Z] in equation (5).[

ET
z

]
= [Z]

[
HT
φ

]
(5)

2.1. Scattering Fields

The scattered field from the investigated obstacles described on the
surface of a separated interaction region can be combined with fields
of closed and open external structure.

For the waveguide structures the electromagnetic field in the
analysis is assumed to be independent of z and therefore, all fields
are depicted as TEn0 waves, having field components Ez, Hφ and Hρ.

The electric field components Ei
z of the TEn0 modes for ith

waveguide port in its local Cartesian coordinate system (xi, yi, zi)
is written as follows

Ei
z =

√
2
aib

N∑
n=1

sin
[
nπ

ai

(
yi +

ai
2

)](
tine

jkixnxi + rine
−jkixnxi

)
(6)

where tin, r
i
n are the transmission and re ection coefficients, respectively,

kixn =

√
ω2ε0µ0 −

(
nπ
ai

)2
, i = 1, 2, . . . , K and K denotes the number

of waveguide ports. The magnetic fields H i
x, H

i
y can be determined

from Ei
z.

For the open problem the total electric incident field is composed
of I TM waves from any φ direction. The excitation is assumed to
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be located along the negative x-axis at a contour R and shifted by an
angle θoi:

Ei
z =

I∑
i=1

Eoi

∞∑
n=−∞

j−nJn(k0R)e(jn(φ−θoi)) (7)

In both cases the scattered field at a distance ρ from the investigated
configuration of posts is defined as

Es
z =

∞∑
n=−∞

rnH
(2)
n (k0ρ)e(jnφ) (8)

As a result of matching outer excitation fields with those obtained
from interaction region on the surface of the hypothetical cylindrical
boundary (ρ = R) [1, 2] the modal scattering matrix of the investigated
waveguide structure is defined in equation (9) and the scattered
coefficients for the open structure can be determined from equation
(10).

[S] =
([
KER
w

]
− [Z]

[
KHR
w

])−1(
[Z]

[
KHT
w

]
−

[
KET
w

])
(9)

where [KET
w ], [KER

w ], [KHT
w ], [KHR

w ], are square matrices of the size
(2M + 1) (M — the number of eigenfunctions in the cylindrical
interaction region) described in [2].

[r] =
([
KER
f

]
− [Z]

[
KHR
f

])−1(
[Z]

[
KHT
f

]
−

[
KET
f

])
(10)

where the [KET
f ], [KHT

f ] are vectors of the length (2N + 1), [KER
f ]

and [KHR
f ] are square matrices of the size (2N + 1) described in [2] by

equations (34) and (35).

2.2. Single Post in Local Coordinate System

In the case where a dielectric cylinder with a conducting rod is used
as the central cylinder of the structure, the axial component of the
electric field EI

z in Region I from Fig. 1 is described as follows

EI
z (ρ, φ) =

∞∑
m=−∞

gm

(
Jm(k1ρ)−

Jm(k1r1)
Y m(k1r1)

Ym(k1ρ)
)
ejmφ (11)
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where Jm is Bessel function of the first kind of order m, gm is
an unknown coefficient and k1 = k0

√
εr1. In Region II the axial

components of the electric field are described by (12).

EIIi
z (ρ, φ) =

∞∑
n=1

(
cinJli(k2ρ) + ci

′
nYli(k2ρ)

)
sin

(
nπ(φ− φi)
2(π − θi)

)
(12)

where for ith subregion (i = 1, 2, 3) of Region II Jli and Yli are
Bessel functions of the first and second kind respectively of order li,
li = nπ/2(π−θi) and cin, c

i′
n are unknown coefficients, and k2 = k0

√
εr2.

In the external Region III the electric field has the form:

EIII
z (ρ, φ) =

∞∑
m=−∞

(
amJm(k0ρ) + bmH

(2)
m (k0ρ)

)
ejmφ (13)

where Jm and H
(2)
m are Bessel and Hankel functions of order m, and

am, bm are unknown coefficients.
For further numerical investigation the numbers of harmonics

n = 1 . . . N for the fields (12), and m = −M . . .M for the fields (11)
and (13) are taken into account. In order to modify the model in [1] it
is necessary to find the novel relation between the unknown coefficients
am and bm defined in equation (13). Hence, the boundary conditions at
the interfaces I–IIi (ρ = r2) and IIi-III (ρ = R) should be satisfied. The
tangential component Ez of electric fields is assumed as an unknown
function U (i)(φ), leading to the following relations:

U (i)(φ) =




0, φ′i ≤ φ ≤ 2π + φi

EI
z (ρ = r2, φ) = EIIi

z (ρ = r2, φ), φi ≤ φ ≤ φ′i
EIIi
z (ρ = R,φ) = EIII

z (ρ = R,φ), φi ≤ φ ≤ φ′i
(14)

Expanding function U (i)(φ) in a series of basis functions with unknown
coefficients w(i)

k and assuming the number of terms in expansion K one
gets:

U (i)(φ) =
K∑
k=1

w
(i)
k U

(i)
k (φ), i = 1, 2 (15)

A set of basis functions satisfying the conditions at the sharp metallic
edges of the ridge is taken from [11] and described by (16).

U
(i)
k (φ) =

sin
[
kπ(φ− φi)
2(π − θi)

]
3
√

(φ− φi) [2(π − θi)− (φ− φi)]
(16)
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for i = 1, 2, 3.
Additional relations between theHφ fields at the interface (ρ = r2)

and (ρ = R) are obtained:

HI
φ(ρ = r2, φ) = HIIi

φ (ρ = r2, φ), φi ≤ φ ≤ φ′i (17)

HIIi
φ (ρ = R,φ) = HIII

φ (ρ = R,φ), φi ≤ φ ≤ φ′i (18)

Substituting the boundary conditions (14) and (17) to the fields (11)
and (12), and using field eigenfunctions {e−jmφ} and

{
sin

(
nπ(φ−φi)
2(π−θi)

)}
to orthogonalize (11) and (12) respectively, the coefficient gm is
eliminated and the following relations between coefficients ci

′
m and cim

can be received:


c1′

c2′

c3′


 =


 M11 M12 M13

M21 M22 M23

M31 M32 M33







c1

c2

c3


 (19)

where ci and ci′ are the vectors of the length N . The matrices Mij

for i, j = 1, 2, 3 are square of dimension N × N and for dielectric
and conducting cylinder are defined in the Appendix. Applying
the relations (19) to the fields (12), and then making use of the
orthogonality of field eigenfunctions at the boundary conditions (14)
at the interface (ρ = R), the following set of equations is obtained,



c1

c2

c3

c1′

c2′

c3′




=




P11 P12 P13

P21 P22 P23

P31 P32 P33

W11 W12 W13

W21 W22 W23

W31 W32 W33







w(1)

w(2)

w(3)


 (20)

together with the equation defining the coefficients a versus w(i) and
b:

a = Q1w(1) + Q2w(2) + Q3w(3) −Q4b (21)

where the dimensions of matrices Pij, Wij for i, j = 1, 2, 3 are
N × K, while for matrix Qi is (2M + 1) × K and for matrix Q4 —
(2M + 1)× (2M + 1). All the above-mentioned matrices are presented
in the Appendix by equations (A4)–(A7). The vectors a and b are of
the length 2M + 1, and w(i) are of the length K.
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With the above results the boundary conditions (18) are now
considered. Having orthogonalized them using base functions as weight
functions, the following set of equations is received

U0(i)TJ′li(k2R)ci + U0(i)TY′li(k2R)ci′ +

−Uφ0(i)T∗
(
J′m(k0R)a + H(2)′

m (k0R)b
)

= 0 (22)

where the matrices U0(i), Uφ(i) are of the dimension N × K and
(2M + 1) × K, respectively, and are defined by equations (A2) and
(A3). Jli , Yli and Jm, H(2)

m for i = 1, 2, 3 are diagonal matrices of the
dimension N×N and (2M+1)×(2M+1), respectively. Applying (20)
and (21) to (22) the vector coefficients w(i) are determined as follows:

w(i) = Li · b (23)

where the matrices Li are presented in the Appendix.
Substituting (23) to (21) after some algebra, the demanded

relation between unknown coefficients am and bm is obtained:

b = F−1a = G · a (24)

where

Fpq =




1
Jp(k0R)

3∑
i=1

K∑
k=1

(
U
φ(i)
k,p L

i
k,p

)
− H

(2)
p (k0R)
Jp(k0R)

for p = q

1
Jp(k0R)

3∑
i=1

K∑
k=1

(
U
φ(i)
k,p L

i
k,p

)
for p �= q

(25)

for p, q = −M, . . . ,−1, 0, 1, . . . ,M .
Introducing equation (24) to equation (8) in the mathematical

model presented in [1] the relation between the electric and magnetic
field on the cylindrical surface described on the post is obtained. This
relation is essential to calculate the modal scattering matrix of the
circuit as used in [1].

3. ESTIMATION OF NUMERICAL ERROR

All calculations were conducted on Matlab , 2000+ Athlon (1666-MHz)
personal computer (PC).

The precise investigation of the convergence of plane waves for
different radii R of interaction region was conducted in [2]. It was
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Table 1. Comparison of the percentage error δNS11 for the single post
configuration from Fig. 8.

¤
M = 4 5 6 7 8 9

K = 3 ¤[%] 2,295 -0,516 1,596 1,869 0,320 -0,033
4 ¤[%] 2,399 -0,243 1,721 1,717 0,132 -0,150
5 ¤[%] 2,416 -0,239 1,619 1,445 -0,085 -0,018
6 ¤[%] 2,418 -0,216 1,614 1,447 -0,048 0,070
7 ¤[%] 2,426 -0,213 1,603 1,437 -0,048 0,066
8 ¤[%] -70,49 -0,213 1,599 1,436 -0,041 0,074
9 ¤[%] 20,27 -0,213 1,600 1,437 -0,044 0,077
10 ¤[%] 4,925 -73,55 1,592 1,436 -0,041 0,081
11 ¤[%] 45,38 -41,95 1,592 1,437 -0,041 0,081

δ

δ
δ
δ
δ
δ
δ
δ
δ

concluded that while increasing the radius R, the number of harmonic
functions should also be increased to describe an excitation with the
required error.

For the structure investigated in this paper it is necessary to
show the estimation of numerical error for the scattering coefficients
assuming various number of eigenfunctions N and basis functions K.
It is convenient to use the waveguide structure where the convergence
of |S11|, |S21| for the fundamental mode can be shown for selected
configuration of the posts. In order to examine the convergence of the
solution the following error criteria are defined:

δNS11[%] =

∣∣SN11∣∣− ∣∣∣SN−1
11

∣∣∣∣∣SN11∣∣ δKS11[%] =

∣∣SK11∣∣− ∣∣∣SK−1
11

∣∣∣∣∣SK11∣∣
δNS21[%] =

∣∣SN21∣∣− ∣∣∣SN−1
21

∣∣∣∣∣SN21∣∣ δKS21[%] =

∣∣SK21∣∣− ∣∣∣SK−1
21

∣∣∣∣∣SK21∣∣
As an example the configuration of a single post presented in Fig. 8

is analyzed to show the effect of obtaining convergence for |S11| and
|S21|. The parameters of the investigated configuration: r1 = 1.5 mm,
R = 5 mm, ∆φ1,2 = 30◦, d = 5 mm; f = 12.25 GHz. The results are
presented in Tables 1, 2, 3 and 4.

From the results one can observe the correlation between the
expansion numbers of eigenfunctions and basis functions. The choice
of the basis function number K is limited by the chosen number of
eigenfunctions N = 2M + 1. If their ratio K/N is bigger than one,
the error increases rapidly. It is also worth noticing that the choice
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Table 2. Comparison of the percentage error δKS11 for the single post
configuration from Fig. 8.

¤
K = 4 5 6 7 8 9 10 11

M = 3 ¤[%] 0,307 -0,093 0,066 -0,027 42,78 -113,8 51,58 -112,8
4 ¤[%] 0,413 -0,076 0,068 -0,019 0,027 -0,008 42,26 -22,26
5 ¤[%] 0,684 -0,072 0,091 -0,015 0,027 -0,008 0,015 -0,004
6 ¤[%] 0,810 -0,176 0,086 -0,026 0,022 -0,007 0,007 -0,004
7 ¤[%] 0,657 -0,453 0,088 -0,037 0,022 -0,007 0,007 -0,004
8 ¤[%] 0,469 -0,671 0,125 -0,037 0,029 -0,011 0,011 -0,004
9 ¤[%] 0,352 -0,539 0,214 -0,041 0,037 -0,007 0,015 -0,004

δ

δ

δ
δ

δ

δ

δ

Table 3. Comparison of the percentage error δNS21 for the single post
configuration from Fig. 8.

¤
M = 4 5 6 7 8 9

K = 3 ¤[%] -0,535 0,110 -0,129 -0,131 -0,019 0,003
4 ¤[%] -0,544 0,089 -0,140 -0,122 -0,003 0,012
5 ¤[%] -0,545 0,090 -0,133 -0,099 0,014 0,002
6 ¤[%] -0,546 0,088 -0,133 -0,099 0,011 -0,005
7 ¤[%] -0,547 0,088 -0,131 -0,099 0,011 -0,005
8 ¤[%] 7,168 0,088 -0,131 -0,099 0,010 -0,005
9 ¤[%] -1,487 0,088 -0,132 -0,098 0,010 -0,005

10 ¤[%] -1,203 7,939 -0,131 -0,099 0,010 -0,005
11 ¤[%] -5,954 4,199 -0,131 -0,099 0,010 -0,005

δ
δ

δ

δ
δ

δ

δ

δ
δ

Table 4. Comparison of the percentage error δKS21 for the single post
configuration from Fig. 8.

¤

K = 4 5 6 7 8 9 10 11

M = 3 ¤[%] -0,022 0,006 -0,004 0,002 -8,313 8,529 -8,834 8,214
4 ¤[%] -0,030 0,005 -0,005 0,001 -0,002 0,001 -8,529 3,904
5 ¤[%] -0,051 0,006 -0,007 0,001 -0,002 0,001 -0,001 0,000
6 ¤[%] -0,062 0,013 -0,007 0,003 -0,002 0,000 0,000 0,000
7 ¤[%] -0,053 0,036 -0,007 0,003 -0,002 0,001 -0,001 0,000
8 ¤[%] -0,037 0,053 -0,009 0,003 -0,003 0,001 -0,001 0,000
9 ¤[%] -0,028 0,043 -0,017 0,003 -0,003 0,001 -0,001 0,000

δ

δ
δ

δ

δ
δ

δ
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of number of basis function and eigenfunctions is determined by the
configuration of the post. To be precise it depends on the angular
aperture of the Region II (see Fig. 1) between the metallic strips.

For presented examples it can be assumed that it is sufficient to
select the M = 9 of eigenfunctions and K = 9 of basis functions
to obtain a good convergence. It should be pointed out here that
for other configurations (not presented in this paper) the number of
eigenfunctions and basis functions has to be chosen individually.

The axial components of the electric field in Region II defined by
equation (12) strongly depends on the θi angle, which determines the
angular aperture of this region. For the value of θi angle approaching
π the order of Bessel functions Jli and Yli defined by

li =
nπ

2(π − θi)
(26)

increases, causing the value of Bessel functions to decrease. Assuming
the chosen number of eigen-functionsM and a high value of θi angle the
numerical precision used in MATLAB is not sufficient for calculation,
causing the calculated value of Bessel functions for higher modes (high
value of n in equation (26)) to equal zero and resulting in calculation
errors.

To overcome those errors one can use the tangential approxima-
tions of Bessel functions for high value index [12], or assume the bound-
ary computable value of Bessel function for higher modes. These oper-
ations do not introduce any additional errors and let the calculations
run.

Table 5 depicts the boundary values of Bessel function, its
derivative and their ratio versus frequency for single bow-tie post
configuration with θ1 = 17/18π and r = 4.5 mm. The last computable
value of Bessel function is for m = 7; (n = 2m+ 1 = 15), which gives
l = 135.

4. NUMERICAL AND MEASURED RESULTS

In order to check the validity of the presented approach, our
simulations of open structures were compared with the calculations
of the commercial FDTD simulator Quick Wave 3D [13], and for
waveguide structures also with our own measurements.

4.1. Multipost Plane Wave Scattering

A few configurations of the posts with a metallic and a dielectric rod
were simulated. Figs. 2 and 3 show the calculations of the scattering by
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Table 5. Boundary value of Bessel function Jl(k0r) for l = 135,
r = 4.5 mm.

f [GHz] 9 9 5 10 10 5 11

J (k0r) 0 1905 ¤10� 280 0 2817 ¤10� 277 0 2864 ¤10� 274 0 2077 ¤10� 271 0 1109 ¤10� 268

J (k0r) 0 1364 ¤10� 280 0 1911 ¤10� 277 0 1846 ¤10� 274 0 1275 ¤10� 271 0 0650 ¤10� 268

J J 0 7162 0 6785 0 6446 0 6139 0 5860

f [GHz] 11 5 12 12:5 13

J (k0r) 0 4477 ¤10� 266 0 1400 ¤10� 263 0 3463 ¤10� 261 0 6900 ¤10� 259

J (k0r) 0 2509 ¤10� 266 0 752 ¤10� 263 0 1786 ¤10� 261 0 3421 ¤10� 259

J J 0 5605 0 5371 0 5156 0 4958
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Figure 2. Normalized electric field characteristic for scattering by
a single post with a) metallic b) dielectric (εr1 = 5) inner rod.
Dimensions of the post are: r2 = 3 mm, R = 10 mm, φ′2 = 0◦, φ1 = 60◦,
φ′1 = 180◦, φ2 = 240◦.
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Figure 3. Normalized electric field characteristic for scattering by a
single post with dielectric (εr1 = 5) inner rod, for different radius R
of the strips. Dimensions of the post are: r2 = 3 mm, φ′3 = −10◦,
φ1 = 10◦, φ′1 = 110◦, φ2 = 130◦, φ′2 = 230◦, φ3 = 250◦, ξ = 0◦; b)
R = 4 mm; c) R = 10 mm.
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Figure 4. Normalized electric field characteristic for scattering by a
single post described in Fig. 3, for several rotation angle ξ. a) ξ = 20◦,
b) ξ = 40◦, c) ξ = 60◦.

a single element. Normalized electric field characteristic for scattering
by a single post from Fig. 2a is calculated for a metallic post. The
characteristic in Fig. 2b is made for the post with dielectric inner rod
εr = 5. The radius of the rod is r2 = 3 mm and the segments of metallic
cylinder R = 10 mm. The calculations were conducted on frequency
f = 15 GHz. From comparison of the scattering characteristics it is
evident that their shapes are similar in both cases, hence the strips have
the most significant in uence on the characteristic shape. The results
of scattering by a configuration of dielectric post with three strips
are presented in Fig. 3, where the in uence of the strips dimensions
is clearly evident. As shown in Fig. 4 while turning the post the
characteristic is significantly changed, as it was expected. It is worth
noticing that our results well agree with those obtained from the FDTD
simulations.

In Fig. 5 the plane wave scattering by configurations of four and
five posts for two frequencies of excitation wave are presented. One
can see that for both frequencies the removal of central post from the
investigated array causes the side lobes to appear. A good agreement
obtained with the FDTD method calculations proves the correctness of
the analysis and verifies the accuracy of the developed computer code.

A scattering by linear arrays of five posts is shown in Fig. 6. As
can be seen from the results by adding two metallic strips to each
cylinder and rotating the post symmetrically by an angle ξ1 and ξ2
one obtains the reduction of the back lobe observed in the previous
configurations.

Similar effect concerning the reduction of sidelobs was observed
during the investigation of the array of five horizontally placed
dielectric posts (εr = 10) with three strips (see Fig. 7).
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Figure 5. Normalized energy characteristics for scattering by a
configuration of four and five posts with dielectric rod (εr = 5) for two
frequencies a) f = 15 GHz, b) f = 20 GHz. The dimensions of the posts
are r2 = 2 mm, R = 3 mm. The posts placement: d1 = (−10; 0) mm,
d2 = (10; 0) mm, d3 = (0; 10) mm, d4 = (0;−10) mm, d5 = (0; 0) mm.

4.2. Waveguide Structures

The single and double post configurations in WR-90 waveguide were
simulated and measured. The experiment was performed using Wiltron
37269A (Network Analyzer). All inserted posts extend the entire
height of the waveguide.

Figs. 8–13 show the calculations of the frequency re ection |S11|
and transmission |S21| coefficient characteristics for single and double
post configurations. The comparison with the measurement (Figs.
8 and 9) and the results obtained from Quick Wave 3D simulator
(Figs. 8–11) is presented. As can be seen from these figures a good
agreement was obtained with both methods and the measure- ment.

The results for a single post with two strips and conducting rod for
several displacements d from the waveguide axis are shown in Fig. 8.
As can be seen from this figure, while increasing the distance of the
post from the waveguide axis the resonance frequency decreases. Fig. 9
describes the results for displaced post with dielectric central cylinder
of εrl = 28 with and without the dielectric cylinder of εru = 5 placed at
the opposite side of the waveguide. A significant variation of resonance
frequency is observed while inserting an additional dielectric resonator.
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Figure 6. Normalized energy characteristics for scattering by an
array of five posts with dielectric rod (εr = 5). The dimensions
of the posts are r2 = 0.1λ, R = 0.2λ. The distance between the
elements is d = 0.75λ. a) dielectric cylinders; b) dielectric cylinders
with horizontally placed metallic strips ∆φ = 12◦; c) 90◦ rotated post;
d) rotated post: ξ1 = −42◦, ξ2 = 30◦

Fig. 10 presents the re ection coefficients |S11| for the post placed in
the center of the waveguide junction for several turn angles ξ. As can
be seen, the resonance frequency increases with the increase of the ξ
angle. The re ection coefficients |S11| for a configuration of two posts
with three strips is shown in Fig. 11. Slight changes of the transmission
coefficient |S21| are observed with the turning of the post with three
strips as illustrated in Fig. 12. The frequency responses of the post with
three strips for two different placements of the strips are described in
Fig. 13.

4.2.1. Propagation in Periodically Loaded Waveguide

Having calculated the modal scattering matrix of a single cylindrical
section, there is a possibility of using it in a waveguide periodically
loaded with investigated post forms. The propagation constants
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Figure 7. Normalized energy characteristic for scattering by an array
of five posts a) dielectric cylinders (εr1 = 10) b) dielectric cylinders
with three strips. The dimensions single post is r2 = 5 mm, R = 7 mm.
The distance between the elements is d = 20 mm, f = 10 GHz.
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Figure 8. Frequency responses of single metallic post with two strips
for the various displacement: r2 = 1.5 mm; R = 5 mm; θ = 70◦;
angular aperture of the strips is ∆φ = 60◦; d = 5 mm, 6 mm.
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Figure 9. Frequency responses of double post configu- rations: upper
post: r2 = 2 mm; εru = 1 and 6; lower post: r2 = 2 mm; R = 4 mm;
dl = −7 mm; du = 9.43 mm; εrl = 28; angular aperture of the strips is
∆φ = 42.5◦.
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Figure 10. Frequency response of a single post with two conducting
strips for the various ξ angle: r = 3 mm; R = 4 mm; ε = 5; angular
aperture of the strips is ∆φ = 20◦; a) ξ = 0◦, b) ξ = 60◦, c) ξ = 90◦.
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Figure 12. Transmission coefficients of a post with three conducting
strips for the various angle ξ: r = 4 mm; R = 5 mm; ε = 5; angular
aperture of the strips is ∆φ = 20◦; a) ξ = 140◦, b) ξ = 120◦, c) ξ = 90◦.
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Figure 13. Frequency responses of a post with three conducting strips
for the various angle ξ of strips placements: r = 4 mm; R = 5 mm;
ε = 5; angular aperture of the strips is ∆φ = 20◦; a) ξ = 0◦, b)
ξ = 30◦.

Vn Vn+ 1

In In+ 1

p

Figure 14. Schematic representation of a waveguide structure
periodically loaded by bow-tie cylindrical posts.

of periodic structures will be determined from eigenvalues of a
characteristic matrix, as was proposed in [14].

Fig. 14 shows the periodic waveguide structure loaded with
investigated posts shapes. The period of the structure is p. The wave is
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Figure 15. Single periodic section of the length p.

assumed to propagate in the +z direction. For infinitely long structure
the Floquet condition describes the connection between adjacent cells.
The voltage and current at the nth terminals differ from the voltage
and current at the (n+ 1)th terminals by the propagation factor e−γp,
and can be written as follows

Vn+1 = Vne
−γp

In+1 = Ine
−γp (27)

The scattering matrix of a single periodic section Scof the length p
is calculated as a cascade connection of two segments of the empty
waveguide of the length p/2 and the previously calculated cylindrical
section described by matrix S, as is shown in Fig. 15.

Using the relation (27) the signals an, bn, an+1 and bn+1 defining
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the scattering matrix of periodic section [Sc] can be written as

an = Vn + In = v

bn = Vn − In = w

an+1 = (Vn − In)e−γp = we−γp

bn+1 = (Vn + In)e−γp = ve−γp (28)

Introducing the above relations to the definition of scattering
parameters of a single periodic section one obtains the eigenvalue
equation of the form[

I −Sc
11

0 −Sc
21

] [
w
v

]
+ λ

[ −Sc
12 0

−Sc
22 I

] [
w
v

]
= 0 (29)

where λ = e−γp, and γ is the propagation constant. I is the identity
matrix of order N × N. Sc

11, Sc
12, Sc

21, and Sc
22 are submatrices of

order N×N of the modal matrix Sc.
As an example, two periodic structures composed of six sections

of a double cylindrical post configuration were analyzed. Figs. 16,
17 represent the plot of propagation constant βp as a function of
k0p and the frequency responses of the periodic structure. The
results illustrated in k0p−βp diagrams show passbands and stopbands
formed in both periodic structures. Those bands are observed for the
structures containing six and twenty sections of cylindrical posts in
Figs. 16b–16c and 17b–17c, which present the scattering parameters.
The number of poles in each band depends on the number of cylindrical
sections P and equals P–1.
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Figure 16. Periodic structure composed of sections of two dielectric
cylinders of radii r1,2 = 2 mm; ε1,2 = 20; d1 = [0,−8] mm, d2 =
[0, 8] mm; period p = 41 mm; a) k0 − β diagram; b) Frequency
responses for six cylindrical sections; c) Frequency responses for twenty
cylindrical sections.



Scattering by parallel cylindrical posts 327

a)
¤pi ¤pi/2 0 pi/2 pi
3

3.5

4

4.5

5

5.5

6

6.5

¤�   �    � � �   �

k 0 � 
p

b)
8 10 12 14 16 18 20

¤60

¤50

¤40

¤30

¤20

¤10

0

|S
11

|, 
|S

21
|[d

B
]

f [GHz]

|S11|
|S21|

c)
8 10 12 14 16 18 20

¤60

¤50

¤40

¤30

¤20

¤10

0

|S
11

|, 
|S

21
|[d

B
]

f [GHz]

|S11|
|S21|

    � 
−π < β     < π                . p− −

Figure 17. Periodic structure composed of sections of two posts with
dielectric rod and three strips. Configuration of the posts: r1,2 = 2 mm;
R1,2 = 2.5 mm; ε1,2 = 25; d1 = [0,−7] mm, d2 = [0, 7] mm; period p =
32 mm; a) k0 − β diagram; b) Frequency responses for six cylindrical
sections; c) Frequency responses for twenty cylindrical sections.
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Figure 18. a) Cross section of the propeller post with a dielectric
central cylinder b) Cross section of the bow-tie post with a dielectric
central cylinder; c) Cross section of the bow-tie post with the
conducting central cylinder; d) Cross section of the post with one
segment of conducting cylinder.

5. CONCLUSION

The analysis for scattering in an open area and a waveguide junction
by a novel structure of a dielectric- metallic post has been developed
using a combination of a modified iterative scattering procedure and
an orthogonal expansion method. The validity and accuracy of
the method have been checked by comparing our results with the
ones obtained from the FDTD method and measurements. Our
procedure works much faster than the alternative numerical methods
(FDTD, FEM). Unlike in FDTD simulator, the computation time is
independent of the kind of dielectric material the post is made of.
When the dielectric resonators are of high value of εr the computation
is up to 100 times faster than the calculations of the FDTD simulator.
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The displacement, as well as the rotation of a post, vary the electrical
characteristic allowing for some adjustments in open structures of
the radiation characteristics shape and in waveguide structures of the
circuits resonance frequency, making these configurations suitable for
tunable filters.

APPENDIX A.

A.1. Dielectric Cylindrical Post with Three Metallic Strips

A cross section of the post with a dielectric rod is presented in Fig. 18a.

A.1.1. Matrices Mij from Equation (19)

Mii = Y−1
li

(k2r2)
(
U0(i)Lii − Jli(k2r2)

)
Mij = Y−1

li
(k2r2)U0(i)Lij (A1)

for i, j = 1, 2, 3. Assuming p = ((i)modI) + 1, q = ((i+ 1)modI) + 1
and r = (i − j)modI where I = max(i) (for the propeller cylindrical
post I = 3) the matrix L is defined

Lii =
(
E(i,q) −G(q)A(i)

1 + E(p,q)B(i)
1

)−1(
G(q)A(i)

2 −E(p,q)B(i)
2

)
Lij =

(
E(i,q) −G(q)A(i)

1 + E(p,q)B(i)
1

)−1
C(i)

r

C(i)
1 = G(q)A(i)

3 + E(p,q)B(i)
3

C(i)
2 = R(q)

A(i)
1 =

(
E(q,p)+G(p)

(
E(p,i)

)−1
E(q,i)

)−1(
G(p)

(
E(p,i)

2

)−1
G(i)−E(i,p)

)

A(i)
2 =

(
E(q,p) + G(p)

(
E(p,i)

)−1
E(q,i)

)−1

G(p)
(
E(p,i)

)−1
R(i)

A(i)
3 =

(
E(q,p) + G(p)

(
E(p,i)

)−1
E(q,i)

)−1

R(p)

B(i)
1 =

(
E(p,i)

)−1(
G(i) −E(q,i)A(i)

1

)
B(i)

2 =
(
E(p,i)

)−1(
R(i) −E(q,i)A(i)

2

)
B(i)

3 =
(
E(p,i)

)−1
E(q,i)A(i)

3
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and

G(i) = U0(i)TY′li(k2r2)Y−1
li

(k2r2)U0(i)

−Uφ(i)T∗X′m(k1r2)X−1
m (k1r2)Uφ(i)

R(i) = U0(p)T
(
J′li(k2r2)−Y′li(k2r2)Y−1

li
(k2r2)Jli(k2r2)

)
E(ij) = Uφ(j)T∗X′m(k1r2)X−1

m (k1r2)Uφ(i)

where
Xm(k1ρ) = Jm(k1ρ)−

Jm(k1r1)
Ym(k1r1)

Ym(k1ρ)

The matrices Jli(kr2), Yli(kr2) are diagonal of the dimension
N ×N , the matrix Xm(kr2) is diagonal — (2M + 1)× (2M + 1). The
matrices K(i), G(i) and E(ij) are square (K ×K), the matrices L, N(i)

and R(i)—K × (2M + 1).
The following notations were introduced for convenience:

U
0(i)
nk =

∫ 2(π−θi)

0

sin
[
kπ(φi)

2(π − θi)

]
sin

[
nπφi

2(π − θi)

]
3
√

(φi) [2(π − θi)− (φi)]
dφi (A2)

U
φ(i)
mk = e−jmφ2i

∫ 2(π−θi)

0

sin
[
kπ(φi)

2(π − θi)

]
e−jmφ

i

3
√

(φi) [2(π − θi)− (φi)]
dφi (A3)

where φi = φ − φi for i = 1, 2, 3, n = 1 . . . N , m = −M . . .M ,
k = 1 . . .K.

A.1.2. Matrices Pij, Wij, Qi and Q4 from the Equations (20) and
(21)

Pii =
[(

Jli(k2R) + Yli(k2R)Mii

)
+ Yli(k2R)MiqO

(i)
1

−Yli(k2R)MiqS1

]−1

U0(i) (A4)

Pij =
[(

Jli(k2R) + Yli(k2R)Mii

)
+ Yli(k2R)MiqO

(i)
1

−Yli(k2R)MiqS1

]−1

YliT
(i)
r (A5)
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Wij =
I∑

k=1

MikPkj (A6)

T(i)
1 = MiqO

(i)
2 −MipS

(i)
2

T(i)
2 = MipS

(i)
3 −MiqO

(i)
3

O(i)
1 =

[(
Jlq + YlqMqq

)
−YlqMqp

(
Jlp + YlpMpp

)−1
YlpMpq

]−1

(
YlqMpq

(
Jlp + YlpMpp

)−1
YlpMpi −YlqMqi

)

O(i)
2 =

[(
Jlq + YlqMqq

)
−YlqMqp

(
Jlp + YlpMpp

)−1
YlpMpq

]−1

YlqMpq

(
Jlp + YlpMpp

)−1
U0(p)

O(i)
3 =

[(
Jlq+YlqMqq

)
−YlqMqp

(
Jlp+YlpMpp

)−1
YlpMpq

]−1

U0(p)

S(i)
1 =

(
Jlp + YlpMpp

)−1
Ylp

(
Mpi + MpqO

(i)
1

)
S(i)

2 =
(
Jlp + YlpMpp

)−1(
U0(p) + YlpMpqO

(i)
2

)
S(i)

3 =
(
Jlp + YlpMpp

)−1
YlpMpqO

(i)
3

Qi = J−1
m (k0R)Uφ(i)

Q4 = J−1
m (k0R)H(2)

m (k0R)

The matrices Jli(kR) and Yli(kR) are diagonal of the dimension
N ×N , Jm(kR) and H(2)

m (kR) are diagonal matrices of the dimension
(2M + 1)× (2M + 1).

A.1.3. Matrices D from the Equations (23)

Di =
[
G̃(i) − Ẽ(p,i)K(i)

1 − Ẽ(q,i)N(i)
1

]−1(
R̃(i) + Ẽ(p,i)K(i)

2 + Ẽ(q,i)N(i)
2

)
(A7)

where

K(i)
1 =

[
G̃(q)

(
Ẽ(q,p)

)−1
G̃(p)−Ẽ(p,q)

]−1(
G̃(q)

(
Ẽ(q,p)

)−1
Ẽ(i,p)+Ẽ(i,q)

)
(A8)
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K(i)
2 =

[
G̃(q)

(
Ẽ(q,p)

)−1
G̃(p)−Ẽ(p,q)

]−1(
G̃(q)

(
Ẽ(q,p)

)−1
R̃(p)+R̃(q)

)
(A9)

N(i)
1 =

(
Ẽ(q,p)

)−1(
G̃(p)K(i)

1 − Ẽ(i,p)
)

(A10)

N(i)
2 =

(
Ẽ(q,p)

)−1(
G̃(p)K(i)

2 − R̃(p)
)

(A11)

G̃(i) = U0(i)T
(
J′li(k2R)Pii + Y′li(k2R)Wii

)
−Uφ(i)T∗J′m(k0R)Jm(k0R)−1Uφ(i)

R̃(i) = −Uφ(i)T∗
(
J′m(k0R)Jm(k0R)−1Hm(k0R)−H′m(k0R)

)
Ẽ(ij) = −U0(j)T

(
J′lj(k2R)Pji + Y′lj(k2R)Wji

)
−Uφ(j)T∗J′m(k0R)Jm(k0R)−1Uφ(i)

for i, j = 1, 2, 3. The matrices G(i) and E(i) are of the dimension K×K,
the matrix R(i) −K× (2M + 1).

A.2. Dielectric Cylindrical Post with Two Metallic Strips

For the post structure (see Fig. 18b) there are two sections in Region IIi
(i = 1, 2). The equation (19) reduces to:[

c1′

c2′

]
=

[
M11 M12

M21 M22

] [
c1

c2

]
(A12)

The matrices M are defined similarly to those for the post with three
strips (A1) with I = 2.

A.3. Metallic Cylindrical Post with Strips

For the conducting central cylinder used in the structure (see Fig. 18c)
the fields in Region IIi are independent causing the matrices Mii form
(19) to take diagonal form and Mij to zero.

Mii = −diag
(
Y −1
li

(k2r2)Jli(k2r2)
)M
m=−M

(A13)

for i = 1, 2, 3.
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A.4. The Post with Single Metallic Strip

For the single conducting strip attached to the post (see Fig. 18d) the
axial component of the electric field in Region II EII

z is described by
(12) with i = 1. In this connection only the matrix M11 exist in
equation (19) describing the relation between unknown coefficients c1

′

and c1. For the dielectric central cylinder the matrix M11 is calculated
from equation (A1), and for the conducting rod from equation (A13).
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