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Abstract—The scattering by an anisotropic impedance interior right-
angled wedge is analyzed when the principal anisotropy directions
on the two faces are parallel and perpendicular to the edge. The
problem is first approached by directly applying geometrical optics
(GO); this allows us to identify the conditions under which the
edge diffracted contribution vanishes. For those configurations not
satisfying the above conditions, a perturbative technique, based on
the Sommerfeld-Maliuzhinets method, is developed to determine an
approximate edge diffracted field solution, valid when the normalized
surface impedances on the anisotropic faces assume small values. The
perturbative corrections to the field are asymptotically evaluated in
the context of the Uniform Geometrical Theory of Diffraction (UTD).
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1. INTRODUCTION

Electromagnetic scattering from edged anisotropic impedance surfaces
is a topic of remarkable interest for a wide class of applications as,
for instance, the design of high-frequency antennas [1], polarizing
structures [2], and radar calibrated targets [3].

In the framework of a standard ray technique, the geometry of
the actual scattering object can be locally approximated by resorting
to canonical shapes, whereas its electromagnetic properties can be
accounted for by adopting suitable approximate impedance boundary
conditions (IBC’s) [4]. IBC’s constitute a very useful approximation for
approaching an extended variety of engineering problems, since they
allow to evaluate the material effects avoiding the calculation of the
fields within the material itself. However, rigorous solutions for plane
wave scattering by non-perfectly conducting wedges illuminated at
oblique incidence have been derived only for some specific geometrical
and electrical wedge configurations [4, 5]. Indeed, a major difficulty
in solving canonical electromagnetic diffraction problems concerning
impedance wedges consists in the fact that the IBC’s holding on
the wedge faces couple the electric and magnetic field components
parallel to the edge, which are commonly used as potential functions
to express all the other field components. To overcome this problem,
the determination of diffraction coefficients for edges in non-perfectly
conducting surfaces has been pursued by several approaches, either in
a purely numerical way as, for instance, by the method of moments [6]
and by the parabolic equation method (PEM), the latter pioneered by
Malizhinets [7] and subsequently improved and extended in [8–10], or
by resorting to perturbation methods [11–14].
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Among unsolved cases, a configuration of great interest is
represented by an interior right-angled wedge, characterized by tensor
surface impedance faces with their principal anisotropy axes parallel
and perpendicular to the edge. It has been shown [15] that, when
the tensor surface impedances relevant to the wedge faces satisfy
the compatibility relation introduced by Dybdal et al. in [16], the
exact solution of the above problem can be written in terms of just
geometrical optics contributions. It is worth observing that the work
in [16] is relevant to the analysis of propagation in a rectangular
waveguide with anisotropic impedance walls.

As a preliminary step, we show that the Dybdal compatibility
relation [16] can be derived by a GO analysis of the problem, since,
as far as it holds, the edge diffracted contribution exactly vanishes.
Then, an approximate analytical solution for skew incidence is provided
when the edge diffracted contribution does not vanish, no rigorous
solution having been presented in the literature so far. This is
accomplished by resorting to a perturbation technique based on
the Sommerfeld-Maliuzhinets method [17], considering the perfectly
conducting case as the unperturbed configuration. A similar approach
has been applied in [15], the small parameter in both solutions
consisting of the normalized surface impedance, but exploiting the two-
dimensional Green’s function instead of the Sommerfeld-Maliuzhinets
representation. In this paper, Sommerfeld-type approximate integral
representations for the longitudinal components of the total field
are determined by expanding in the form of a Taylor series the
corresponding spectral functions with respect to the normalized
surface impedances. All terms up to third order are taken into
account, differently from [15] where only terms up to second order
are considered. As a result, improved accuracy is achieved at the cost
of a slight increase in analytical and computational complexity.

The paper has been organized as follows. The problem is
formulated in Section 2, and the conditions under which the edge
diffracted contribution vanishes are determined in Section 3 by
directly applying GO. Then, in Section 4, suitable approximate
integral representations for the longitudinal components of the fields
are introduced. The perturbative corrections to the field are
asymptotically evaluated in the context of the Uniform Geometrical
Theory of Diffraction (UTD) [18] to yield approximate analytical
expressions for the edge diffracted field contributions. Finally, samples
of numerical results are presented in Section 5 in order to check the
accuracy and convergence of the proposed pertubative solution and to
discuss its limits of applicability. The results are compared with those
obtained by the parabolic equation method [8].
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Figure 1. Geometry of the scattering problem.

2. FORMULATION OF THE SCATTERING PROBLEM

The geometry for the scattering problem is depicted in Fig. 1. The
anisotropic impedance wedge has its edge along the z-axis of a
cylindrical reference frame. The exterior wedge angle is nπ, where
n = 1/2 for the right-angled wedge case we will refer to. The wedge
is illuminated by an arbitrarily polarized plane wave, impinging from
a direction determined by the two angles β ′ and φ ′ (β ′ = π/2 at
normal incidence). A time harmonic dependence exp(jωt) is assumed
and suppressed. The longitudinal components of the incident field can
be expressed as[

Ei
z

ζH i
z

]
=

[
eiz
hi

z

]
e−jkz cos β ′

ejktρ cos(φ−φ ′), (1)

where k and ζ are the wave number and intrinsic impedance of free
space, respectively, kt = k sinβ ′ is the transverse component of the
wave vector and 0 � φ ′ � π/2. The observation point is located
at P ≡ (ρ, φ, z). Since the electric properties of the wedge are
supposed to be independent of z, the scattered field exhibits the same
exp(−jkz cosβ ′) dependence on z as the incident field, that will be
understood in the following. Two different anisotropic IBC’s hold
on the wedge faces; the principal anisotropy axes are assumed to be
parallel and perpendicular to the edge so that the IBC’s assume the
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following form:[
Ez

ε0,nEρ

]
=

[
η0,n

z 0

0 η0,n
ρ

] [−ε0,nζHρ

ζHz

]
, φ = 0, nπ, (2)

with ε0 = 1 and εn = −1. For passive surfaces the elements of the
above impedance matrices, normalized to the free-space characteristic
impedance, must satisfy the conditions �[η0,n

z ] � 0 and �[η0,n
ρ ] � 0.

The longitudinal components [Ez, ζHz] of the total field, which,
as already mentioned, can be used as potential functions to express all
the other field components, are solution to the Helmholtz equation(
∇2

t + k2
t

)
[Ez, ζHz] = 0 and must satisfy the radiation and edge

conditions. By expressing the IBC’s (2) in terms of [Ez, ζHz], a set
of coupled partial differential equations is obtained:[

1
ρ

∂

∂φ
∓ j

η0,n
z

kt sinβ ′
]
Ez − cosβ ′ ∂

∂ρ
(ζHz) = 0, (3a)[

1
ρ

∂

∂φ
∓ jη0,n

ρ kt sinβ ′
]

(ζHz) + cosβ ′ ∂
∂ρ
Ez = 0. (3b)

However, when the incidence direction of the plane wave lies on the
plane perpendicular to the edge (β ′ = π/2), the IBC’s decouple and
the problem reduces to a pair of equivalent scalar impedance wedge
problems, whose solution has been given by Maliuzhinets in [17] for
a wedge with an arbitrary exterior angle. In the above paper, it is
shown that for the geometrical configuration here under analysis the
total field coincides with that predicted by the only GO solution; the
latter consists of four plane waves representing: i) the incident field;
ii) two plane waves singly reflected by each face of the wedge; iii) a
doubly reflected plane wave.

3. GEOMETRICAL OPTICS SOLUTION

Let us first discuss the GO solution for the more general oblique
incidence case. The longitudinal field components of the electric and
magnetic fields can be written as the superposition of the incident field,
the field reflected from the face φ = 0, the field reflected from the face
φ = π/2, and the doubly-reflected field. The latter contribution is
made of two terms: i) the field first reflected from the face φ = 0 and
then from the face φ = π/2; ii) the field first reflected from the face
φ = π/2 and then from the face φ = 0. These fields have their own lit
regions that are separated by the boundary at φ = φ ′. This is actually
the only shadow boundary in the ninety-degrees angular sector here
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of interest, and the continuity of the GO solution at this boundary
depends on the properties of the double reflection matrix.

In particular, the fields singly-reflected from the faces φ = 0, π/2
can be expressed as:[

E0,n
z

ζH0,n
z

]
= R0,n

[
eiz
hi

z

]
ejε0,nktρ cos(φ+φ ′), (4)

where the entries of the reflection matrices R0,n =

[
Ree

0,n Reh
0,n

Rhe
0,n Rhh

0,n

]
are

given by

Ree
0,n =

{[
ε0,n sin (φ0,n) − sinβ ′

η0,n
z

] [
ε0,n sin (φ0,n) + η0,n

ρ sinβ ′]+

− cos2β ′ cos2(φ0,n)
} /

∆0,n,

Reh
0,n = − cosβ ′ sin

(
2φ ′) /

∆0,n,

Rhh
0,n =

{[
sinβ ′

η0,n
z

+ ε0,n sin (φ0,n)
] [
ε0,n sin (φ0,n) − η0,n

ρ sinβ ′]+

− cos2β ′ cos2(φ0,n)
} /

∆0,n,

Rhe
0,n = −Reh

0,n

(5)

and

∆0,n =
[
sinβ ′

η0
z

+ ε0,n sin (φ0,n)
] [
ε0,n sin (φ0,n) + sinβ ′η0

ρ

]
+ cos 2β ′ cos2 (φ0,n) .

(6)

Moreover, in (5) it has been set

φ0 = φ ′, φn = φ ′ − π

2
. (7)

The doubly-reflected field can be written as follows:[
E2r

z

ζH2r
z

]
=

[
U

(
φ− φ ′)Rn0 + U

(
φ ′ − φ

)
R0n

] [
eiz
hi

z

]
e−jktρ cos(φ−φ ′),

(8)
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where U(·) is the Heaviside unit step function and the double reflection
matrices can be expressed in terms of R0 and Rn by the following
relationships:

R0n = R
T

0 Rn, Rn0 = R
T

n R0 , (9)

with the apex “T” denoting the transpose of the matrix. It can be
shown that the GO solution only exhibits a discontinuity in the cross-
polar components of the doubly-reflected field when

R
T

0 Rn �= R
T

n R0 . (10)

Indeed, by subtracting the left and the right term in (10) we obtain:

R
T

0 Rn −R
T

n R0 =
2δ cosβ ′ sin (2φ ′) sin2 β ′

η0
zη

n
z ∆0∆n

[
0 −1
1 0

]
, (11)

where

δ = η0
ρη

n
z + ηn

ρ η
0
z − η0

zη
n
z . (12)

From (11), it directly follows that the co-polar components of the
doubly-reflected field are always continuous. Moreover, it is apparent
that the cross-polar components are continuous at normal incidence
(β ′ = π/2) and when δ = 0, that is, when the Dybdal compatibility
relation is met [16]. The above condition is apparently satisfied when
a face of the wedge is perfectly conducting; this can also be easily
verified by directly applying image theory. Moreover, the vanishing
of expression (12) is also obtained when: i) η0

ρ = 0, ηn
z = ηn

ρ ; ii)
η0

z = ηn
z = 0. As a consequence, it is seen that the asymptotic

evaluations of the rigorous spectral solutions proposed in [5] reduce,
in the latter cases, to the only GO contributions.

At oblique incidence and when the surface impedances do not
satisfy the condition δ = 0, an edge diffracted term is exhibited by
the total field; moreover, surface waves may be excited at the edge
and propagate along the faces of the wedge. We note that all the
GO contributions are continuous, with the exception of the cross-polar
component associated with the doubly reflected plane wave, which
exhibits a discontinuity at φ = φ ′. This discontinuity is proportional
to the parameter δ defined in (12). Consequently, when δ �= 0 an
edge diffracted contribution is needed to compensate for the above
discontinuity in the cross-polar component. In the case of a waveguide,
we observe that the validity of the Dybdal compatibility condition is
required to guarantee the existence of a discrete modal expansion for
the field inside the waveguide.
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Figure 2. Contours of integration on the complex α-plane.

4. AN APPROXIMATE UTD SOLUTION

A perturbative approach is proposed in this section in combination
with the Sommerfeld-Maliuzhinets method [17] to determine suitable
spectral representations for the total field, in the presence of an
anisotropic impedance interior right-angled wedge. These integral
expressions are then asymptotically evaluated in the framework of the
UTD.

According to the Maliuzhinets approach [17], [Ez, ζHz] can be
expressed in terms of the following spectral representations along the
Sommerfeld integration path γ = γ+ + γ− (Fig. 2):

[
Ez

ζHz

]
=

1
2πj

∫
γ

se
(
α+ φ− π

4

)
sh

(
α+ φ− π

4

)
ejktρ cos αdα. (13)

To satisfy the radiation condition, the spectral functions in (13)
must be regular in the strip |Re(α)| ≤ π/4, except for a first
order pole at α = φ ′ − π/4 accounting for the incident field.
Furthermore, in the same strip, the edge condition requires that
|[se(α), sh(α)] − [se(±j∞), sh(±j∞)]| < exp [−c |Im(α)]|, c > 0, in the
limit for |Im(α)| → ∞ [19].
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When the spectral representations in (13) are inserted into the
IBC’s in (3), the following set of coupled functional equations is
obtained:(
η0,n

z sinα− ε0,n sinβ ′) se(α+
0,n

)
+

(
η0,n

z sinα+ ε0,n sinβ ′) se(α−0,n

)
= η0,n

z cosβ ′ cosα
[
sh

(
α+

0,n

)
− sh

(
α−0,n

)]
,

(14a)(
sinα− ε0,nη

0,n
ρ sinβ ′) sh(

α+
0,n

)
+

(
sinα+ ε0,nη

0,n
ρ sinβ ′) sh(

α−0,n

)
= − cosβ ′ cosα

[
se

(
α+

0,n

)
− se

(
α−0,n

)]
,

(14b)

where

α±0,n =
(
±α− ε0,n

π

4

)
. (15)

These equations can not be solved rigorously. Nevertheless, in the
framework of a perturbative technique, under the hypothesis of small
but arbitrary surface impedances so that it can be written

η0,n
ρ,z = υξ0,n

ρ,z , (16)

with
∣∣∣ξ0,n

ρ,z

∣∣∣ of order unity and υ 
 1, we can seek for approximate
representations of the unknown spectral functions in the form of Taylor
series expansions with respect to the parameter υ. Considering only
terms up to the third order, we have the following expressions:

se(α) � se0(α) + υse1(α) + υ2se2(α) + υ3se3(α), (17a)

sh(α) � sh0(α) + υsh1(α) + υ2sh2(α) + υ3sh3(α). (17b)

By substituting (17) into the functional equations in (14) and equating
the coefficients of like powers of υ, a set of recursive decoupled
functional equations is obtained for [sei (α), shi (α)], with i = 0, 1, 2, 3
[13, 14]:

sei

(
α+

0,n

)
− sei

(
α−0,n

)
= ε0,nξ

0,n
z

{
sinα
sinβ ′

[
sei−1

(
α+

0,n

)
+ sei−1

(
α−0,n

)]
+

− cosα
tanβ ′

[
shi−1

(
α+

0,n

)
− shi−1

(
α−0,n

)]}
,

(18a)
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shi

(
α+

0,n

)
+ shi

(
α−0,n

)
= −ε0,n

{
ξ0,n
z

cosα
tanβ ′

[
sei−1

(
α+

0,n

)
+sei−1

(
α−0,n

)]
+

−
[
ξ0,n
ρ

sinβ ′

sinα
+ ξ0,n

z

cosβ ′ cosα
tanβ ′ tanα

] [
shi−1

(
α+

0,n

)
− shi−1

(
α−0,n

)]}
.

(18b)

where se,h−1(α) = 0. In particular, [se0(α), sh0(α)] are the spectral
functions relevant to the diffraction of a plane wave impinging on
a perfectly conducting wedge with TMz and TEz polarizations,
respectively, and are known in closed form [20]:

se0 (α) =
2 eiz sin (2φ ′)

sin (2α) + cos (2φ ′)
, sh0 (α) =

2hi
z cos (2α)

sin (2α) + cos (2φ ′)
. (19)

It is noted that in this case the total field reduces to the GO
field contributions only. Moreover, [se1(α), sh1(α)] and [se2(α), sh2(α)]
must satisfy inhomogeneous functional equations of the Maliuzhinets
type whose solutions can be derived in closed form through the
application of the modified Fourier transform introduced in [21].
Explicit expressions for [se1(α), sh1(α)] and [se2(α), sh2(α)] are given in
Appendices A and B, respectively. As far as se3(α) and sh3(α) are
concerned, closed form expressions can not be determined anymore;
suitable integral representations have been obtained by following a
procedure similar to that used in [13] and [14]. Indeed, the third-order
terms contain special integral functions that have the form of Tuzhilin
integrals [22]. However, the expressions for the third order terms are
very complicated and only their asymptotic approximations will be
provided in this paper. Attention is called to the fact that the higher
order terms of the expansion (17) are related to the derivatives of the
scattered field with respect to υ and not directly to the field. Thus,
they are not expected to individually fulfil the requirement descending
from the edge condition that applies to the spectra and, hence, to the
full series expansion (17) for |Im(α)| → ∞. Indeed, by truncating
the above expansion, the boundedness of the Sommerfeld transforms
might become questionable for some value of the parameter υ and,
in turn, the proper behaviour of the field in the vicinity of the edge
could not be reliably predicted. Nevertheless, this is not an issue
since this work aims at deriving analytical approximated expressions
to accurately estimate the electromagnetic field scattered by a right
angled anisotropic impedance wedge in the far zone. Furthermore, it
is worth noting that the higher order spectral functions are regular
in the strip |Re(α)| � π/4, since the pole singularities providing the
contribution of the incident field have been already accounted for in
[se0(α), sh0(α)].
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Introducing (17) in (13), the longitudinal components of the total
field [Ez, ζHz] are expressed in the form of a summation of Sommerfeld
integrals as[

Ez

ζHz

]
�

3∑
i=0

υi

2πj

∫
γ

sei
(
α+ φ− π

4

)
shi

(
α+ φ− π

4

)
ejktρ cos αdα. (20)

In particular, by applying the residue theorem, all the above integral
representations for the total field along the Sommerfeld integration
contour γ are reduced to the contributions of two integrals, defined
along the steepest descent paths SDP±π through the saddle points at
±π (see Fig. 2), and that of the residues of the poles of [sei (α), shi (α)],
i = 0, 1, 2, 3, which can be captured in the contour deformation process:[

Ez

ζHz

]
=

3∑
i=0

υi
∑

j

Res
{[
sei (α)
shi (α)

]
, α= αpij

}
ejktρ cos(αpij−φ+π/4) +

− 1
2πj

3∑
i=1

υi

∫
SDP±π

sei
(
α+ φ− π

4

)
shi

(
α+ φ− π

4

)
 ejktρ cos αdα.

(21)

The asymptotic evaluation of the higher order contributions to the field
will be discussed in detail in the following.

4.1. Residue Contributions

The spectral functions
[
sei (α), shi (α)

]
exhibit first-order pole singular-

ities of geometrical type whose residues provide the corrections to the
singly and doubly reflected field contributions. The locations of these
geometrical poles on the complex α-plane are:

α = αgo
0 = −φ− φ ′, α = αgo

n = π − φ− φ ′,

α = αgo
0n = −π − φ+ φ ′, α = αgo

n0 = π − φ+ φ ′.
(22)

The poles at αgo
0 and αgo

n , whose residues provide the corrections to the
field reflected from the face φ = 0 and φ = π/2, respectively, lie in the
strip |Re(α)| < π and, therefore, are always captured in the contour
deformation process. Conversely, the poles at αgo

0n and αgo
n0 can cross

the SDP’s for φ = φ ′ at the saddle points −π and π, respectively; the
corresponding residues yield the corrections to the doubly reflected
field. Thus, the latter residues must be included in the asymptotic
solution only when φ < φ ′ and φ > φ ′, respectively.
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Since the locations of the poles of the spectral functions are the
same regardless of their order, the residue contributions can be written
in general as:

Res


sei

(
α+ φ− π

4

)
shi

(
α+ φ− π

4

)
 ejktρ cos α, α = αgo

t

 =

[
r e i
t

r h i
t

]
ejktρ cos(αgo

t ),

(23)

where i = 1, 2, 3 and re, h i
t represents the residue of sei (α) or shi (α)

associated with the pole αgo
t , t = 0, n, 0n, n0. The contributions in

(23) correspond to the i-th order terms in a series expansion of the
GO solution with respect to υ. More precisely, the residue expressions
in (23) are proportional to the i-th derivatives with respect to υ of the
singly and doubly-reflected electric and magnetic fields.

4.1.1. First-Order Residue Contributions

Explicit expressions for the residue of the first-order corrections are:

re10 =
2ξ0z

sinβ ′
(
eiz sinφ ′ − hi

z cosβ ′ cosφ ′) ,
re1n =

2ξnz
sinβ ′

(
eiz cosφ ′ + hi

z cosβ ′ sinφ ′) ,
re10n = re1n0 = −

(
re10 + re1n

)
,

(24)

and

rh1
0 = 2ξ0z cosφ ′ cotβ ′ eiz − 2K0 (φ0)hi

z,

rh1
n = −2ξnz sinφ ′ cotβ ′eiz − 2Kn (φn)hi

z,

rh1
0n = rh1

n0 = rh1
0 + rh1

n .

(25)

In (25)

K0,n(α) =
ε0,n

sinα
(
ξ0,n
ρ sinβ ′ + ξ0,n

z cosβ ′ cotβ ′ cos2 α
)
, (26)

whereas φ0,n have been defined in (7). These corrections behave
continuously at the doubly reflected field shadow boundary (φ = φ ′);
hence, it is expected that the corresponding spectral representations
do not provide any diffracted field contribution.
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4.1.2. Second-Order Residue Contributions

As far as the second-order correction spectral functions are concerned,
the residue expressions can be written as follows:

re20 = − L0

4 cosφ ′ ,

re2n = − Ln

4 sinφ ′ ,

re20n = −
(
re20 + re2n

)
+

L̂0

cosφ ′ ,

re2n0 = −
(
re20 + re2n

)
+

L̂n

sinφ ′ ,

(27)

and

rh2
0 =

M0

4 sinφ ′ ,

rh2
n = − Mn

4 cosφ ′ ,

rh2
0n = rh2

0 + rh2
n +

M̂0

sinφ ′ ,

rh2
n0 = rh2

0 + rh2
n − M̂n

cosφ ′ .

(28)

The constants appearing in (27) and (28) are defined by

L0,n = L1
0,n sin2 (φ0,n) + L2

0,n sin2
(
2φ ′)

+ L3
0,n cos2 (φ0,n) + L4

0,n cos4 (φ0,n) ,

L̂0,n =
[
L5

0,n + L6
0,n sin2 (φ0,n)

]
cos2 (φ0,n) ,

M0,n =M1
0,n +M2

0,n cos2 (φ0,n) +M3
0,n cos4 (φ0,n)

+M4
0,n sin2 (φ0,n) +M5

0,n sin2
(
2φ ′) ,

M̂0,n =M6
0,n +M7

0,n sin2 (φ0,n) +M8
n sin2

(
2φ ′) ,

(29)

while Lm
0,n, m = 1, 2, . . . 6, M l

0,n, l = 1, 2, . . . 8 have been introduced in
Appendix B (Eqs. (B3), (B6)). It is easily noted that the residues in
(27) and (28) may behave discontinuously at the shadow boundary
of the doubly reflected field (φ = φ ′). These discontinuities are
compensated by edge diffracted field contributions.
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4.1.3. Third-Order Residue Contributions

Even though the third-order terms contain special integral functions,
their residues associated with the geometrical poles can be derived in
closed form:

re30 =
ξ0z

4 sinβ ′

(
L0

cotφ ′ −
cosβ ′M0

tanφ ′

)
,

re3n = − ξnz
4 sinβ ′

(
Ln

tanφ ′ +
cosβ ′Mn

cotφ ′

)
,

re30n = −
(
re30 +re3n

)
+

ξ0z
2 sinβ ′

[
Ln−cosβ ′

(
Mn−

2M̂0

tanφ ′

)
− 2L̂0

cotφ ′

]
,

re3n0 = −
(
re30 +re3n

)
− ξnz

2 sinβ ′

[
L0+cosβ ′

(
M0−

2M̂n

cotφ ′

)
+

2L̂n

tanφ ′

]
,

(30)

and

rh3
0 =

ξ0zL0

4 tanβ ′ −
K0 (φ0)M0

4 sinφ ′ ,

rh3
n =

ξnzLn

4 tanβ ′ −
Kn (φn)Mn

4 cosφ ′ ,

rh3
0n = rh3

0 + rh3
n − ξ0z cotβ ′

2 tanφ ′

(
Ln − 2L̂0

cotφ ′

)
+
K0(φ0)
2 cosφ ′

(
Mn − 2M̂0

tanφ ′

)
,

rh3
n0 = rh3

0 + rh3
n − ξnz cotβ ′

2 cotφ ′

(
L0 +

2L̂n

tanφ ′

)
−Kn(φn)

2 sinφ ′

(
M0 −

2M̂n

cotφ ′

)
.

(31)

Again, third-order term residues are associated with the contributions
of three plane waves of which that one contributing to the doubly-
reflected field may be discontinuous at φ = φ ′. An edge diffracted field
contribution that compensates for such discontinuity will be derived
hereinafter.

4.2. Contributions of the SDP Integrals

The integrals along the SDP±π give the contributions of the edge
diffracted field. Their asymptotic evaluation in the framework of UTD
[18] yields a uniform solution for the field that is smooth and continuous
at the shadow boundary of the GO fields.
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4.2.1. First-Order Diffracted Field Contributions

The first-order edge diffracted field contributions vanish, as expected,
since the integrands of the SDP±π integrals through the saddle points
at α = π and α = −π (Fig. 2) are periodic, with period 2π. Thus, only
the residues of the GO pole singularities contribute to the field.

4.2.2. Second-Order Diffracted Field Contributions

Conversely, the asymptotic evaluations of se2(α) and sh2(α) also provide
diffracted field contributions, which compensate for the discontinuities
of the second-order terms in the series expansion of the GO solution.
As a matter of fact, the terms ŝ e

2 (α) and ŝ h
2 (α) in Eq. (B1), unlike

s e
2 (α) and s h

2 (α) (see (B4) and (B7) for the detailed expressions), are
no more periodic and, as a result, non-vanishing terms arise from the
SDP±π integrals. Uniform asymptotic expressions for the second-order
correction edge diffracted field contributions are:[

E 2d
z

ζH 2d
z

]
=
e−j(ktρ+π

4 )
√

2πktρ

(
ξ0ρ ξ

n
z + ξ0z ξ

n
ρ − ξ0z ξnz

) [
hi

z

−eiz

]

· 8 cosβ ′ sin (2φ ′)F
(√
ktρ [1 − cos (φ− φ ′ )]

)
cos (2φ) − cos (2φ ′)

υ2,

(32)

where F (·) is the UTD transition function [18]. They compensate
for the above mentioned discontinuites, however vanishing at normal
incidence and when the Dybdal compatibility condition is satisfied. It
is worth noting that (32) only contribute to the cross-polar components
of the field, as expected.

4.2.3. Third-Order Diffracted Field Contributions

As far as se3(α) and sh3(α) are concerned, suitable integral
representations have been determined by applying a procedure similar
to that used in [13, 14]. The corresponding edge diffracted field
contributions are derived by asimptotically evaluating the SDP±π

integrals to achieve the following uniform expressions:

[
E 3d

z

ζH 3d
z

]
=

e−j(ktρ+π
4 )

√
2πktρ

 s e
3

(
−π + φ− π

4

)
+ s e

3

(
π + φ− π

4

)
−sh

3

(
−π + φ− π

4

)
− sh

3

(
π + φ− π

4

)


· 2F
(√
ktρ [1 − cos (φ− φ ′ )]

)
cos (2φ) − cos (2φ ′)

υ3. (33)
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The functions se3(α) and sh3(α) consist of the terms from the third-order
correction spectral functions that are not periodic and can be written
in the form:

s e
3 (α) = we

0(α) cosφ ′ + we
n(α) sinφ ′ + ŝ e

3 (α), (34a)

sh
3 (α) = wh

0 (α) cosφ ′ + wh
n(α) sinφ ′ + ŝh

3 (α). (34b)

In particular, for we
0,n(α) we have

we
0,n(α)=

1
2

[
P

1
0,n sin2

(
α+

0,n

)
+P 2

0,n cos2(2α)+P 3
0,n+P 4

0,n cos2
(
α+

0,n

)
+ P

5
0,n cos4

(
α+

0,n

)
+P 6

0,n sin2
(
α+

0,n

)
cos2

(
α+

0,n

)]
sin

(
2α+

0,n

)
,

(35)

where it has been set

P
1
0,n = P 1

0,n + P 8
0,n + P 13

0,n, P
2
0,n = P 2

0,n + P 9
0,n + P 14

0,n,

P
3
0,n = P 5

0,n + P 12
0,n, P

4
0,n = P 3

0,n + P 6
0,n + P 10

0,n, (36)

P
5
0,n = P 4

0,n + P 7
0,n, P

6
0,n = P 11

0,n,

and

P i
0,n =



−
ξ0,n
z Li

0,n

2 sinβ ′ cos (φ0,n)
, i = 1, 2, . . . 4,

−
ξ0,n
z cosβ ′M i−4

0,n

2 sinβ ′ cos (φ0,n)
, i = 5, 6, . . . 9,

−
ξ0,n
z Li−5

0,n

sinβ ′ cos (φ0,n)
, i = 10, 11,

−
ξ0,n
z cosβ ′M i−6

0,n

sinβ ′ cos (φ0,n)
, i = 12, 13, 14.

(37)

Analogously, the function wh
0,n(α) can be represented as follows

wh
0,n(α) = Q1

0,n sin4
(
α+

0,n

)
+Q2

0,n+Q3
0,nsin2

(
α+

0,n

)
cos2(2α)+sin2

(
α+

0,n

)
·
[
Q

4
0,n cos4

(
α+

0,n

)
+Q5

0,n +Q7
0,n cos2

(
α+

0,n

)]
+Q6

0,n cos4
(
α+

0,n

)
,

(38)
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with

Q
1
0,n = Q1

0,n +Q13
0,n +Q21

0,n, Q
2
0,n = Q5

0,n+Q6
0,n+Q17

0,n,

Q
3
0,n = Q2

0,n +Q14
0,n + 1

4Q
16
0,n +Q22

0,n, Q
4
0,n = Q4

0,n +Q12
0,n,

Q
5
0,n = Q8

0,n−Q6
0,n+Q10

0,n+Q18
0,n+Q20

0,n, Q
6
0,n = Q7

0,n,

Q
7
0,n = Q3

0,n+4Q9
0,n+Q11

0,n+Q15
0,n+4Q19

0,n,

(39)

Qi
0,n =



ξ0,n
z cotβ ′Li

0,n

2 cos (φ0,n)
, i = 1, 2, . . . 4,

ξ0,n
ρ sinβ ′M i−4

0,n

2 cos (φ0,n)
, i = 5, 6, . . . 9,

ξ0,n
z cosβ ′ cotβ ′M i−9

0,n

2 cos (φ0,n)
, i = 10, 11, . . . 14,

ξ0,n
z cotβ ′Li−10

0,n

cos (φ0,n)
, i = 15, 16,

ξ0,n
ρ sinβ ′M i−11

0,n

cos (φ0,n)
, i = 17, 18, 19,

ξ0,n
z cosβ ′ cotβ ′M i−14

0,n

cos (φ0,n)
, i = 20, 21, 22.

(40)

Moreover, the functions ŝ e
3 (α) and ŝh

3 (α) in (34) satisfy the following
inhomogeneous functional equations:

ŝ e
3

(
α+

0,n

)
− ŝ e

3

(
α−0,n

)
= Ĥ e

0,n(α), (41a)

ŝh
3

(
α+

0,n

)
+ ŝh

3

(
α−0,n

)
= Ĥ h

0,n(α). (41b)

In (41)

Ĥ e
0,n(α) =

4ξ0,n
z α cosαHe

0,n(α)
π sinβ ′ [cos (2α) − ε0,n cos (2φ ′)]

, (42a)

Ĥ h
0,n(α) =

4αHh
0,n(α)

π [cos (2α) − ε0,n cos (2φ ′)]
, (42b)
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and

He
0,n(α) = cos (φ0,n)

{
sin2 α

(
L5

0,n + L6
0,n sin2 α

)
+

− cosβ ′ [M6
0,n +M7

0,n sin2 α+M8
0,n sin2 (2α)

]}
+ sin (φ0,n)

{
sin2 α

(
L5

n,0 + L6
n,0 cos2 α

)
+ cosβ ′ [M6

n,0 +M7
n,0 cos2 α+M8

n,0 sin2 (2α)
]}
,

(43a)

Hh
0,n(α) = ξ0,n

z cotβ ′ [− cos (φ0,n)
(
L5

0,n + L6
0,n sin2 α

)
+ sin (φ0,n)

(
L5

n,0 + L6
n,0 cos2 α

)]
sinα cos2 α+K0,n(α)

·
{
cos (φ0,n)

[
M6

0,n +M7
0,n sin2 α+M8

0,n sin2 (2α)
]

+ sin (φ0,n)
[
M6

n,0 +M7
n,0 cos2 α+M8

n,0 sin2 (2α)
]}
.
(43b)

The solution of (41) has been given by Tuzhilin in [22], in the form
of special integral functions, with the integrals defined along the
imaginary axis of the complex plane. It can be written as:

ŝ e
3 (α) = σe

0(α) + σe
n(α) (44a)

ŝh
3 (α) = σh

0 (α) + σh
n(α) (44b)

where[
σe

0,n(α)

σh
0,n(α)

]
=

1
2πj

∫ +j∞

−j∞

[
Ĥ e

0,n(τ)

Ĥ h
0,n(τ)

]
tan

(
α− ε0,n

π

4
− τ

)
dτ. (45)

The previous definitions for
[
σe

0(α), σh
0 (α)

]
and

[
σe

n(α), σh
n(α)

]
are valid

in the strip −π/4 < Re(α) < 3π/4 and −3π/4 < Re(α) < π/4,
respectively. Outside these regions an analytic continuation is required
[22], which is based on the functional equations in (41).

It can be shown that Ĥ e
0,n(τ) and Ĥ h

0,n(τ) are odd functions and
that their amplitude reduces to zero exponentially when |Im(τ)| → ∞.
This renders the integrals in (45) rapidly convergent.

Finally, we observe that all the higher order terms can in principle
be reconstructed by exploiting the recursive functional equation in
(4). However, their expressions are very complicated and will not
be provided herein. Anyway, it is worth noting that including terms
up to third-order in the perturbative solution is in general sufficient
to obtain a good accuracy. A set of numerical results is reported in
the next section to confirm the accuracy of the proposed perturbative
solution.



Right-angled anisotropic impedance wedge diffraction 63

5. NUMERICAL RESULTS

Samples of numerical results are presented in this section in order
to validate the proposed technique and to discuss its limits of
applicability. As a first step, the convergence of this approximate
solution has been checked through numerical comparisons with the
results obtained by applying the exact GO solution for the co-polar
and cross-polar components of the field when the Dybdal compatibility
relationship is satisfied, that is, when δ = 0. These preliminary
results, which are not reported herein, show that the accuracy
of the approximate predictions is progressively augmented by the
introduction of the second- and third-order terms, thereby testifying for
the consistency of the method. Other comparisons with data obtained
by resorting to a numerical solution determined by the parabolic
equation method [8] are shown. It is worth noting that, in contrast
to numerical solutions, the pertubative approach (PA) proposed in
this paper can provide explicit analytic diffraction coefficients, even
though under the assumption of small anisotropic impedances. In all
the examples presented, the field is calculated at a constant distance
from the edge (ktρ = 5) and is plotted versus the observation angle φ.

Comparisons between data relevant to the amplitude of the cross-
polar component of the total field, calculated either by the GO
solution (continuous lines) or by this approximate method (dashed
lines) including corrections up to the third-order, are presented in
Fig. 3. The incident plane wave is TEz polarized (eiz = 0, hi

z = 1)
and impinges on the edge from β ′ = 60◦, φ ′ = 60◦. Several curves
corresponding to different decreasing magnitudes of the impedances
on the φ = 0 face of the wedge have been plotted. The face φ = π/2
is anisotropic, with ξnz = (1 + j)/2, ξnρ = (1 + j)/4j, υ = 0.2. It
can be noted that the cross-polar longitudinal component significantly
depends on the zero-face impedances. In particular, when ξ0z = j,
ξ0ρ = j/2 or ξ0z = ξ0ρ = 0, the Dybdal relationship is met and the exact
solution reduces to the GO contributions only. A good agreement is
observed between the results obtained by the GO and this approximate
solution. Conversely, when ξ0z = ξ0ρ = j/2 or ξ0z = j/4 and ξ0ρ = j/2,
it results that δ is not equal to zero and a discontinuity arises in the
cross-polar component of the GO field at φ = φ ′. The edge diffracted
contribution that is needed to compensate for this discontinuity is
accurately estimated by the proposed approximate solution, which is
everywhere continuous and smoothly reduces to the GO results far
from φ = φ ′. Concerning the co-polar longitudinal component, the
results obtained by the GO solution and by this approximate solution
overlap for every analyzed configuration and are slightly affected by
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Figure 3. Cross-polar component of the total field (Ez) in the
presence of an interior right angled anisotropic impedance wedge with
ξnz = (1+ j)/2, ξnρ = (1+ j)/4j and υ = 0.2. The zero-face impedances
assume a set of values with decreasing magnitude. The wedge is
illuminated by a TEz polarized (eiz = 0, hi

z = 1) plane wave impinging
from β ′ = 60◦, φ ′ = 60◦. This approximate solution including up to
the third-order correction: dashed line; GO solution: continuous line.

the changes in the zero-face impedance values; the corresponding plots
are omitted.

Another example is shown in Fig. 4. Here some curves for
the cross-polar longitudinal component of the total field (ζHz) in
the presence of an anisotropic impedance right-angled wedge, with
ξ0z = j/2, ξ0ρ = j, ξnz = (1 + j)/2, ξnρ = j and υ = 0.1, are plotted.
The wedge is illuminated by a TMz polarized plane wave (eiz = 1,
hi

z = 0), impinging on the edge from a set of directions identified
by φ ′ = 45◦ and β ′ = 45, 60, 75◦. The fields calculated through
this perturbative approach (dashed line) including up to the third-
order correction are compared with those obtained by the GO solution
(continuous lines). Again, the plots for the cross-polar component
apparently show that the approximate procedure allow to obtain an
appropriate description of the field even in the most general case when
a diffracted field contribution must be included to compensate the
GO discontinuities. To demonstrate the accuracy of this approximate
solution, the results obtained by the PEM (circles) have also been
plotted in Fig. 4: an excellent agreement is observed. As expected, the
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Figure 4. Cross-polar component of the total field (ζHz) in the
presence of an interior right angled anisotropic impedance wedge with
ξ0z = j/2, ξ0ρ = j, ξnz = (1 + j)/2, ξnρ = j and υ = 0.1. The incident
plane wave is TMz polarized (eiz = 1, hi

z = 0) and impinges from
β ′ = 45, 60, 75◦ and φ ′ = 45◦. Comparison between our approximate
solution including up to the third-order correction (dashed line), the
GO solution (continuous line) and the PEM solution (circles).

amplitude of the cross-polar component progressively reduces when the
angle β ′ approaches π/2, eventually vanishing at normal incidence.

The convergence of the perturbative solution has also been
investigated at the increasing of the parameter υ. Data describing
the amplitude of the total field scattered from a right-angled wedge
illuminated by a TEz polarized (eiz = 0, hi

z = 1) plane wave are plotted
in Fig. 5; in particular, continuous lines represent this approximate
solution while the circles are associated with the results obtained
by the parabolic equation method. The wedge is characterized by
two anisotropic impedance faces, with ξ0z = (1 + j/2)/2, ξ0ρ = j/2,
ξnz = (1/2 + j)/2, ξnρ = (2 + 3j)/4; υ assumes a set of increasing
values (υ = 0.1, 0.2, 0.3). The plane wave impinges on the edge from
β ′ = 45◦ and φ ′ = 50◦. Several curves, corresponding to the different
values of υ, are plotted for both the co-polar (ζHz) and the cross-polar
(Ez) longitudinal components of the total field in Fig. 5(a) and 5(b),
respectively. A very good agreement is achieved for small impedances
(υ � 0.1). At the increasing of υ, the discrepancy between PA and
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Figure 5. Total field amplitude in the presence of an interior right
angled anisotropic impedance wedge with ξ0z = (1 + j/2)/2, ξ0ρ = j/2,
ξnz = (1/2 + j)/2, ξnρ = (2 + 3j)/4, υ = 0.1, 0.2, 0.3. The incident
plane wave is TEz polarized (eiz = 0, hi

z = 1) and impinges from
β ′ = 45◦ and φ ′ = 50◦: (a) co-polar component (ζHz); (b) cross-
polar component (Ez). This approximate solution including up to the
third-order correction: continuous line; PEM solution: circles.
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PEM results becomes larger, as expected. Nonetheless, it is interesting
to note that the perturbative approach shows to be applicable even for
not very small values of the surface impedances.

Finally, it has been shown that the proposed approximate high-
frequency solution provides accurate results for υ � 0.3, with errors
less than a few percent for the co-polar components and less than
10% as far as the cross-polar components are concerned. It is
important to underline that the perturbative procedure proposed here
does not provide surface wave contributions since the unperturbed
configuration, that is the corresponding perfectly conducting wedge,
does not allow the propagation of such waves.

6. CONCLUSIONS

The scattering from an interior right-angled wedge with anisotropic
impedance faces has been considered. It has been shown that, if the
Dybdal compatibility condition is satisfied, the rigorous solution to
this problem can be written in terms of the only GO contributions.
Then, a perturbative approach, based on the Sommerfeld-Maliuzhinets
method, has been developed to estimate the edge diffracted field
contribution, when the Dybdal compatibility condition is not satisfied
and the normalized surface impedances on the anisotropic faces
assume small values. The perturbative corrections to the field
have been asymptotically evaluated in the UTD format. Extensive
numerical tests have been performed to check the accuracy and the
convergence of the perturbative solution through comparisons with
reference data obtained by applying the parabolic equation method.
Beyond providing a solution for the specific wedge problem under
analysis, a further outcome of the paper is that of showing that the
Maliuzhinets method can be successfully combined with a perturbative
technique to systematically construct an approximate solution for
impedance wedge scattering problems. Indeed, as also shown in [13]
and [14], once a proper small geometric or electric parameter has
been identified and the spectral solution for the corresponding wedge
problem with a vanishing value of the above parameter is known (zero-
order spectral solution), the perturbative method can be applied to
derive inhomogeneous Maliuzhinets’ type functional equations for the
higher-order terms of the spectral field series representation. The
integral solution of the latter functional equations is avalaible in
the open literature and can be carried out by resorting to efficient
numerical integration techniques.
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APPENDIX A. FIRST ORDER SPECTRAL FUNCTIONS

By inserting expressions (19) into Eqs. (18) for i = 1,
[
se1(α), sh1(α)

]
are found to satisfy the following inhomogeneous functional equations:

se1

(
α+

0,n

)
− se1

(
α−0,n

)
=
A0,n sinα+ ε0,nB0,n cosα sin (2α)

cos (2α) − ε0,n cos (2φ ′)
, (A1a)

sh1

(
α+

0,n

)
+ sh1

(
α−0,n

)
=

cosα
[
C0,n − ε0,n

(
D0,n + E0,n cos2 α

)]
cos (2α) − ε0,n cos (2φ ′)

,

(A1b)

where α+
0,n and ε0,n have been introduced in the previous sections and

A0,n = −4ξ0,n
z

sin(2φ ′)
sinβ ′ eiz, B0,n = 4ξ0,n

z cotβ ′hi
z,

C0,n = 4ξ0,n
z sin(2φ ′) cotβ ′eiz, D0,n = 8ξ0,n

ρ sinβ ′hi
z,

E0,n = 8ξ0,n
z cosβ ′ cotβ ′hi

z.

(A2)

Due to the linearity of the system in (A1), se1(α) and sh1(α) can be
written as:

se1(α) =
[
A0 cos

(
α+

0

)
−B0 sin

(
α+

0

)
cos (2α)

]
f0(α)

+
[
An cos

(
α+

n

)
+Bn sin

(
α+

n

)
cos (2α)

]
fn(α),

(A3a)

sh1(α) = − sin
(
α+

0

) [
C0 −D0 + E0 sin2

(
α+

0

)]
f0(α)

+ sin
(
α+

n

) [
Cn +Dn + En sin2

(
α+

n

)]
fn(α).

(A3b)

The functions f0(α) and fn(α) must fulfil the following equations

f0,n

(
α+

0,n

)
+ f0,n

(
α−0,n

)
= ε0,n

[
cos (2α) − ε0,n cos

(
2φ ′)]−1

f0,n

(
α+

n,0

)
− f0,n

(
α−n,0

)
= 0,

(A4)

whose solutions can be conveniently derived in terms of modified
Fourier integrals as in [21, 23]:

f0,n (α) =
{∫ −σ+j∞

−σ−j∞
+

∫ σ+j∞

σ−j∞

}
j sin [ω (φn,0)] e−jω(α−ε0,n

π
4 )

4 sin (ωπ) sin (2φ ′)
dω,

(A5)



Right-angled anisotropic impedance wedge diffraction 69

where σ is greater than zero and sufficiently small. By exploiting the
following relationship [21]

t
(
α− π, φ ′) − t (α+ π, φ ′) =

(
cosα− cosφ ′)−1

, (A6)

where

t
(
α, φ ′) =

1
4 sin (π − φ ′)

{∫ −σ+j∞

−σ−j∞
+
∫ σ+j∞

σ−j∞

}
sin [ω (φ ′ − π)] e−jωα

sin2 (ωπ)
dω,

(A7)

f0(α) and fn(α) can be expressed in a closed form:

f0,n (α) =
ε0,n cos (φ0,n)

2 sin(2φ ′)
[
cos

(
α+

0,n

)
+ ε0,n sin (φ0,n)

] . (A8)

By substituting (A2) and (A8) into (A3), complete expressions for the
first order correction spectral functions

[
se1(α), sh1(α)

]
are obtained.

APPENDIX B. SECOND ORDER SPECTRAL
FUNCTIONS

The functional equations holding for se2(α) and sh2(α) can be obtained
by inserting the explicit expressions for

[
se1(α), sh1(α)

]
into Eqs. (18)

for i = 2. The spectra
[
se2(α), sh2(α)

]
can be written as:

se2(α) = s e
2 (α) + ŝ e

2 (α), (B1a)

sh2(α) = s h
2 (α) + ŝ h

2 (α). (B1b)

In (B1), s e
2 (α) and s h

2 (α) must satisfy the following equations:

s e
2

(
α+

0,n

)
− s e

2

(
α−0,n

)
=

sinα
[
L1

0,n sin2 α+ L2
0,n sin2 (2α)

]
cos (2α) − ε0,n cos (2φ ′)

+
sinα

(
L3

0,n cos2 α+ L4
0,n cos4 α

)
cos (2α) − ε0,n cos (2φ ′)

,

(B2a)

s h
2

(
α+

0,n

)
+ s h

2

(
α−0,n

)
=

cosα
(
M1

0,n +M2
0,n cos2 α+M3

0,n cos4 α
)

cos (2α) − ε0,n cos (2φ ′)

+
cosα

[
M4

0,n sin2 α+M5
0,n sin2 (2α)

]
cos (2α) − ε0,n cos (2φ ′)

,

(B2b)



70 Manara et al.

where we have set

L1
0,n =

8
(
ξ0,n
z

)2
cos (φ0,n) eiz

sin2 β ′ , L2
0,n = −

2
(
ξ0,n
z

)2
cosβ ′ hi

z

sin2 β ′ sin (φ0,n)
,

L3
0,n = L1

0,n cos2 β ′ + 4L2
0,n

ξ0,n
ρ

ξ0,n
z

sin2 β ′, L4
0,n = 4L2

0,n cos2 β ′,

M1
0,n =

8
(
ξ0,n
ρ

)2
sin2 β ′ hi

z

sin (φ0,n)
− 8ξ0,n

ρ ξ0,n
z cosβ ′ cos (φ0,n) ,

M2
0,n =M1

0,n cot2 β ′ ξ
0,n
z

ξ0,n
ρ

+
8ξ0,n

z ξ0,n
ρ cos2 β ′ hi

z

sin (φ0,n)
,

M3
0,n = −L4

0,n cosβ ′, M4
0,n = −L1

0,n cosβ ′, M5
0,n = −L2

0,n cosβ ′.
(B3)

Since Eqs. (B2) are of the same type as those in (A1), by using the
same procedure outlined in Appendix A, the spectral functions s e

2 (α)
and s h

2 (α) can be expressed in terms of f0(α) and fn(α), given by
Eq. (A8), as follows:

s e
2 (α) =

{
cos

(
α+

0

) [
L1

0 cos2
(
α+

0

)
+ L2

0 cos2 (2α)
]
+

− sin
(
α+

0

)
cos (2α)

[
L3

0 + L4
0 sin2

(
α+

0

)] /
2
}
f0(α)

+
{

cos
(
α+

n

) [
L1

n cos2
(
α+

n

)
+ L2

n cos2 (2α)
]

+ sin
(
α+

0

)
cos (2α)

[
L3

n + L4
n sin2

(
α+

n

)] /
2
}
fn(α),

(B4a)

s h
2 (α) = −

[
M1

0 +M2
0 sin2

(
α+

0

)
+M3

0 sin4
(
α+

0

)
+ M4

0 cos2
(
α+

0

)
+M5

0 cos2 (2α)
]
sin

(
α+

0

)
f0(α)

+
[
M1

n +M2
n sin2

(
α+

n

)
+M3

n sin4
(
α+

n

)
+ M4

n cos2
(
α+

n

)
+M5

n cos2 (2α)
]
sin

(
α+

n

)
fn(α).

(B4b)

As far as ŝ e
2 (α) and ŝ h

2 (α) in Eq. (B1) are concerned, the functional
equations to be solved are:

ŝ e
2

(
α+

0,n

)
− ŝ e

2

(
α−0,n

)
=

sinα cosα
(
L5

0,n + L6
0,n sin2 α

)
cosα+ cos (φ0,n)

, (B5a)

ŝ h
2

(
α+

0,n

)
+ ŝ h

2

(
α−0,n

)
=

[
M6

0,n +M7
0,n sin2 α+M8

0,n sin2 (2α)
]

cosα+ cos (φ0,n)
,

(B5b)
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where we have defined

L5
0,n = 4ε0,n ξ

0
zξ

n
z sin (φ0,n) eiz −

4ε0,n ξ
0,n
z ξn,0

ρ cosβ ′ hi
z

cos (φ0,n)
,

L6
0,n =

4 ε0,n ξ
0
z ξ

n
z cosβ ′ hi

z

cos (φ0,n)
,

M6
0,n = cosβ ′[4ε0,n ξ

0,n
ρ ξn,0

z sin(φ0,n) eiz − L5
0,n

]
+

4 ε0,n ξ
0
ρ ξ

n
ρ sin2β ′hi

z

cos (φ0,n)
,

M7
0,n = L5

0,n cosβ ′ + ε0,nL
6
0,n cosβ ′ ξ

0
ρ

ξ0z
, M8

0,n = −
L6

0,n

4
cosβ ′.

(B6)

Solutions to the equations in (B5), which are similar to those in (A1)
and (B2), can be obtained by representing ŝ e

2 (α) and ŝ h
2 (α) as follows:

ŝ e
2 (α) = sin

(
α+

0

)
cos

(
α+

0

) [
L5

0 + L6
0 cos2

(
α+

0

)]
g0(α)

+ sin
(
α+

n

)
cos

(
α+

n

)
+

[
L5

n + L6
n cos2

(
α+

n

)]
gn(α),

(B7a)

ŝ h
2 (α) = −

[
M6

0 +M7
0 cos2

(
α+

0

)
+M8

0 cos2 (2α)
]
g0(α) +

−
[
M6

n +M7
n cos2

(
α+

n

)
+M8

n cos2 (2α)
]
gn(α).

(B7b)

Insertion of (B7) into (B5) yields the following system of functional
equations for g0(α) and gn(α):

g0,n

(
α+

0,n

)
+ g0,n

(
α−0,n

)
= − [cosα+ cos (φ0,n)]−1 ,

g0,n

(
α+

n,0

)
+ g0,n

(
α−n,0

)
= 0.

(B8)

Through the application of the Fourier transform [21], suitable integral
representations for g0(α) and gn(α) can be obtained:

g0,n (α) =
{∫ −σ+j∞

−σ−j∞
+
∫ σ+j∞

σ−j∞

}
ε0,n sin [ω (φ0,n)] e−jω(α−ε0,n

π
4 )

4 sin (φ0,n) sin (ωπ) sin (ωπ/2)
dω.

(B9)

By observing that for the function t (α, φ ′), which has been previously
introduced in Eq. (A7), holds the identity [23]

t
(
α, φ ′) =

α sinφ ′ − (π − φ ′) sinα
2π sinφ ′ (cosα+ cosφ ′)

, (B10)
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and by also noting that

sin (ωv)
sin (ωπ) sin (ωπ/2)

=
sin [ω (v + π/2)] + sin [ω (v − π/2)]

sin2 (ωπ)
, (B11)

we can explicitly rewrite g0(α) and gn(α) in the following form:

g0,n (α) =
ε0,n (φ0,n) sin

(
2α+

0,n

)
2π sin (φ0,n)

[
cos2

(
α+

0,n

)
− sin2 (φ0,n)

]
+ ε0,n

2
(
α+

0,n

)
cos (φ0,n) − π sin

(
α+

0,n

)
2π

[
cos2

(
α+

0,n

)
− sin2 (φ0,n)

] .

(B12)

Insertion of (B4) and (B7) together with (A8) and (B12) into (B1)
yields the complete closed form expressions for se2(α) and sh2(α).
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