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Abstract—The plane wave diffraction by a terminated semi
infinite parallel-plate waveguide with two-layer material loading and
impedance boundaries is rigorously analyzed for E polarization using
the Wiener-Hopf technique. Introducing the Fourier transform for the
scattered field and applying boundary conditions in the transform
domain, the problem is formulated in terms of the simultaneous
Wiener-Hopf equations, which are solved via the factorization and
decomposition procedure. The scattered field is evaluated by
taking the inverse Fourier transform and applying the saddle point
method. The numerical examples of the radar cross section (RCS)
are represented for various physical parameters and backscattering
characteristics, of considered geometry for open ended cavity and
discussed in detail.
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1. INTRODUCTION

The problem of electromagnetic wave scattering by open-ended parallel
plates waveguide cavities is an important topic in radar cross-
section (RCS) prediction and reduction studies. This analysis is
also one of the important canonical models for duct structures such
as jet engine intakes of aircrafts and cracks occurring on surfaces
of general complicated bodies. The scattering problem by cavities
of various shapes has been investigated by using different analytical
and numerical methods in literatures. The commonly used methods
were high frequency ray techniques [1–4] and low frequency numerical
methods [5, 6]. A hybrid ray-numerical approach has been also used
[7]. We should note that the solutions obtained by these methods are
not valid uniformly for arbitrary cavity dimensions.

A rigorous RCS analysis of two dimensional cavities with and
without material loading having a finite, perfectly conducting parallel
plate waveguide is carried out by Kobayashi and his co-workers by
using the Wiener-Hopf technique [8–10]. As a related cavity geometry
a terminated, semi-infinite parallel plate waveguide with three-layer
material loading with perfectly conducting walls has been analyzed
in [12] through the Wiener-Hopf technique. This problem has later
on generalized for empty cavities having imperfectly conducting walls
[11].

The aim of this work is to treat the diffraction of electromagnetic
waves by a terminated semi-infinite parallel plate waveguide with
two layer material loading where the cavity walls are impedance
boundaries. This generalization of impedance boundaries is not openly
given and merits to be investigated. The geometry of the problem
is given in Figure 1. The original problem can be split up into
two simpler one corresponding to even and odd excitations by using
the image bisection method. Each sub problem is then analyzed
by using the Wiener-Hopf technique in conjunction with the mode-
matching method. Later this method of formulation, which is based
on expansion of the diffracted field into the series of normal modes
in the waveguide region and using the Fourier transform technique
elsewhere, gives rise to a scalar modified Wiener-Hopf equation. After
application of decomposition and factorization procedures, solution is
obtained as a form of infinite number of constants satisfying an infinite
system of linear algebraic equations. The numerical solution of this
system is obtained for various values of the plate impedances, the
distance between the plates, the cavity depth and the parameters of
the dielectric loading.

A time factor e−iωt with ω being the angular frequency is assumed
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and suppressed throughout the paper.

2. FORMULATION OF THE PROBLEM

We consider the diffraction of a time harmonic, Ez-polarized plane
electromagnetic wave by a parallel plates waveguide cavity formed by
two impedance parallel half planes defined by; S1 = {(x, y, z), x <
0, y = d, z ∈ (−∞,∞)}, S2 = {(x, y, z), x < 0, y = −d, z ∈
(−∞,∞)}, respectively and a planar interior termination located at;
S3 = {(x, y, z), x = −�2, y ∈ (−d, d), z ∈ (−∞,∞)} as depicted in
Fig. 1.

Figure 1. Parallel-plate waveguide with impedance walls and two
layers impedance loading.

The surfaces y = ±d, x < 0 of the horizontal walls of the cavity is
assumed to be characterized by constant surface impedance Z1 = η1Z0

while the impedance of the inner surfaces y = ±d, x ∈ (−�2, 0)
is Z2 = η2Z0. The impedance of the planar interior termination
x = −�2, y ∈ (−d, d) is denoted by Z3 = η3Z0. Here Z0 is the
characteristic impedance of the free space. We will further assume that
the cavity is filled by a two layered non magnetic dielectric. Material
the dielectric primitivities of the regions along x ∈ (−�2,−�1) and
x ∈ (−�1, 0) are ε1 and ε2, respectively.

In order to determine the scattered field, one can proceed by
decomposing the incident in Fig. 2(a) and (b). Relying upon the image
bisection principle, it can be shown that the configurations shown in
Fig 2(a) and (b) are equivalent to presented figures in Fig. 2(c) and
(d), respectively. In what follows, the even and odd excitations will be
treated separately.
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Figure 2. Equivalent problems. (a) Symmetric (even) excitation. (b)
Asymmetric (odd) excitation. (c) Equivalence to (a). (d) equivalence
to (b).

2.1. Symmetric (Even) Excitation

Let us consider first the configuration shown in Fig. 2(c), which is
equivalent to the even excitation case. Since in this case the field is
symmetrical about the plane y = 0, the normal derivative of the total
electric field must vanish for y = 0, x ∈ (−∞,+∞) (magnetic wall).

For analysis purposes, it is convenient to express the total field as
follows:

u
(e)
T (x, y) =




ui + uσ + u
(e)
1 ; y > d

u
(1e)
2 [H(−x− �1) −H(−x− �2)]+

u
(2e)
2 [H(−x) −H(−x− �1)] + u

(3e)
2 [H(x)], 0 < y < d

(1a)
Here, ui is the incident field given by,

Ei
z = ui(x, y) = exp {−ik[x cosφ0 + y sinφ0]} (1b)

while uσ denotes the field reflected from the plane y = d, namely

uσ = −1 − η1 sinφ0

1 + η1 sinφ0
exp {−ik[x cosφ0 − (y − 2d) sinφ0]} (1c)
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with k being the free-space wave number. u(e) and u
(ne)
2 , n = 1, 2, 3,

which satisfy the Helmholtz equation, are to be determined with the
following boundary and continuity relations:(

1 +
η1

ik

∂

∂y

)
u

(e)
1 (x, d) = 0, y = d, x < 0 (2a)

∂

∂y
u

(1e)
2 u(x, 0) = 0, y = 0, (−�2 < x < −�1) (2b)

∂

∂y
u

(2e)
2 (x, 0) = 0, y = 0, (−�1 < x < 0) (2c)(

1 +
η3

ik1

∂

∂x

)
u

(1e)
2 (−�2, y) = 0, x = −�2, (0 < y < d) (2d)(

1 − η2

ik1

∂

∂y

)
u

(1e)
2 (x, d) = 0, y = d, (−�2 < x < −�1) (2e)(

1 − η2

ik2

∂

∂y

)
u

(2e)
2 (x, d) = 0, y = d, (−�1 < x < 0) (2f)

∂

∂y
u

(3e)
2 (x, 0) = 0, y = 0, x > 0 (2g)

u
(1e)
2 (−�1, y) = u

(1e)
2 (−�1, y), {x = −�1, (0 < y < d)} (2h)

∂

∂x
u

(1e)
2 (−�1, y) =

∂

∂x
u

(2e)
2 (−�1, y), {x = −�1, (0 < y < d)} (2i)

u
(2e)
2 (0, y) = u

(3e)
2 (0, y), {x = 0, (0 < y < d)} (2j)

∂

∂x
u

(2e)
2 (0, y) =

∂

∂x
u

(3e)
2 (0, y), {x = 0, (0 < y < d)} (2k)

u
(e)
1 (x, d) − u

(3e)
2 (x, d) =

− 2η1 sinφ0

1 + η1 sinφ0
e−ikd sinφ0e−ikx cosφ0 , {y = d, x > 0} (2l)

∂

∂y
u

(e)
1 (x, d) − ∂

∂y
u

(3e)
2 (x, d) =

2ik sinφ0

1 + η1 sinφ0
e−ikd sinφ0e−ikx cosφ0 , {y = d, x > 0} (2m)

Since u
(e)
1 (x, y) satisfies the Helmholtz equation in the range of

x ∈ (−∞,+∞), its Fourier transform with respect to x gives[
d2

dy2
+ (k2 − α2)

]
F (e)(α, y) = 0 (3a)
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with
F (e)(α, y) = F

(e)
+ (α, y) + F

(e)
− (α, y) (3b)

where

F
(e)
± (α, y) = ± 1

2π

±∞∫
0

u
(e)
1 (x, y)eiαxdx (3c)

By taking into account the following asymptotic behaviors of u(e)
1 for

x → ±∞
u

(e)
1 (x, y) =

{
O(e−ikx); x → −∞

O(e−ikx cosφ0); x → ∞ (4)

one can show that F
(e)
+ (α, y) and F

(e)
− (α, y) are regular functions of

α in the half-planes �m(α) > �m(k cosφ0) and �m(α) < �m(k)
respectively. The general solution of (3a), satisfying the radiation
condition for y → ∞, reads

F
(e)
+ (α, y) + F

(e)
− (α, y) = A(e)(α)eiK(α)(y−d) (5a)

with
K(α) =

√
k2 − α2; K(0) = k (5b)

The square-root function is defined in the complex α plane cut along
α = k to α = k+i∞ and α = −k to α = −k−i∞, such that K(0) = k.
See Fig. 3.

Figure 3. Complex α plane.

In the Fourier transform domain, (2a) takes the form

F
(e)
− (α, d) +

η1

ik
Ḟ

(e)
− (α, d) = 0 (6)
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where the dot specifies the derivative with respect to y. By using
derivative of (5a) with respect to y and (6), one obtains

R
(e)
+ (α) = A(e)(α)

[
1 + η1

K(α)
k

]
(7a)

where
R

(e)
+ (α) = F

(e)
+ (α, d) +

η1

ik
· Ḟ (e)

+ (α, d) (7b)

In the region for 0 < y < d, u(3e)
2 (x, y) satisfies the Helmholtz equation[

d2

dx2
+

d2

dy2
+ k

]
u

(3e)
2 (x, y) = 0 (8)

in the range of x > 0. The half-range Fourier transform of (8) yields[
d2

dy2
+ K2(α)

]
G

(e)
+ (α, y) =

[
f (e)(y) − iαg(e)(y)

]
(9a)

with

f (e)(y) =
1
2π

∂

∂x
u

(3e)
2 (0, y) (9b)

g(e)(y) =
1
2π

u
(3e)
2 (0, y) (9c)

G +(e) (α, y) which is defined by

G +(e) (α, y) =
1
2π

∞∫
0

u
(3e)
2 (x, y)eiαxdx (10)

is also a function regular in the half plane �m(α) > �m(−k).
The general solution of (9a) satisfying the Neumann boundary

condition at y = 0, reads

G
(e)
+ (α, y) = C(e)(α) cos[Ky] +

1
K(α)

y∫
0

[
f (e)(t) − iαg(e)(t)

]

× sin[K(y − t)]dt (11)

If one obtains the derivativation of (11) with respect to y:

Ġ
(e)
+ (α, y) = −KC(e)(α) sin[Ky] +

y∫
0

[
f (e)(t) − iαg(e)(t)

]

× cos[K(y − t)]dt (12)
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Combining (2l) and (2m), one get

R
(e)
+ (α, d) = G

(e)
+ (α, d) +

η1

ik
Ġ

(e)
+ (α, d) (13)

and if equations (11), (12) and (13) are used together, C(e)(α) can be
solved uniquely

C(e)(α) =
R

(e)
+ (α)

M (e)(α)
− 1

M (e)(α)

d∫
0

[
f (e)(t) − iαg(e)(t)

]

×
[
sin[K(d− t)]

K
+

η1

ik
cos[K(d− t)]

]
dt (14a)

with

M (e)(α) = cos[Kd] − η1

ik
K sin[Kd] (14b)

Replacing (14a) into (11) we get

G
(e)
+ (α, y) =

cos[Ky]
M (e)(α)


R

(e)
+ (α) −

d∫
0

[
f (e)(t) − iαg(e)(t)

]

×
[
sin[K(d− t)

K
+

η1

ik
cos[K(d− t)]

]
dt

+
1
K

y∫
0

[
f (e)(t) − iαg(e)(t)

]
sin[K(y − t)]dt (15)

Although the left-hand side of (15) is regular in the upper half-
plane �m(α) > �m(−k), the regularity of the right-hand side is
violated by the presence of simple poles occurring at the zeros of
M (e)(α), namely at α = αem satisfying

M (e)
(
α(e)
m

)
= 0, �m

(
α(e)
m

)
> �m(k); m = 1, 2, . . . (16)

These poles can be eliminated by imposing their residues are zero. This
gives

R
(e)
+ (αem) =

sin[Ke
md]

2Ke
m

[
1 − η2

1

k2
(Ke

m)2
]
d [fem − igem] (17a)
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where Ke
m, fem and gem specify

Ke
m = K(αem) (17b)[

fem
gem

]
=

2
d

d∫
0

[
fe(t)
ge(t)

]
cos[Ke

mt]dt (17c)

Owing to (17c), fe(y) and g(e)(y) can be expanded into Fourier cosine
series as follows [13][

f (e)(y)
g(e)(y)

]
=

∞∑
m=1

[
fem
gem

]
cos [Ke

my] (17d)

Consider the continuity relation (2l) which reads, in the Fourier
transform domain

F
(e)
+ (α, d) −G

(e)
+ (α, d) =

(
2η1 sinφ0

1 + η1 sinφ0

) (
e−ikd sinφ0

i(α− k cosφ0)

)
(18a)

where �m(α) > �m(cosφ0)
Replacing of (15) at y = d expression into (18a) obtains

F
(e)
+ (α, d) − R

(e)
+ (α)

M (e)(α)
cos

[
K(e)d

]
+

d∫
0

[
f (e)(t) − iαg(e)(t)

]

x




sin
[
K(e)(d− t)

]
/K(e) +

η1

ik
cos

[
K(e)(d− t)

]
M (e)(α)




− sin

[
K(e)(d− t)

]
K(e)

dt

=
2η1 sinφ0

i (1 + η1 sinφ0)
e−ikd sinφ0

(α− k cosφ0)
(18b)

Expression of (5a) at y = d

F+(α, d) + F−(α, d) = A(α) (18c)

Combining (7a) and (18c), we get

F+(α, d) =
R+(α)

1 + η1
K(α)
k

− F−(α, d) (18d)
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Replacing (14b) and (18d) into (18b), it is obtained

R
(e)
+ (α)Ke

N (e)(α)
[
1 + η1

Ke(α)
k

] +
k

η1
F

(e)
− (α, d)

=
2ik sinφ0

(1 + η1 sinφ0)
e−ikd sinφ0

(α− k cosφ0)

− i

M (e)(α)

d∫
0

[
f (e)(t) − iαg(e)(t)

]
cos[Ket]dt (19a)

where

N (e)(α) = M (e)(α)eiK(α)d (19b)

Substitution (17d) in (19a) and evaluating the resultant integral,
one obtains the following modified Wiener-Hopf equation of the second
kind valid in the strip �m(k cosφ0) < �m(α) < �m(k)

R
(e)
+ kχ(η1, α)
N (e)(α)

+
k

η1
F

(e)
− (α, d) =

2ik sinφ0e
−ikd sinφ0

1 + η1 sinφ0(α− k cosφ0)

−
∞∑
m=1

iK
(e)
m sin[Ke

md]
α2 − α2

m

(
f (e)
m − iαg(e)

m

)
(20a)

with

χ(η1, α) =
1

η1 +
k

Ke(α)

(20b)

(20a) is a function regular in the strip �m(k cosφ0) < �m(α) <
�m(k).

The formal solution of (20a) can be obtained through the classical
Wiener-Hopf procedure. The result is

kχ+(α)

N
(e)
+

R
(e)
+ (α) =

2ik sinφ0

(1 + η1 sinφ0)
e−ikd sinφ0

(k cosφ− α0)
N

(e)
− (k cosφ0)
χ−(k cosφ0)

−
∞∑
m=1

iK
(e)
m sin[Ke

md]
2αem(α2 + α2

m)
N

(e)
+ (αem)
χ+(α)

(fem + iαemg
e
m)

(21)
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where N
(e)
+ (α), χ+(α) and N

(e)
− (α), x−(α) are the split functions,

regular and free of zeros in the half-planes �m(α) > �m(−k)
and �m(α) < �m(k), respectively, resulting from the Wiener-Hopf
factorization of the kernel function χ(α)/N (e)(α) as

χ(α)
N (e)(α)

=
χ+(α)

N
(e)
+ (α)

χ−(α)

N
(e)
− (α)

(22)

The explicit expression of N
(e)
+ (α) can be obtained by following the

procedure outlined in [14]:

N
(e)
+ =

[
cos[kb] − η1

i
sin[kb]

] 1
2

exp
{
Kb

π
�n

(
α + iK

k

)}

× exp
{
iαd

π

(
1 − C + �n

(
2π
kd

)
+ i

π

2

)}

×
∞∏
m=1

(
1 +

α

αem

)
exp

(
iαd

mπ

)
(23a)

N
(e)
− (α) = N

(e)
+ (−α) (23b)

In (23a) C the Euler’s constant given by C = 0, 57721 . . .. As to
the split functions χ±(α), they can be expressed explicitly in terms of
Maluizhinets function as follows: [15]

χ+(k cosφ) = 2
3
2

√
2
η1

sin
φ

2

{
Mπ(3π/2 − φ− θ)Mπ(π/2 − φ + θ)

M2
π(π/2)

}2

×
{[

1 +
√

2 cos
(
π/2 − φ− θ

2

)][
1 +

√
2 cos

(
3π/2 − φ− θ

2

)]}−1

(24a)

with

sin θ =
1
η1

(24b)

with

Mπ(z) = exp


− 1

8π

z∫
0

π sinu− 2
√

2 sin(u/2) + 2u
cosu

du


 (24c)

Consider now the waveguide {(−�2 < x < −�1); (0 < y < d)} and
{(−�1 < x < 0); (0 < y < d)}, where the total fields can be expressed
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in terms of Fourier transform domain as:

u
(1e)
2 (x, y) =

∞∑
n=1

an

(
eiβ1nx − 1 + η3β1n/k1

1 − η3β1n/k1
e−2iβ1n�2−iβ1nx

)
cos γ1ny

(25a)

U
(2e)
2 (x, y) =

∞∑
n=1

(
cne

iβ2nx + dne
−iβ2nx

)
cos γ2ny (25b)

where

β1n =
√
k2

1 − γ2
1n; cos γ1nd +

η2

ik1
γ1n sin γ1nd = 0 (25c)

and

β2n =
√
k2

2 − γ2
2n; cos γ2nd +

η2

ik2
γ2n sin γ2nd = 0 (25d)

Consider the continuity relations (2h) and (2i) in the Fourier transform
domain which reads,

∞∑
n=1

an
(
e−iβ1n�1 −Aeiβ1n�1

)
cos γ1ny

=
∞∑
n=1

(
cne

−iβ2n�1 + dne
iβ2n�1

)
cos γ2ny (26a)

∞∑
n=1

iβ1nan
(
e−iβ1n�1 + Aeiβ1n�1

)
cos γ1ny

=
∞∑
n=1

iβ2n

(
cne

−iβ2n�1 − dne
iβ2n�1

)
cos γ2ny (26b)

where

A =
1 + η3β1n/k1

1 − η3β1n/k1
e−2iβ1n�2 (26c)

Let us consider (26a) and (26b). Hence obtains

cn =
[x3(1 + T ) + x4(T − 1)]

2x1

cos γ1ny

cos γ2ny
an (26d)

dn =
[x3(1 − T ) − x4(T − 1)]

2x2

cos γ1ny

cos γ2ny
an (26e)
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and

Pn =
cn + dn
cn − dn

=
x3[(1 + T )x2 + (1 − T )x1] + Ax4[(T − 1)x2 − (1 + T )x1]
x3[(1 + T )x2 − (1 − T )x1] + Ax4[(T − 1)x2 + (1 + T )x1]

(26f)

where

x1 = e−iβ2n�1 , x2 = eiβ2n�1 , x3 = e−iβ1n�1 , x4 = eiβ1n�1 (26g)

T =
β1n

β2n
(26h)

From the continuity relations (2j), (2k) and (9b, c), it is found

u
(2e)
2 (0, y) = g(e)(y); (0 < y < d) (27a)

∂

∂x
u

(2e)
2 (0, y) = f (e)(y); (0 < y < d) (27b)

Using (25b) one may write
∞∑
n=1

(cn + dn) cos γ2ny = g(e)(y) (27c)

∞∑
n=1

iβ2n(cn − dn) cos γ2ny = f (e)(y) (27d)

Now using (17d) it can be written
∞∑
n=1

(cn + dn) cos γ2ny =
∞∑
m=1

gem cos[Ke
my] (27e)

∞∑
n=1

iβ2n(cn − dn) cos γ2ny =
∞∑
m=1

fem cos[Ke
my] (27f)

Let us multiply both sides of the equation (27f) by cos[γ2�y] and
integrate obtained result in the interval, (0 < y < d). If we consider
the orthogonal properties of the trigonometric functions at the solution
of the integration step;

i
d

2
βe2�(c�−d�)=−

∞∑
m=1

γe2� sin(γe2�d)
(Ke

m)2 − (γe2�)2

(
η2

ik2
Ke
m sin[Ke

md]+cos[Ke
md]

)
fm

(28a)
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For (c� − d�);

(c� − d�) =
2iγe2�
βe2�d

sin(γe2�d)
∞∑
m=1

Ωm

ϑm�
fm (28b)

where

Ωm = cos[Ke
md] +

η2

ik2
Ke
m sin(Ke

md) (28c)

ϑm� = (Ke
m)2 − (γe2�)

2 (28d)

By using the same approach above, let us multiply both sides of
the equation (27e) by the term cos(Ke

� y) then integrate obtained
result in the interval, (0 < y < d). Again, if we consider the
orthogonal properties of the trigonometric functions at the solution
of the integration step;

ge�
d

2
= −

∞∑
n=1

(cn + dn)
Ωe
�

ϑe�n
γe2n sin(γe2nd) (29a)

For ge� in (29a);

ge� = −2
d
Ωe
�

∞∑
n=1

(cn + dn)
γe2n
ϑe�n

sin(γe2nd) (29b)

ϑe�n = (Ke
� )

2 − (γe2n)
2 (29c)

The term (cn + dn) in (26f) can be defined by the terms (cn − dn) and
replacing in (29b), we get;

ge� = −2
d
Ωe
�

∞∑
n=1

Pn(cn − dn)
γe2n
ϑe�n

sin(γe2nd) (30a)

Instead of (cn − dn) in the (30a), if equation (29a) is written, then;

ge� = − 4i
d2

Ωe
�

∞∑
n=1

Pn
(γe2n)

2

βe2nϑ
e
�n

sin(γe2nd)
∞∑
m=1

Ωe
m

ϑem�
fem (30b)

Replacing the terms α = α
(e)
1 , α

(e)
2 . . . in (24a), then writing the right

side of the equation (17a) for the term R
(e)
+ (α(e)

m ):

kd

2

[
1 − η1

k2

[
K(e)
r

]2
] sin

[
K

(e)
r d

]
K

(e)
r

χ+(α)

N+

(
α

(e)
r

) [
f (e) − iαrg(e)

τ

]
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=
2ik sinφ0

(1 + η1 sinφ0)
N

(e)
− (k cosφ0)

x− (k cosφ0)
e−ikd sinφ0(

k cosφ0 − α
(e)
r

)

−
∞∑
m=1

K
(e)
m i sin

(
K

(e)
m d

)
2α(e)

m

N
(e)
+ (αm)
χ+(α)

(
f

(e)
m + iαmg

(e)
m

)
(
α

(e)
r + α

(e)
m

) (31a)

Substituting (30b) in (31a), we get infinite number of equations with
infinite number of unknowns that yield the constants f

(e)
r as follows

kd

2

[
1 − η2

1

k2

[
K(e)
r

]2
]

sin
[
K

(e)
r d

]
K

(e)
r

χ+(α)
N+ (αr)

fer

+iαer

(
4i
d2

Ωr

∞∑
m=1

(γ2n)2

β2nϑ�n
sin2 γPn

∞∑
m=1

Ωe
m

V e
mr

fem

)

+
∞∑
m=1

K
(e)
m i sin

[
K

(e)
m d

]
2αem(αer + αem)

N+(αem)
χ+(αe)[

fem − iαem

(
4i
d2

Ωm

∞∑
n=1

(γ2n)2

β2nϑmn
sin2[γ2nd]Pn

∞∑
s=1

Ωe
s

ϑesm
f (e)
s

)]

=
2ik sinφ0

1 + η1 sinφ0

N−(k cosφ0)
x−(k cosφ0)

e−ikd sinφ0

(k cosφ0 − αr)
(31b)

2.2. Asymmetric (Odd) Excitation

The solution of odd excitation is similar to that of even excitation
Indeed, by assuming a representation similar to (1a) with to superscript
(e) being replaced by (o); it can be seen that all the boundary and
continuity relations in (2a)–(2m) remain valid for the odd excitation
case also, except (2b) and (2c), which are to be changed as

u
(1o)
2 (x, 0) = 0, y = 0, (−�2 < x < −�1) (32a)

u
(2o)
2 (x, 0) = 0, y = 0, (−�1 < x < 0) (32b)

In this case, the Wiener-Hopf equation reads

kχ(α)
N (o)(α)

R
(o)
+ (α) − ik

η1
F

(o)
− (α, d) =

2k sinφ0

(1 + η1 sinφ0)
e−ikd sinφ0

(α− k cosφ0)

+
∞∑
m=1

Ko
m cos [Ko

md]
[α2 − (αom)2]

(fom − iαgom)

(33a)
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with

N (o)(α) = eiK(α)d
{

[sinK(α)d] +
η1

ik
K(α) cos[K(α)d]

}
(33b)

Ko
m =

√
k2 − (αom)2 (33c)

fom
gom

=
2
d

d∫
0

[
fo(t)
go(t)

]
sin [Ko

mt] dt (33d)

Owing to (33d) fo(y) and go(y) can be expanded into Fourier series as
follows [13]: [

fo(y)
go(y)

]
=

∞∑
m=1

[
fom
gom

]
sin [Ko

my] (33e)

where αom are the roots of

sin[K(α)d] +
η1

ik
K(α) cos[K(α)d] = 0, α = αom; �m(αom) > �m(k)

(34)
The application of the Wiener-Hopf procedure to (33a) yields

kχ+ (α)

N
(o)
+ (α)

R
(o)
+ (α) =

2k sinφ0

(1 + η1 sinφ0)
e−ikd sinφ0

(k cosφ0 − α)
No

− (k cosφ0)
χ− (k cosφ0)

+
∞∑
m=1

Ko
m cos [Ko

md]
2αom

N
(o)
+ (αom)
χ+ (αom)

(fom+iαgom)
(α+αom)

(35)

N
(o)
+ (α) and N

(o)
− (α) are the split functions resulting from the Wiener-

Hopf factorization of (33b) as

N (o) (α) = N
(o)
+ (α)N (o)

− (α) (36a)

The explicit expression of N (o)
± (α) are [14].

N
(o)
+ (α)

=
√
k + α

[
sin [kd]

k
+

η1

ik
cos [kd]

]1/2

exp
{
K (α) d

π
ln

(
α + iK (α)

k

)}

exp
{
iαd

π

(
1 − C + ln

(
2π
kd

)
+ i

π

2

)} ∞∑
m=1

(
1 +

α

αom

)
exp

(
iαd

mπ

)

(36b)



Terminated semi-infinite parallel plate 93

N
(o)
− (α) = N

(o)
+ (−α) (36c)

By using the continuity relations at the aperture {(0 < y < d) ;
x = 0}, the infinite number of equations are obtained with infinite
number of unknowns which yields the constants for as follows:

−kd

2

[
1 − η1

k2
(Ko

r )
2
]

cos (Ko
rd)

Ko
r

χ+ (αor)

N
(o)
+ (αor)

×
{
for + iαor

[
4i
d2

Ωl

∞∑
n=1

γ2
2n cos2 γ2nd

β2n�n
Pn

∞∑
m=1

Ωm

m�
fom

]}

−
∞∑

m = 1
M �= r

Ko
m cos (Ko

md)
2αom

N
(o)
+ (αom)
χ+ (αom)

1
(αr + αom)

×

{
fom − iαom

[
4i
d2

Ωl

∞∑
n=1

γ2
2n cos2 γ2nd

β2nmn
Pn

∞∑
s=1

Ωs

sm
fos

]}

=
2ik sinφ0

1 + η1 sinφ0

No
− (k cosφ0)

x− (k cosφ0)
e−ikd sinφ0

(k cosφ0 − αor)
(37)

Here Ωo
m, ϑm�, β2n and Pn

Ωo
m = cos [Ko

md] +
η2

ik2
Ko
m sin (Ko

md) (38a)

ϑm� = (Ko
m)2 − (γo2�)

2 (38b)

U
(10)
2 (x, y) =

∞∑
n=1

{
an

[
eiβ1nx −

(
1 + η3β1n/k1

1 − η3β1n/k1

)

e−(2iβ1nl2+iβ1nx)
]}

sin γ1ny (38c)

U
(20)
2 (x, y) =

∞∑
n=1

[
cne

iβ2nx + dn · e−iβ2nx
]
· sin γ2ny (38d)

β1n =
√
k2

1 − γ2
1n; sin(γo1nd) −

η2

ik1
γo1n cos(γo1nd) = 0 (38e)

β2n =
√
k2

2 − γ2
2n;

sin (γo2nd) −
η2

ik2
γo2n cos

(
γ0

2nd
)

= 0, n = 1, 2, ... (38f)

Pn =
cn + dn
cn − dn

=
x3[(1+T )x2+(1−T )x1]+Ax4[(T−1)x2−(1+T )x1]
x3[(1+T )x2−(1−T )x1]+Ax4[(T−1)x2+(1+T )x1]

(38g)
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with γo2n being the roots of (38f); gor can be expressed in terms of for
as

gor = − 4i
d2

Ωo
r

∞∑
n=1

γ2
2n cos2 γ2nd

β2nrn
Pn

∞∑
m=1

Ωm

m�
f0
m (38h)

3. ANALYSIS OF THE DIFFRACTED FIELD

The scattered field in the region y > d for even and odd excitations
can be obtained by taking the inverse Fourier transform of F (e) (α, y)
and F (o) (α, y) respect to £

u
(e)
1 (x, y) =

1
2π

∫
£

F (e) (α, y) e−iαxdα (39)

u
(o)
1 (x, y) =

1
2π

∫
£

F (o) (α, y) e−iαxdα (40)

where £ is a straight line parallel to the real x axis laying in the strip
�m(k cosφ0) < �m(α) < �m(k). The asymptotic evaluation of the
integrals in (39) and (40) through the saddle-point technique enables
us to write the diffracted field as,

u1 (ρ, ψ) =
u

(e)
1 (ρ, ψ) + u

(o)
1 (ρ, ψ)

2
(41a)

with

u
(e)
1 (ρ, ψ) ≈

√
2π
kρ

N
(e)
+ (−k cosψ)
χ+ (−k cosψ)

N
(e)
− (k cosφ0)
χ− (k cosφ0)

2i sinφ0e
−ikd sinφ0 sinψ

(1 + η1 sinφ0) (1 + η1 sinψ)
eikρeiπ/4

(cosφ0 + cosψ)

−2πi
N (e) (k cosφ0)
χ (k cosφ0)

2i sin2 φ0e
−ikd sinφ0

(1 + η1 sinφ0)
2

e−ikρ cos(ψ+φ0)H (π − (ψ + φ0))

−
√

2π
kρ

N
(e)
+ (−k cosψ)
χ+ (−k cosψ)

∞∑
m=1

{
iKe

m sin [Ke
md]

2αem (αem − k cosψ)

N
(e)
+ (αem)
χ+ (αem)

(fm + iαemg
e
m)

sinψ

(1 + η1 sinψ)
eikρeiπ/4

}
(41b)



Terminated semi-infinite parallel plate 95

u
(o)
1 (ρ, ψ) ≈

√
2π
kρ

N
(o)
+ (−k cosψ)
χ+ (−k cosψ)

N
(o)
− (k cosφ0)
χ− (k cosφ0)

2 sinφ0e
−ikd sinφ0 sinψ

(1 + η1 sinφ0) (1 + η1 sinψ)
eikρeiπ/4

(cosφ0 + cosψ)

−2πi
N (o) (k cosφ0)
χ (k cosφ0)

2 sin2 φ0e
−ikd sinφ0

(1 + η1 sinφ0)
2

e−ikρ cos(ψ+φ0)H (π − (ψ + φ0))

+

√
2π
kρ

N
(o)
+ (−k cosψ)
χ+ (−k cosψ)

∞∑
m=1

{
Ko
m cos [Ko

md]
2αom (αom − k cosψ)

N
(o)
+ (αom)
χ+ (αom)

× (fm + iαomg
o
m)

sinψ

(1 + η1 sinψ)
eikρeiπ/4

}
(41c)

where (ρ, ψ) are the cylindrical polar coordinates defined by

x = x = ρ cosψ, y = ρ sinψ, α = −k cos t

In order to show the influence of the values of plate dimensions,
surface impedances, distance between the plates and variation of
dielectric constants of two different dielectric loading at the region
between the parallel plates on the diffraction phenomenon, the
numerical results showing the variation of the diffracted field (20 log |
ud ×

√
kρ |) with the observation angle are presented. Firstly, the

results are checked with empty cavities having same impedance values
for all walls by considering ε1 and ε2 as ε0. The good agreement is
found with previous result in literature [11]. In Fig. 4, we show the
variation of the diffracted field with the truncation number N at a
fixed point. It is seen that the diffracted field becomes insensitive to
the truncation number N for N ≥ 10, ε1 = ε2 = 1 , �1 = λ , �2 = 2λ ,
η1 = η2 = η3 = −0.5i. Fig. 5 shows the variation of the diffracted field
with observation angle, for different values distance between the plates.
The diffracted field decreases with the increasing values of the distance
between the plates. Fig. 6, 7 and 8 show the variation of the diffracted
field with observation angle for surface impedance η1. The diffracted
field decreases with the increasing values of all surface impedances
η1, η2 and η3, respectively. Figs. 9 and 10 show the variation of the
diffracted field with observation angle for dielectric loading ε1 and ε2,
respectively. The diffracted field decreases with the increasing values
of the dielectric loading ε1 and ε2. Figs. 11 and 12 show the diffracted
field with observation angle for the length of �1 and �2, respectively.
The diffracted field decreases with the increasing length of walls �1 and
�2.
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Figure 4. The diffracted field versus the truncation number N .

Figure 5. The diffracted field versus the observation angle ψ0 for
different values of d.
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Figure 6. The diffracted field versus the observation angle ψ0 for
different values of η1.

Figure 7. The diffracted field versus the observation angle ψ0 for
different values of η2.
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Figure 8. The diffracted field versus the observation angle ψ0 for
different values of η3.

Figure 9. The diffracted field versus the observation angle ψ0 for
different values of ε1.
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Figure 10. The diffracted field versus the observation angle ψ0 for
different values of ε2.

Figure 11. The diffracted field versus the observation angle ψ0 for
different values of �1.
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Figure 12. The diffracted field versus the observation angle ψ0 for
different values of �2.

4. CONCLUSIONS

In this paper, we have solved the E-polarized plane wave diffraction
by a terminated, semi-infinite parallel plate waveguide with two-layer
material loading and impedance boundaries using the Wiener-Hopf
technique. It is to be noted that the final solution obtained here
is rigorous and uniformly valid for arbitrary cavity dimensions and
impedance boundaries. The numerical examples of the RCS related
to considered geometry for various physical parameters are shown that
the total diffracted field can be reduced by coating the cavity walls with
thin films and refilling cavity with dielectric materials having higher
dielectric permittivity of ε1 and ε2. This problem is important in
several engineering applications. The result obtained in this paper can
be used as a reference solution and canonical models for duct structures
such as jet engine intakes of aircrafts and cracks occurring on surfaces
of general complicated bodies base on approximation methods.
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