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Abstract—In this paper is presented a method for computing, and an
experimental procedure for verifying, the coupling of a signal, caused
by a modulated laser beam, to a load impedance terminating a coaxial
waveguide whose center conductor protrudes into a an open-ended
body of revolution (BOR). The excitation is the signal radiated by
electrons emitted from the conducting surface by an impinging laser
beam, modulated in such a way that the electrons escaping the surface
oscillate harmonically in time causing them to radiate a coherent signal
at an angular frequency ω. For a vanishingly small spot of laser
light on the conducting surface, the radiating source is modeled as
an electric dipole normal to and located at the surface. To perform
this computation directly is very difficult so we resort to an indirect
method that allows us to realize significant savings with no loss in
generality. The indirect approach adopted here takes the advantage of
the reciprocity and allows one to determine the received signal at the
coax terminal load from knowledge of the field radiated by a small wire
probe mounted on the symmetry axis of the BOR under the condition
that the excitation results from a current generator impressed at the
terminal end of the coax. This scheme necessitates the formulation
and solution of a simpler integral equation. In principle, the approach
developed to solve this problem is exact and rigorous. The validity of
this approach is demonstrated numerically and experimentally.
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1. INTRODUCTION

Electromagnetic penetration into a shielded enclosure and coupling to
a receiver inside the shield where the coupling path is produced by
a center-fed dipole antenna and coaxial transmission line system has
been studied and reciprocity has been used to relate the electric field
incident on the antenna to the short circuit current in the transmission
line [1]. The electromagnetic field received by a thin-wire probe
mounted on the nose of a missile like body of revolution (BOR) has
been studied and the signal coupled to the coaxial transmission line
has been determined from the far zone field pattern and reciprocity
theorem [2]. The application of reciprocity has also been presented for
computing, the coupling of a signal, caused by an elementary electric
dipole, to a load impedance terminating a coaxial transmission line
whose center conductor protrudes into an open-ended cylindrical tube
[3]. In this paper, reciprocity method is presented for computing,
and an experimental procedure for verifying, the coupling of a signal,
caused by a modulated laser beam, to a load impedance terminating
a coaxial waveguide whose center conductor protrudes into a an open-
ended body of revolution (BOR) as illustrated in Fig. 1. The BOR
is a right circular cylindrical shell with a planar bottom through
which protrudes the center conductor of a coax. For convenience,
we refer to the structure as a “can” connected to a loaded coaxial
monopole. The can wall and bottom are taken to be vanishingly thin
perfectly conducting, as are the inner and outer walls of the coaxial
waveguide. The coax axis is the same as the cylinder axis and its
outer conductor terminates at, and is electrically connected to, the can
bottom. The excitation is the signal radiated by electrons emitted from
the conducting surface by an impinging laser beam, modulated in such
a way that the electrons escaping the surface oscillate harmonically in
time causing them to radiate a coherent signal at an angular frequency
ω. The laser-excited electrons radiate in the presence of the can and
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Figure 1. Probe in a metal can illuminated by a spot of a laser light.

coax and a signal is induced on the load admittance YL terminating the
end of the coax remote from the point where it joins the bottom of the
can. It is this signal at a 50 Ω load (50 Ω coax assumed), as a function
of the laser beam characteristics, that one wishes to determine. For
a vanishingly small spot of laser light on the conducting surface, the
radiating source is modeled as an electric dipole normal to and located
at the surface. For a larger spot, the source is taken to be an ensemble
of normal dipoles whose amplitudes and phases are dictated by the
characteristics of the laser light and the spot. In this work we only
consider the small-spot case. The extension to the larger spot is trivial
as the spot is modeled by dipoles with known phase and amplitude
distribution on the surface.

The dipoles radiate in the presence of the entire can-coax structure
and, therefore, all parts of the can and coax, together with the
terminating load, must be accounted for simultaneously in any analysis
for determining the voltage at the load YL. In other words, all parts
of the structure are coupled and each influence the current induced on
all surfaces. The direct approach to solving this problem would be to
determine the radiation due to the elementary dipole on the surface and
employ the electric field of this radiation as the excitation of an integral
equation for the current on the can and the monopole. The integral
equation must account for the load at the terminal end of the coax and
its effect at the annular aperture formed where the coax joins the can
bottom. And the coupling into the coax must be computed in order to
arrive at a full account of the coax and its terminal load. The current
induced on the can and the monopole surfaces would be a vector
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surface density so the integral equation must be a vector equation.
Fortunately, since one needs to know the signal only at the load, which
electromagnetically speaking occupies a vanishingly small region of
space, one can obtain the desired information by solving a radiation
problem and employing the reciprocity theorem. This is far simpler
than it would be to solve the reception problem directly in which one
must allow the laser- stimulated dipoles to radiate in the presence of
the loaded (load admittance YL in place at the end of the coax) coax-
can structure. The indirect approach adopted here takes advantage
of the reciprocity theorem and allows one to determine the signal at
the coax terminal load from knowledge of the field radiated by the
monopole-can structure under the condition that the excitation results
from a current generator impressed at the terminal end of the coax.
This scheme necessitates the formulation and solution of a simpler
integral equation. It is simpler for two reasons. First, the integral
equation is not a vector equation as it would be if the direct procedure
were followed and, second, the equation and its unknown possess
rotational symmetry since the can and the center-joined coax form
a circularly symmetric structure, the field radiated by the structure
due to excitation at the coax terminal is circularly symmetric. One
might designate this procedure indirect but it allows one to obtain the
desired signal far more efficiently than would a more direct method
necessitating the solution of a vector integral equation rather than
the scalar equation of the indirect procedure. The indirect approach,
though far less complex than the direct, does not sacrifice rigor.

The solution of the problem of determining the signal induced
by a modulated laser beam at the load which terminates the coax of
the coax-can structure, has been reduced to two steps: First is the
computation of the electric field at points on the coax-can structure
where the laser light might fall, caused by TEM excitation at the
coax terminus, and second, is application of the reciprocity theorem
to obtain the signal at YL caused by the laser light. From knowledge
of this electric field, the value of the load admittance, and the value
of the impressed source, one can determine the signal induced in the
load impedance by invoking the reciprocity theorem. This technique,
though simpler than the more direct method, is completely rigorous
and involves no approximations not employed in the direct procedure.

2. THE RECIPROCITY APPROACH

In Fig. 2a is illustrated the coax-fed monopole mounted in the can,
together with an elementary dipole of current moment Ilδ(r − rd)n̂
located at point rd in space on the can surface where Il is the dipole
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Figure 2. Reciprocity method applied to the original problem, (a)
the original equivalent reception problem, (b) the radiation problem.
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strength and n̂ is the unit normal for the can surface. An admittance
YL terminates the end of the coax remote from the monopole and
can. The dipoles radiate a field that couples with the can and the
monopole terminated in the loaded coax, ultimately causing a signal
to appear across YL. To set the stage for the use of the reciprocity
theorem, we now consider a second source and resulting radiated field.
This source is an ideal current generator of Ig amperes impressed at
the terminal end of the coax. This current generator, located very
close to admittance YL, produces a signal in the coax, which, in turn,
excites the monopole, and can and gives rise to a radiated field Eg as
illustrated in Fig. 2b.

A possible structural form that this generator and YL may take is
illustrated in Fig. 3a. Notice that a shorted quarter wave transmission
line is added at the load at z = zg, because the reciprocity integrals
must be evaluated at a closed surface. The transmission line model of
this structure and its equivalent circuit are shown in Fig. 3b. We let
the generator current be a volume current of density

Jg = −δ(z − zg)[Ig/2πρ]ρ̂ (1)

impressed at the end of the coax immediately adjacent to the
admittance fabricated in annular form. The current generator is
impressed at position z = zg along the coax. The negative sign on
the current simply implies that the current is directed radially inward.

To apply reciprocity, it is instructive to think of two situations or
two experiments. In the first, the impressed generator current Ig is
turned off (leaving an open circuit) and the dipole on the conducting
surface radiates a field causing a voltage v to appear across the coax at
the location of the generator and load admittance YL as seen in Fig. 2a.
Next, the dipole is removed and the current generator turned on as in
Fig. 2b. It excites the coax fed monopole and can and causes a field
to be radiated, whose electric field is designated Eg. The reciprocity
theorem applied to these sources and fields can be stated in the form∫∫∫

V

(Eg · J − E · Jg)d = ⊂⊃
∫∫
S

(Eg × H − E × Hg) · n̂dS (2)

where V is the region in which the theorem applies and S is the closed
surface bounding this region. Jg and J are sources which acting alone
produce fields (Eg,Hg) and (E,H), respectively [4]. For our case,
V is defined to be the volume inside the coax, the body of the can,
outside the wire probe (and the center conductor of coax), and inside
the (imaginary) sphere at infinity. Let S = S∞+Spec, where S∞ is the
sphere at infinity and Spec is the remainder of S. Since this antenna
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Figure 3. (a) A possible form of the generator and transmission line,
(b) equivalent circuit.

structure is a perfect conductor, the surface integral over its surface
Spec is zero, and, due to the radiation condition, the integral over the
sphere at infinity S∞ is zero too. Hence, the surface integral of (2) is
zero and one has remaining∫∫∫

V

(Eg · J − E · Jg)dV = 0 (3)

where E is the electric field caused (everywhere) by the elementary
dipole J = Ilδ(r− rd)n̂ radiating in the presence of the structure and
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Jg is given by (1). Next we evaluate the integrals of (2). The first
term of (3) is evaluated as∫∫∫

V

Eg · JdV =
∫∫∫

V

Eg · Il
[
l̂δ(r − rd)

]
dV = Iln̂ · Eg(rd). (4)

The coax is operated in its typical way in which all higher order
modes are below cutoff. Thus, the fields and currents in the coax are
circularly symmetric which implies that E is independent of φ. Since
Jg is an annular current concentrated at z = zg, the second term of
(3) simplifies immediately to∫∫∫

V

E · JgdV = −Ig
∫ π

−π

∫ b

a

1
2πρ

ρ̂ · E(ρ, zg)ρdρdφ = −Igv (5)

where v is the potential of the coax center conductor relative to that
of the outer conductor:

−v = −
∫ b

a
Eρ(ρ, zg)dρ. (6)

From (4) and (5) it is clear that one can obtain v, the voltage created
across the coax by the dipole with the current generator off, from
knowledge of the position and orientation of laser-induced dipole and
the electric field Eg which results from the current generator applied
at the coax terminus. Finally we apply reciprocity by replacing the
integrals of (3) by their equivalent expressions from (4) and (5) to
obtain

v = −Iln̂ · Eg(rd)/Ig. (7)
The procedure for using reciprocity is outlined as follows. First,

one assumes a voltage VA = 1 volt across the coaxial aperture and
computes the current on the monopole and can. From knowledge of this
current, driven by a one-volt generator (VA = 1 volt), one can compute
the driving-point or input admittance YA at the base of the monopole.
This is the admittance “seen” by the coax where it joins the can.
Since the monopole is driven by the coax, YA serves as the terminating
admittance of the end of the coax where its center conductor becomes
the monopole. Second, one determines the currents on the monopole
and can and the field radiated by the structure under the condition
that it is excited by the current generator through the coaxial line as
illustrated in Fig. 3a. From transmission line theory, it is obvious that
the current generator of Fig. 3b causes the voltage VA in the coaxial
aperture at the base of the monopole to be

VA =
(1 + ΓA)e−jβL

YL (1 + ΓAe−j2βL) + Y0 (1 − ΓAe−j2βL)
Ig (8)
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in which β is the propagation factor of the line. ΓA is the reflection
coefficient at the monopole base

ΓA =
Y0 − YA

Y0 + YA
(9)

and Y0 is the characteristic admittance of the line. VA of (8) is the
actual voltage driving the monopole so one can now compute the actual
currents on the structure and, subsequently, the radiated field caused
by the current generator in the coax. This is done by the procedure
used to compute the currents with VA = 1 volt or one can simply scale
all current and field values by the ratio VA : 1. The last step is to
compute the voltage v across the load YL from (3). The value of the
voltage v across YL due to the dipole moment Il at rd is obtained
form

v
Il

= −n̂ · Eg(rd)
(1 + ΓA)e−jβL

VA [YL(1 + ΓAe−j2βL) + Y0(1 − ΓAe−j2βL)]
. (10)

The value computed for v depends on the dipole moment Iln̂ of the
dipole induced on the structure surface at rd and the current Ig of the
current generator employed in the reciprocity procedure. Recall that
Eg(rd) is the E-field radiated by the structure when the monopole is
driven by the current generator through the coaxial transmission line.
It is of interest to note that the magnitude of the voltage |v/Il| at
the load YL is independent of the length L of the coaxial line when the
load matches the characteristic admittance Y0 of the coax, i.e., when
YL = Y0.

3. INTEGRAL EQUATION AND NUMERICAL SCHEME

Since many antennas are rotationally symmetric and fed at their
symmetry axis by coaxial probes through either an infinite or finite
ground planes, it is important to have reliable methods to accurately
predict the input impedance of such structures. We obtain in
this section an electric field integral equation (EFIE) and solve it
numerically by the Method of Moments [5, 6]. The monopole and the
“can” have been considered as parts of a whole BOR. The coaxial
aperture of the wire/BOR geometry is shorted, and a magnetic frill
source is placed [7–9]. The frill field is then used as the excitation of
the integral equation.

EFIE: Consider a perfect electrical conductor (pec) body in an
infinite homogeneous space with surface S. An electric field Ei, is
incident on the body and induces a surface current J on S. This
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current in turn radiates a scattered electric field Es. The fields must
satisfy

[Es(r) + Ei(r)]tan = 0, r ∈ S, (11)

on the conducting surface where “tan” denotes the tangential
component of the field on S. An EFIE can be formulated to determine
the induced electric current on the scatterer:

−j η
k


k2

∫∫
S

J(r′)G(r, r′)dS′ + ∇
∫∫
S

∇′
s · J(r′)G(r, r′)dS′




tan

= −Ei
tan(r), r ∈ S. (12)

in which the free space Greens function is defined as

G(r, r′) =
e−jk|r−r′|

4π|r − r′| , (13)

with η =
√
µ/ε, and k = ω

√
µε. Let S be the surface of a BOR formed

by rotating a ‘generating arc’, around the z-axis as shown in Fig. 4a.
Assume that the excitation is of the form

Ei = Ei
ρ(ρ, z)ρ̂ + Ei

z(ρ, z)ẑ (14)

with Ei
φ = 0. Under the condition imposed upon the excitation, the

current induced on the BOR has a component only in the t direction

J(t) = Jt(t)t̂ (15)

and the resulting scattered electric field has no φ component. The
surface divergence and gradient operators are given by

∇s · J =
1
ρ

∂

∂t
(ρJt) (16)

∇sf = t̂
∂

∂t
f (17)

on the BOR surface, allowing one to write (12) as

−j η
k


k2

∫∫
S

Jt(t′)t̂ · t̂
′
G(t, φ; t′, φ′)dS′

+
∂

∂t

∫∫
S

1
ρ′

∂

∂t′
(ρ′Jt(t′))G(t, φ; t′, φ′)dS′


 = −Ei(r) · t̂, r ∈ S. (18)
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Since all of the quantities of interest are independent of φ, one can set
φ equal to some convenient value without affecting the value of the
quantity. We select φ = 0. Since

t̂ = sin γρ̂+ cos γẑ, (19)

the dot product t̂·t̂′ in (18) can be performed, and (18) can be rewritten
as

−j η

4πk

{
k2

∫ T

0
It(t′)

[
sin γ sin γ′K1(t; t′) + cos γ cos γ′K(t; t′)

]
dt′

+
∂

∂t

∫ T

0

∂

∂t′
It(t′)K(t; t′)dt′

}
= −Ei

t(t), t ∈ (0, T ) (20)

where It(t)=2πρJt(t), is the total current and K1 and K are defined by

K1(t; t′) =
1
2π

∫ π

−π

e−jkR cosφ′

R
dφ′, (21)

and

K(t; t′) =
1
2π

∫ π

−π

e−jkR

R
dφ′, (22)

in which

R =
√

(ρ− ρ′)2 + (z − z′)2 + 4ρρ′ sin2(φ′/2). (23)

In (20), T is the total arc length of the generating arc and ρ is
the radial displacement, parallel to the xy or ρφ plane, from the BOR
axis (z-axis) to the general coordinate point (t, φ) on the surface of the
BOR. γ and γ′ are defined as the angles between the BOR axis and
the unit vectors t̂ and t̂

′
, respectively.

Numerical Scheme: On the generating arc, N + 2 points are
defined, beginning with t0 and ending with tN+1, where the point
identified by tp is at arc displacement t = tp, measured along the arc
from the reference at t = t0 = 0. We require t0 < t1 < t2 . . . tN−1 <
tN < tN+1 in our point identification scheme, which enables one
to define positive arc displacement in terms of a progression from
lower to higher index number p of tp. A simple piecewise-straight-line
approximation to the generating arc is obtained by connecting t0 to
t1, t1 to t2, . . . , tp to tp+1, . . . , tN to tN+1 with line segments. The arc
displacement tp, p = 0, 1, 2, . . . , N+1, or the corresponding coordinate
values (ρp, zp), define a discretized piecewise linear approximation to
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the surface of the BOR. It is this set of coordinate values (ρp, zp), p =
0, 1, 2, . . . , N + 1, that serves as input of geometrical information to
the numerical solution technique. The midpoints of the pth and
(p+ 1)th line segments are designated tp− 1

2
and tp+ 1

2
. The coordinates

(ρp± 1
2
, zp± 1

2
) corresponding to values of arc displacement tp± 1

2
along

the discretized generating arc are not among the input data but can
be determined from ρp± 1

2
= (ρp±1 + ρp)/2. In order to solve for the N

unknown coefficients, the current It, which is the unknown quantity,
is approximated by a linear combination of N piecewise linear basis
functions (triangles). The linear expansion coefficients are substituted
into (20) and the equation is tested with a pulse function centered
at tm. This procedure leads to the following set of linear algebraic
equations

[Zmn][In] = [Vm] (24)

in which {In} are the N unknown coefficients of the finite-series
representation of It(t) and [Zmn] is a matrix whose elements are

Zmn = − jη

4πk

{
k2

2
(∆m− cos γm− + ∆m+ cos γm+)


cos γn−

∫ tn

t
n− 1

2

K(tm; t′)dt′ + cos γn+

∫ t
n+1

2

tn
K(tm; t′)dt′




+
k2

2
(∆m− sin γm− + ∆m+ sin γm+)

sin γn−

∫ tn

t
n− 1

2

K1(tm; t′)dt′ + sin γn+

∫ t
n+1

2

tn
K1(tm; t′)dt′




+
1

∆n−

∫ tn

tn−1

[
K(tm+ 1

2
; t′) −K(tm− 1

2
; t′)

]
dt′

− 1
∆n+

∫ tn+1

tn

[
K(tm+ 1

2
; t′) −K(tm− 1

2
; t′)

]
dt′

}
(25)

where ∆p− is the length of the subsection extending from the (p− 1)th

subcontour endpoint to the pth subcontour endpoint, ∆p+ is the length
of the subsection extending from the pth subcontour endpoint to the
(p+1)th subcontour endpoint, γp− and γp+ are the angles between the
BOR axis and the (p− 1)th and (p+ 1)th subsections, respectively [5].
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[Vm] is a column vector whose elements are computed from

Vm =
∫ t

m+1
2

t
m− 1

2

Ei
t(tm)dt. (26)

When obtaining the elements of [Vm] from (26), the frill field is
tested with pulses as shown in the numerical model Fig. 4b. The
half pulse at ρ = a and ρ = b corresponds to the location of the
aperture region. One can use more testing pulses in the aperture region
depending on the electrical size of the coaxial aperture.

Lossy BOR: To formulate an EFIE to account for the losses on
an imperfectly conducting BOR surface, the impedance boundary
condition is applied[

Es(r) + Ei(r)
]
tan

= J(r)Z(r), r ∈ S, (27)

in which Z(r) is the surface impedance profile of the body [10]. The
integral equation in (20) is modified to account for this modification
as

−j η

4πk

{
k2

∫ T

0
It(t′)

[
sin γ sin γ′K1(t; t′) + cos γ cos γ′K(t; t′)

]
dt′

+
∂

∂t

∫ T

0

∂

∂t′
It(t′)K(t; t′)dt′

}
− It(t)

Z(t)
2πρ

= −Ei
t(t), t ∈ (0, T ). (28)

Computation of the Near Field: Computation of the near field
on the antenna structure provides a direct means of ascertaining the
accuracy of the integral equation solution since surface quantities can
be measured. For instance, if a rotationally symmetric antenna is
excited by a rotationally symmetric source, the total field everywhere is
rotationally symmetric. In this case it is possible to probe the antenna
surface without significantly affecting the field structure. So one can
probe relative field strength at different locations on the antenna
surface through a slot oriented in such a way that its presence does
not modify the field from the slotless case. The charge density induced
on the antenna surfaces can be related to components of electric field.
These components can, in principle, be computed once the current
and charge on the antenna are known. For rotationally symmetric
antennas, which are excited by a coaxial probe at the center, the
incident field is that due to the magnetic frill source in the coax
aperture. The normal scattered field on the BOR surface is due to
the induced current and charge. The total field is the sum of the
incident and scattered fields, which can be computed from

E(r) · n̂ = [Ei(r) + Es(r)] · n̂. (29)
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Equation (29) can be computed once the current and charge are known.
The normal component of the incident electric field may be computed
from the components of the frill field as

n̂ · Ei = Ei
ρ(ρ, z) cos γ − Ei

z(ρ, z) sin γ. (30)

4. EXPERIMENTAL APPARATUS AND
MEASUREMENT

Measured data are taken when the coax-can structure is mounted on
a ground plane to provide isolation of the device under test (DUT)
from the instrumentation. In this case one can “access” the interior
region of the can bottom through the ground plane without disturbing
the original field structure as illustrated in Fig. 5a. The ground
plane and can configuration allows one to employ image theory in the
comparison of measured and computed data. When the operating
frequency of the can is sufficiently below the cut-off frequency of the
corresponding circular waveguide formed by the can, the interior fields
decay sufficiently below cut-off, as a function of axial displacement
away from the can end. The field that escapes the can is very small
and does not couple significantly with exterior objects surrounding
this experimental model. So there is no need for a ground plane in this
measurement. For this case one can access the interior region of the
can wall through a short section of an axially directed thin slot cut in
the can wall without disturbing the field as suggested in Fig. 5b.

Construction of the can: A tapered edge circular brass disk of
thickness 3/8 inch has been constructed. This disk serves as the can
bottom and is machined to fit the mating receptacle in the ground
plane. A tapered hole is drilled at the center of this circular disk
for insertion of the coaxial monopole. A circumferential groove,
approximately 1/8 inch deep and 14.55 cm inner diameter, is cut in
the disk to receive the can wall. This slot was made slightly thicker
than the thickness of the can wall to ensure a snug fit. Along a radial
line from a point close to the hole at the center to a point very close
to the can wall, a 1/16 inch wide radial slot was cut in the disk to
allow access to the interior can bottom. Since the source (monopole)
field inside the can is rotationally invariant, the current in the can
bottom is radially directed and φ invariant. This allows one to cut a
thin radially directed slot in the can bottom (disk) with no resulting
disturbance to the disk current. Access to the cans interior region for
probing the field can be gained through this radially directed thin
slot, which does not significantly alter the field structure. The ρ-
directed slot does not interfere with the ρ-directed current on the can
interior bottom. A rectangular brass sheet of thickness 1/16 inch is
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Figure 5. The measurement, (a) can bottom measurement, (b) can
wall measurement.

rolled to construct the cylindrical can wall of inner radius 14.55 cm
and approximate height of 15 inch. This cylindrical can wall is then
inserted in the circumferential groove of the circular brass disk and
soldered. The can wall is then soldered along the vertical joint with a
copper strip applied for mechanical strength. The whole structure is
then mounted on the ground plane.

For measuring the charge and current on the interior can wall
below cut-off, the cylindrical brass tube of diameter 6.55 cm (can), the
monopole, and the probes of [11] are assembled into an experimental
model. Along the wall of this can a short thin slot has been cut parallel
to the axis of the can (z-axis) to allow access to the interior can wall.
Since the source (monopole) field inside the can is rotationally invariant
the current in the can wall is axially directed and φ invariant. This
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allows one to cut a thin z-directed slot in the can wall with no resulting
disturbance to the wall current. Access to the cans interior region for
probing the field can be gained through this z-directed thin slot, which
does not significantly alter the field structure since the probe and z-
directed slot do not interfere with the z-directed current on the can
interior wall.

Construction of a charge probe and monopole: This probe is used
for measuring the charge (or electric field normal to the surface, Eρ and
Ez). Since the charge probe must couple to the normal electric field, it
is simply a very short monopole type probing element. The details on
constructing a charge probe and monopole is readily available in [11].
The can, the monopole and the probes are finally assembled into an
experimental configuration as shown in Fig. 5.

5. RESULTS AND CONCLUSION

Experimental and computed data are compared to enable us to
demonstrate the validity of our work. Two types of comparative data
are presented to lend plausibility to the validity of the theoretical and
numerical aspects of this work. The first set of data is of driving-point
admittance. The next data are of the values of relative field strength
(referred to in the plots as the normalized electric fields) on the interior
can bottom and can wall. The input impedance of the structures
were calculated from the scattering parameter S11. The measured
S12 data is used for determining the relative charge. Measurements
along the thin slots were made for a variety of antenna configurations
and different monopole lengths. For the charge measurements, data
have been taken over the frequency ranges of interest at increments
of 0.5 cm along the radial slot at the can bottom while the data are
taken at 1.0 cm increments along the axial slot. Since the absolute
response of the specifically designed and constructed field probes were
not known, the measured data were normalized by a complex constant
at a specified frequency to facilitate comparison against the computed
data. The comparative data presented in this section confirm the
accuracy of the numerical solutions obtained in this work.

Shown in Fig. 6 are real and imaginary parts of the measured
and computed driving-point admittance for a 13.1 cm long monopole
antenna exciting the can over the frequency range from 300 MHz to
3000 MHz. The can is below cut-off when operated below 790 MHz.
Because the can is operated below cutoff frequency of the TM01 mode
of the corresponding circular waveguide, power cannot be delivered
to the can by the monopole and the real part of the driving-point
admittance is zero (at least for the computed part since loss effects are
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Figure 6. Input admittance of the lossless coax-can, (a) the real part
(b) the imaginary part.



Penetration by a laser-light induced field 235

300 750 1200 1650 2100 2550 3000

frequency  (MHz)

0

10

20

30

40

50

60

70
R

ea
l (

Y
in

) 
 (

m
m

h
o

)

measured
computed

h=13.1 cm
H=38.2 cm
a=0.456 mm
c=14.55 cm
b/a=2.3
Z=(1+j) 5.1e-7 f

√

(a)

300 750 1200 1650 2100 2550 3000

frequency  (MHz)

-60

-40

-20

0

20

40

60

Im
ag

 (Y
in

) 
 (

m
m

h
o

)

measured
computed

  

h=13.1 cm
H=38.2 cm
a=0.456 mm
c=14.55 cm
b/a=2.3
Z=(1+j) 5.1e-7 f

√

(b)

Figure 7. Input admittance of the lossy coax-can, (a) the real part
(b) the imaginary part.
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Figure 8. The computed and measured values of the normal electric
field (charge) at the can bottom for, (a) 570 MHz, (b) 1812 MHz, and
(c) 3000 MHz.

not modeled). Since appreciable power cannot escape the structure
excited by the monopole antenna operating below cutoff, the monopole
must present a purely reactive load to the generator.

The measured real part of input admittance in a very narrow
band about 469 MHz is very large relative to that at other frequencies,
even though this frequency is below the cut-off frequency (790 MHz).
The computed value of this real input admittance is very small and is
quite different from the measured. This divergence of measured and
computed values is expected and explainable. Since this operating
frequency is below cut-off, no appreciable energy should leak from
the can, which observation appears inconsistent with the significant
value of real Yin, which implies that power is being supplied to the
monopole. At 469 MHz, the monopole and its image effectively form a
straight segment which is λ/2 long. Under this condition the monopole
is resonant and its current is very large. This very large current
strongly excites the can and, hence, the losses in the monopole and
can are much greater than at other non-resonant frequencies. The
large real Yin is, indeed, consistent with significant power delivered
through the monopole to supply the losses experienced in the finitely
conducting material from which the can and monopole are fabricated.
The computed values of real Yin do not exhibit this behavior because
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Figure 9. The computed and measured values of the normal electric
field (charge) at the can wall for, (a) 570 MHz, (b) 1812 MHz, and (c)
3000 MHz.

the integral equation is formulated on the basis of the assumption
that the monopole and can are perfect conductors and, therefore, are
lossless. In Fig. 7 one finds, for the purpose of comparison, measured
and computed input admittance of a monopole attached to the bottom
of a brass can of Fig. 4a. Losses due to the finite conductivity of
the brass are accounted for in the analysis by making use of the well-
known surface impedance approximation. It has been ensured that the
thickness of the walls of brass can used in this measurement is at least
ten times greater than the skin depth at the frequency of operation.

In Fig. 8 are depicted real and imaginary parts of the measured
and computed normalized axially directed electric field strengths at the
bottom of the can along a line from the location of the coax center to
the can wall. Since it is not feasible to calibrate the charge and current
probes for absolute magnitude and phase, the measured data shown
in these figures are normalized by a complex constant at a selected
position along the radial slot. The basis of the normalization is that
one assumes the measured and calculated values to be equal at a single
point and then compares the two sets of data at other points along the
range (displacement) of measurements. This normalization is done to
aid the reader who wishes to compare measured and computed data.

In Fig. 9 are shown of real and imaginary parts of the measured
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and computed ρ-directed electric field strengths at the inner surface
of the can wall for the 12.6 cm long monopole antenna exciting the
can at selected frequencies. The measured data shown in these figures
are normalized by a complex constant so as to match the computed
data along the slot. Notice that, since the can is operated below cut-
off (1800 MHz), the actual data for the ρ-directed electric field should
have zero imaginary part.

One concludes that the indirect method suggested above is
rigorous, but less complex for determining the signal induced at the
load due to the laser beam excitation of the coax-can structure. Of
course one can determine the values needed in the reciprocity formula
by some other methods. Finally, excellent agreement is achieved
between computed and measured results in almost all cases. Where
the agreement is only “good”, explanations are offered.
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