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Abstract—A technique based on the Green’s function theory is used
in the present research in order to study theoretically the focusing
properties of a constructed 3D non-invasive microwave imaging system,
consisting of an ellipsoidal conductive cavity and a radiometric receiver.
A double layered spherical human head model is placed on one focal
point of the elliptical reflector, while the receiving antenna is placed
on the other focus. Making use of the reciprocity theorem, the
equivalent problem of the coupling between an elementary dipole and
the double layered lossy dielectric human spherical model is solved.
Numerical results concerning the electric field distribution inside the
head model and in the rest of the cavity, at two operating frequencies
(1.5 GHz and 3.5 GHz), are presented and compared to the results of
an electromagnetic simulator. Finally, phantom experimental results
validate the proof of concept and determine the temperature and
spatial attributes of the system.
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1. INTRODUCTION

During the past few years efforts have been made by several research
groups to implement intracranial applications of microwave radiometry
[1–3], due to the fact that microwaves at the frequency region of 1–
5 GHz provide sufficient penetration depth into the human body and
satisfactory directivity. Total power radiometric systems developed
over the years for medical and other applications, are discussed in
numerous papers [4–6], mainly consisting of radiometric systems with
contacting antennas. Edrich and Hardee developed a different kind
of system in 1974 [7], suggesting the use of a horn antenna with a
dielectric lens attached to the input of a total power receiver at 45 GHz
for the purpose of scanning an object. The infrared region though is
limited in its usefulness because living tissue readily absorbs it and
hence, only signals originating from the surface can be detected [8].

In the present paper, an innovative approach is introduced; a
total power receiver and relevant non-contacting antenna operating
at 3.5 GHz are used and the radiation emitted by the human body is
focused by an ellipsoidal reflector into the omnidirectional receiving
antenna connected to the sensitive total power radiometer. The
purpose of designing and constructing such a system was to potentially
perform imaging within the human skull for brain intracranial
diagnostic applications. The ellipsoidal conductive wall cavity is
essentially used as a three dimensional analog beamformer, exploiting
the fact that every ray originating from one focus will merge on the
other focus with the same path length. Therefore, given that the
human head is placed at one focal point inside the ellipsoidal reflector
and that the receiving antenna is placed at the other focal point,
convergence of the radiated electromagnetic energy from the human
brain in the microwave frequency regime, is achieved.

The theoretical analysis of chaotic radiation emerging from
material objects, under the condition of thermodynamic equilibrium
of matter with radiation, has been explained by Max Planck in the
beginning of the 20th century, when he set the foundations of Quantum
Theory [9]. This theory was based on the concept of the ideal black
body and was formed to explain experimental observations of the
chaotic radiation. Hence, when a lossy media is placed inside a cavity
with perfect conducting walls to provide an absolute isolation from
the surrounding space, the chaotic currents inside the lossy media
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generated by the radiation sources, cause an electric field distribution
inside the conductor wall cavity.

In the framework of the present research, in order to model
the field distribution inside an ellipsoidal conductive cavity in the
presence of a human head and especially the focusing properties of
the elliptical reflector, a semi-analytical technique is presented, based
on the use of the dyadic’s Green’s function theory. By imposing the
appropriate boundary conditions at a finite number of points on the
physical surfaces of the scattering objects and on the perfect conductor
wall cavity, the unknown coefficients of the dyadic Green’s function
are determined and therefore, the electric field is calculated at any
arbitrary point of the above configuration.

The present paper provides details on the theoretical analysis
and mathematical formulation of the problem and it discusses also,
the experimental results using phantoms as testing objects of an
experimental system prototype.

2. MATHEMATICAL FORMULATION — DYADIC
GREEN’S FUNCTION OF THE LAYERED SPHERE

The geometry of the problem is depicted in Fig. 1. The head is
modeled by a double-layered sphere with radii a1 and a2. The two
layers are used to simulate different biological media; bone and brain
(gray matter) tissues. The center of the head is placed on one of the
two focal points regions of a conductive wall ellipsoidal cavity. The
ellipsoidal by revolution that confines the spherical model of the human
head, is defined by the following equation:

x2 + y2

a2
+
z2

b2
= 1 (1)

The interior of the ellipsoidal is filled with air having wavenumber
k0 = ω

√
ε0µ0, where ω is the radian frequency, ε0 and µ0 are the

free-space permittivity and permeability, respectively. The system is
excited by an elementary dipole, which is placed on the other focal
point of the ellipsoidal. The problem can be solved with all antenna
orientations by considering the axis of the dipole parallel to the x-axis,
y-axis and z-axis of the coordinate system for each one of the three
solutions. The time dependence of the field quantities is assumed to
be eiωt and is suppressed throughout the analysis. In order to solve
this boundary value problem, a Green’s function technique is adopted.

According to the Reciprocity theorem, a response of a system to
a source is unchanged when source and measurer are interchanged.
Hence, instead of placing the source in the head model, the response



290 Karanasiou, Uzunoglu, and Garetsos

z

y

yx

z

x

φ

φ

φ

η

η

η

r

~
~

~

~

^

^

^

~

Figure 1. The geometry of the problem.

of the double-layered sphere, placed on one focal point of an ellipsoidal
cavity, to the excitation generated by an elementary dipole of unit
dipole moment, positioned on the other focus, is calculated. To
determine the Green’s function of the lossy dielectric sphere, a method
based on the superposition principle is employed [10]. Therefore, the
unknown dyadic Green’s function in each region i = 1, 2, 3 of space is
properly expanded to an infinite sum of spherical waves satisfying the
appropriate vector wave equation.

In the following analysis two Cartesian coordinate systems are
used: one defined as central, with origin the point of section of the
major and minor axes of the ellipsoidal and the other defined as local,
with origin the center of the sphere, as shown in Fig. 1. The unit
vectors of each coordinate system are denoted as x̂, ŷ, ẑ and ˆ̃x, ˆ̃y, ˆ̃z
for the central and local coordinate system respectively. Given the
displacement of the head from the focal point δx, δy, δz in central
coordinates, the transformation expression between the coordinates of
the two systems is defined by

x̃ = x− δx, ỹ = y − δy, z̃ = z − δz (2)
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By virtue of the spherical symmetry of the problem, the relevant central
and local spherical coordinates are used, with unit vectors r̂, n̂, ϕ̂ and
ˆ̃r, ˆ̃n, ˆ̃ϕ respectively.

Considering the finiteness of the field at r̃ = 0, the following
expressions describe the electric-type Green’s function inside the
layered sphere:

G1(r̃, r̃
′) =

∞∑
n=1

n∑
m=−n

[
m(1)

mn(r̃, k1)amn(r̃′) + n(1)
mn(r̃, k1)a′mn(r̃′)

]
,

r̃ ≤ a1 (3)

G2(r̃, r̃
′) =

∞∑
n=1

n∑
m=−n

[(
m(1)

mn(r̃, k2)bmn(r̃′) + n(1)
mn(r̃, k2)b′mn(r̃′)

)
,

+
(
m(2)

mn(r̃, k2)cmn(r̃′) + n(2)
mn(r̃, k2)c′mn(r̃′)

)]
,

a1 ≤ r̃ ≤ a2 (4)

where ki = k0
√
εi, amn(r̃′), a′mn(r̃′), . . . , c′mn(r̃′) are unknown coeffi-

cients to be determined and m
(j)
mn(r̃, ki), n

(j)
mn(r̃, ki), i = 1, 2; j = 1, 2

are the well known spherical wave functions [11].
Regarding, the region outside the head and inside the ellipsoidal

cavity, the electric field G3(r̃, r̃′) consists of the primary excitation
G0(r̃, r̃′) from the unit source located at r̃′ and the contribution of the
field Gs(r̃, r̃′), scattered from the double layered sphere. Thus,

G3(r̃, r̃
′) = G0(r̃, r̃

′) +Gs(r̃, r̃
′) (5)

where, G0(r̃, r̃′) is the free space dyadic Green’s function and is defined
by an infinite sum of spherical waves as [11, 12].

G0(r̃, r̃
′) =

∞∑
n=1

n∑
m=−n

(−1)m−jk0

4π
2n + 1
n(n + 1)

×


 m

(1)
−mn(r̃, k0)m

(3)
mn(r̃′, k0) + n

(1)
−mn(r̃, k0)n

(3)
mn(r̃′, k0), r̃ > r̃′

m
(3)
−mn(r̃, k0)m

(1)
mn(r̃′, k0) + n

(3)
−mn(r̃, k0)n

(1)
mn(r̃′, k0), r̃ < r̃′

(6)

(The case r̃ = r̃′ of Eq. (6) does not appear in the analysis).
while the scattered field mentioned above, given the presence of the
closed ellipsoidal cavity, is expressed by

Gs(r̃, r̃
′) =

∞∑
n=1

n∑
m=−n

[(
m(1)

mn(r̃, k2)dmn(r̃′) + n(1)
mn(r̃, k2)d′mn(r̃′)

)
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+
(
m(2)

mn(r̃, k2)emn(r̃′) + n(2)
mn(r̃, k2)e′mn(r̃′)

)]
, r̃ ≥ a2

(7)

Hereupon, the unknown expansion coefficients of the infinite sum of
spherical waves are determined by the boundary conditions on the
interfaces r̃ = a1, a2 [10–12] and on the conductive surface of the
ellipsoidal.

In order to satisfy the continuity of the tangential electric and
magnetic field components, the boundary conditions on the interfaces
r̃ = a1, a2 are then imposed by implementing the expressions:

ˆ̃r ×Gi(r̃, r̃
′) = ˆ̃r ×Gi+1(r̃, r̃

′), r̃ = ai; i = 1, 2 (8)
ˆ̃r ×

(
∇×Gi(r̃, r̃

′)
)

= ˆ̃r ×
(
∇×Gi+1(r̃, r̃

′)
)
, r̃ = ai; i = 1, 2

(9)

where ˆ̃r denotes the unit vector along the radial direction of the
local coordinate system (Fig. 1). By implementing the orthogonality
properties of the spherical wave functions [11], two independent 4 × 4
linear sets of equations are obtained for the unknown expansion
coefficients stated above. These two independent sets can be
solved analytically for the coefficients amn(r̃′), bmn(r̃′), cmn(r̃′) and
a′mn(r̃′), b′mn(r̃′), c′mn(r̃′) respectively.

The remaining boundary conditions to be imposed are on the
conductive surface of the ellipsoidal cavity, where the dot product of
the electric field with both independent unit tangential vectors t̂φ, t̂η
must be zero. The position vector of an arbitrary point on the surface
of the ellipsoid in terms of the central coordinate system is defined by

r = x̂a · cosϕ · sin η + ŷa · sinφ · sin η + ẑb · cos η (10)

Consequently,

t̂φ =
dr

/
dφ∣∣∣dr/dφ∣∣∣ = −x̂ sinφ+ ŷ cosφ = φ̂, (11)

which is expected given that the ellipsoidal is by revolution.
Similarly,

t̂η =
dr

/
dη∣∣∣dr/dη∣∣∣ =

e (x̂ cosφ + ŷ sinφ) · cos η − ẑ sin η√
1 + (e2 − 1) cos2 η

(12)
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where e = a/b is the ellipsoid’s eccentricity and φ, η, the angles
depicted in Fig. 1. The electric field at a point r lying in any region
i = 1, 2, 3 can be expressed as

Ei(r̃) = −jωµ0Gi(r̃, r̃
′) · p̂ (13)

where Gi(r̃, r̃′) is the dyadic Green’s function in the corresponding
region. J(r̃′) the current distribution of the source dipole placed at r̃′.
The quantity J(r̃′) is defined as

J(r̃′) = p̂ δ(r̃ − r̃′) (14)

when the dipole is aligned parallel to orientation p̂ and δ(r̃− r̃′) is the
well-known delta function.

Taking into account the above, the boundary condition on the
ellipsoid’s surface is expressed by

E3(r̃) · t̂φ = (Es(r̃) + Eo(r) · t̂φ = 0
E3(r̃) · t̂η = (Es(r̃) + Eo(r) · t̂η = 0

}
(15)

Hence, the resulting system from Eq. (15), to be solved, can be written
in the form

∞∑
n=1

n∑
m=−n

[
Qmn

(
dmn(r̃′) · p̂

)
+ Umn

(
d′mn(r̃′) · p̂

)]

= −
∞∑

n=1

n∑
m=−n

[
Amn

(
m

(3)
−mn(r̃′, k0) · p̂

)
+Bmn

(
n

(3)
−mn(r̃′, k0) · p̂

)

+Eo(r, r
′) · t̂φ

]
(16a)

∞∑
n=1

n∑
m=−n

[
Smn

(
dmn(r̃′) · p̂

)
+ Tmn

(
d′mn(r̃′) · p̂

)]

= −
∞∑

n=1

n∑
m=−n

[
Cmn

(
m

(3)
−mn(r̃′, k0) · p̂

)
+Dmn

(
n

(3)
−mn(r̃′, k0) · p̂

)

+Eo(r, r
′) · t̂η

]
(16b)

where Qmn, Umn, Amn, Bmn, Smn, Tmn, Cmn, Dmn are known scalar
coefficients. In Eq. (16a) and Eq. (16b), for the sake of simplicity,
instead of implementing the infinite sum of Eq. (6), the vector of the
free space field generated by the dipole of effective length leff and
feeding current I(0) = Io is expressed in Cartesian coordinates by

Eo(r, r
′) = p̂ (−jωµ0Ioleff ) ·

(
I + k−2

0 ∇∇
)
· exp (−jk0 |r − r′|)

4π |r − r′|
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where it is considered Ioleff = 1, I is the unit dyad and p̂ = x̂, ŷ or ẑ
the dipole’s orientation. Once dmn(r̃′) and d′mn(r̃′) are computed and
consequently, amn(r̃′), bmn(r̃′), cmn(r̃′), emn(r̃′) and a′mn(r̃′), b′mn(r̃′),
c′mn(r̃′), e′mn(r̃′) respectively, it is evident that the electric field can be
calculated at any point inside the ellipsoidal cavity and of course, inside
and outside the human head model, with very low computational cost.

3. NUMERICAL RESULTS AND VALIDATION OF THE
METHOD

The estimation of the electric field, as obtained from the equations of
Section 2, consists in the computation of a double sum with respect
to the integers n and m, representing the orders of the spherical wave
vectors used to express the field at any point inside the ellipsoidal.
The infinite sum with respect to n is convergent and, hence, it can
be truncated to a finite one. Therefore, Eq. (16) was applied on a
mesh of N(N + 2) collocation points on the surface of the ellipsoidal
by revolution and given the number of terms N required for the
convergence, can be equivalently written as

N∑
n=1

n∑
m=−n

[
Q(η̃,ϕ̃)

mn

(
dmn(r̃′) · p̂

)
+ U (η̃,ϕ̃)

mn

(
d′mn(r̃′) · p̂

)]

= −
N∑

n=1

n∑
m=−n

[
A(η̃,ϕ̃)

mn

(
m

(3)
−mn(r̃′, k0) · p̂

)
+B(η̃,ϕ̃)

mn

(
n

(3)
−mn(r̃′, k0) · p̂

)

+Eo(r, r
′) · t̂φ

]
(16c)

N∑
n=1

n∑
m=−n

[
S(η̃,ϕ̃)

mn

(
dmn(r̃′) · p̂

)
+ T (η̃,ϕ̃)

mn

(
d′mn(r̃′) · p̂

)]

= −
N∑

n=1

n∑
m=−n

[
C(η̃,ϕ̃)

mn

(
m

(3)
−mn(r̃′, k0) · p̂

)
+D(η̃,ϕ̃)

mn

(
n

(3)
−mn(r̃′, k0) · p̂

)

+Eo(r, r
′) · t̂η

]
(16d)

The detailed expressions of the scalar coefficients Q(η̃,ϕ̃)
mn , U (η̃,ϕ̃)

mn , A(η̃,ϕ̃)
mn ,

B
(η̃,ϕ̃)
mn , S

(η̃,ϕ̃)
mn , T

(η̃,ϕ̃)
mn , C

(η̃,ϕ̃)
mn , D

(η̃,ϕ̃)
mn in (16c) and (16d) are given in the

Appendix A.
The position of each collocation point is determined by the angles

(η̃, ϕ̃), appearing as indexes in the above equations and in conjunction
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with Eq. (2) and (10), are defined as:

φ̃ = tan−1
(
ỹ

x̃

)
= tan−1

(
a sinφ sin η − δy

a cosφ sin η − δx

)
(17)

η̃ = tan−1

(√
x̃2 − ỹ2

z̃

)

= tan−1

(√
(a cosφ sin η − δx)2 + (a sinφ sin η − δy)2

b cos η − δz

)
(18)

where η, ϕ are the corresponding angles expressed referring to the
central coordinate system. The mesh of the collocation points
comprises an even number of M cycles parallel to the xy plane with zi

coordinate along the z-axis of the central coordinate system, each one
enumerating µi points and expressed as:

zi = +b− 2b
M

(i− 1), i = 1, 2, . . . ,M + 1 (19)

µi =




1, i = 1, i = M + 1

2i, 2 ≤ i <
M

2

2M/2, i =
M

2

2M−(i−2),
M

2
< i ≤ M

(20)

At this point, the magnitude of the angles ηi, ϕi of an arbitrary point
on the surface of the ellipsoid (Fig. 1), is expressed as a function of zi

and µi as

ηi = tan−1
(
Ri

zi

)
, (21)

where Ri = a
(
1 −

( zi
b

)2
)1/2

, a, b are the dimensions of the ellipsoid
and

ϕi =




0, j = 1, j = M + 1
2π
µi

(j − 1), j = 1, . . . , µi + 1
(22)

The number of the collocation points emerging from this procedure
is equal to 2

M
2

+2 − 6. As stated above though, the total number
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of collocation points required is N(N + 2) and hence, the remaining
collocation points are: X = N(N + 2) −

(
2

M
2

+2 − 6
)

and are placed
on the major circle (with radius r = b) of the transversal section of the
ellipsoid. By observing Eq. (19) it is evident that the cycle in question
is not included. Therefore, the characteristic values of the angles η, ϕj

for this case are:

η =
π

2
and φj =

2π
X

(j − 1), j = 1, . . . , X + 1 (23)

Thus, by determining the position of every collocation point via the
calculated values of Eq. (21)–(23), the values of the angles η̃, ϕ̃
appearing in the (2N(N+2)×2N(N+2)) system to be solved (Eq. (16c)
and (16d)), are obtained from expressions (17) and (18).

The problem was solved for two different frequencies f1 = 1.5 GHz
and f2 = 3.5 GHz. The dimensions of the ellipsoid used for the com-
putation, which were the actual dimensions of the constructed cavity,
were a = 60 cm, b = 75 cm with inter-focal distance 2c = 2

√
b2 − a2 =

90 cm.
The dielectric properties of the tissue composition used for the

computation are ε1 = 50.74, σ1 = 1.23 for brain (gray matter) and
ε2 = 8.0, σ2 = 0.14 for skull at 1.5 GHz [13, 14]. The respective values
for the frequency of 3.5 GHz are: ε1 =47.31, σ1 =2.64 for brain (gray
matter) and ε2 = 7.9, σ2 = 0.25 for skull [13, 14]. The magnetic pro-
perties of the layers are denoted as µ1 = µ2 = µ0. The head model,
including skull (6–8 mm of thickness) and thick brain (gray matter) is
of total diameter 15 cm [15] and hence, a1 = 6.8 cm and a2 = 7.5 cm.

The size of the spherical object, its electrical characteristics and
especially the ratio of the sphere’s radius to the ellipsoid’s major axis,
affect critically the number of the terms required for the infinite sum
to converge. For the cases treated in this paper, it has been observed
that truncation of the infinite sum with respect to the order n of the
spherical wave vectors in the order of N = 11 and N = 17 for the
1.5 GHz and 3.5 GHz frequency respectively, ensures convergence of
the obtained solution at any point. The predictions of the Green’s
function code for the magnitude of the electric field for two successive
runs of the convergent number of terms show satisfying agreement (in
the order of 2%–3%). The continuity of the tangential fields at the
r̃ = a1, a2 interface planes between different layers has been checked
and verified numerically (excellent agreement in the order of 2%0–3%0),
while the validity of the boundary conditions on the surface of the
ellipsoidal has also been checked. Finally, comparison of the results
using the proposed semi-analytical technique with results obtained
by a software package for electromagnetic modeling of passive, three-



EM analysis of passive microwave imaging system 297

Figure 2. XY cut plane of the head model at the focal point at
1.5 GHz.

dimensional structures (High-Frequency Structure Simulator, HFSS
[16]), has shown completely equivalent results.

The results of the computation are depicted in the Figs. 2, 3 and
4 where the plots of the magnitude of the electric field in transversal
sections of the head model when its center is placed on the focal point
and the source dipole is of z-orientation, are shown. Clear focusing
of the electric field inside the human head model can be observed. In
the case of the 1.5 GHz operation frequency, the penetration depth
is in the order of more than 3 cm (Fig. 2) while in the case of the
3.5 GHz frequency, it doesn’t exceed 2 cm of depth (Fig. 4). The
maximum values of the electric field distribution inside the head model
are represented by the darkest shaded areas in the relevant figures. By
comparing the XY plane cut depicted in Fig. 3 which is 2.5 cm away
from the focus plane, with the corresponding figure to the XY focus
(Fig. 2) cut, it is evident that the electric field clearly merges on the
focus where the center of the human head model is placed. In Fig. 5
and 6 the respective results obtained by HFSS are depicted and are in
excellent agreement with those resulting from the code.
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Figure 3. XY cut plane of the head model moved 2.5 cm along z-axis
at 1.5 GHz.

Figure 4. XY cut plane of the head model at the focal point at
3.5 GHz.
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Figure 5. XY cut planes of the head model at the focal point and at
±2.5 cm away at 1.5 GHz.

Head model
physical
boundaries

Figure 6. XY cut planes of the head model at the focal point at
3.5 GHz.
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Figure 7. Experimental set-up — The microwave radiometry device.

4. EXPERIMENTAL PROCEDURE AND RESULTS

4.1. Experimental Set-up

The 3D microwave radiometric imaging device that was designed and
constructed in the framework of the present research is shown in
Fig. 7. It consists of an ellipsoidal conductive wall cavity, a radiometric
receiver operating at 3.5 GHz, and a relevant non-contact receiving
antenna. The characteristic property of the ellipsoidal [17] is that every
ray originating from one focal point will converge to the other focal
point with the same path length. Hence, all the rays of the radiated
energy of a source starting from one focus converge to the other by
keeping their total path lengths equal, following a single reflection
inside the conductive wall cavity. The inner surface of the cavity is
painted with a conducting paint to achieve a good reflection of incident
electromagnetic waves.

The total power radiometer was designed and constructed using
microstrip line technology, with frequency characteristics of (Fc =
3.5 GHz, BW = 200 MHz, Noise Figure = 1.23 dB). The use of chip
devices, which dissipate power varying with temperature, fact
that results in temperature compensation and replace closed loop
temperature compensation circuits to limit gain drift, is foreseen.

A standard sleeve cross-dipole was constructed using a semi-rigid
coaxial line. The antenna was positioned in parallel to the ellipsoid’s
major axis, in order to receive all the reflected waves on the walls of
the conductive cavity, in other words all polarizations.

The signal incident on the antenna is amplified and filtered
sequentially and then fed to an integrator-low pass filter and driven to
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a dc amplifier. The measured voltage at the output of the radiometer
is proportional to [18]

I ∼= (ω2
0µ0k/π) · ∆ω · ct · T (rA) · σ(rA) (24)

where, ω0 is the center frequency (in radians/sec) of the observed
microwave spectrum bandwidth, µ0 is the magnetic permeability
constant, ∆ω is the bandwidth of the observed microwave spectrum,
ct the speed of light in free space, T (rA) is the temperature spatial
distribution within the medium of interest, and σ(rA) is the spatial
distribution within the medium of interest for the electric conductivity.
Therefore, the measured output voltage is correlated linearly to the
product of T (rA)σ(rA) of the subject under measurement. In the
case of the water phantom experiments where there is variation of
temperature while the conductivity remains unchanged, it is evident
that the measured voltage provides estimations of temperature.

The base band signal at the output of the dc amplifier is sent
to an A/D acquisition card, which processes the measurement data.
The imaging system’s movement and data acquisition (sampling and
averaging) is controlled by a PC which is programmed to permit
a three dimensional movement of the system and therefore various
measurement modes: single selected points, surface (two dimensional)
and volume scans (three dimensional). This way, the system’s
temperature and spatial resolution can be accurately defined. With
a view to verify the proof of concept and estimate the system’s
temperature and spatial resolution, experiments using a small thermo-
insulating water phantom, were performed.

4.2. Temperature Resolution

A small cube (5 cm×5 cm×5 cm) made of thermal insulating material
with a small opening of (2 cm × 2 cm × 2 cm) containing a quantity of
water of several ml at different temperatures with its center placed
at the focal point, was used for this experiment. The thermal
insulating material ensures the minimization of thermal dissipation
and cooling of the content of the phantom. The phantom was chosen
to have small dimensions in order to verify the prediction of the 3 db
volume of the focal region, obtained from the numerical results and
in order to provide homogeneity of temperature distribution of the
water it contains. As reported above the measured voltage is linearly
correlated to the product of the subject under measurement. In
this case, the conductivity of the water phantom remains stable and
therefore the system’s output curves provide voltage and temperature
correlations. In Fig. 8 the expected linearity of the system is
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Figure 8. Output voltage versus temperature of water phantom.

observed. The phantom was filled each time with water at different
temperatures in the range of 35◦C–45◦C, which was measured with
a precision centigrade temperature sensor. During a time interval
of 8 seconds, 8000 samples were obtained for each measured point
(output voltage for each measured water temperature) with sampling
rate 1000 samples/sec. After the averaging procedure, the results
of the measured output voltage corresponding to the relevant water
temperature of the phantom are depicted in Fig. 8. The temperature
accuracy of the system is in the order of (1.5±0.5) mV/◦C and in terms
of temperature is approximately 1◦C. Finally, with this measurement
the capability of the system to detect small concentrated sources is
verified. Throughout the experiment the background voltage, which
was obtained with data acquisition of the response of an empty cavity
(no phantom present), was (0.5175 ± 0.0005) Volts.

4.3. Spatial Resolution

In order to estimate the spatial accuracy of the device, linear
displacements from the focal point with small increment steps of
the same water phantom were realized. During a time interval of 8
seconds, 8000 samples were obtained for each measured point (water
of certain temperature at each displacement position) with sampling
rate 1000 samples/sec. Initially, the water phantom was filled with
water of 38◦C. The device was programmed to make the following
movement: initially, 10 measurements were obtained with the phantom
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Figure 9. Output voltage of water phantom at 38◦C at the focal point
and 2 cm away from the focus.

placed on the focal point with the sampling rate stated above, followed
by the acquisition of the output voltage during the displacement of the
focal point of 2 cm along the Y -axis. Continuing, 5 measurements were
obtained at each one of the mentioned positions. The experiment ended
with the acquisition of 10 more values of the device’s output voltage
with the center of the small container placed on the focal point. In
Fig. 9 it is observed that the voltage drops 2 mV when the phantom
is moved away from the focus as much as 2 cm, with a measurement
voltage accuracy of 0.0005 V. Linear scans along each one of the three
orthogonal axes, show similar results.

The next experiment aimed at determining accurately the
system’s spatial resolution, therefore smaller increment steps of 0.5 cm
were implemented. The water’s temperature was 0.5 C less than
the first experiment (37.5 C), fact that explains the reduction of the
detected signal when the phantom is at the focal point. The same
experimental procedure was adopted. The results are depicted in
Fig. 10 where it is evident that the system is able of detecting sources
which are at least 1cm apart. Safe conclusions about the positions of
sources that are placed 5 mm away from each other can not be obtained,
as shown on the graph.

Finally, in order to verify the system’s spatial accuracy of 1 cm
for weaker sources, the same phantom was filled with water of 36 C
and the former experiment was repeated. With this configuration the
temperature and spatial accuracy of the device can be validated at
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Figure 10. Output voltage of water phantom at 37.5◦C at the focal
point and 1, 1.5 and 2 cm away from the focus.
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Figure 11. Output voltage of water phantom at 36◦C at the focal
point and 0.5, 1.5 and 2 cm away from the focus.

the same time: the reduction of the detected signal will lead to a
reassessment of the temperature resolution and the spatial resolution
will be verified with the comparison of the measured output voltage for
the same increment steps of displacement from the focal region. The
results are shown in Fig. 11. Indeed, in this case the measured voltage
when the phantom placed at the focus is 3 mV less than the respective
value of the first experiment. According to the system’s temperature



EM analysis of passive microwave imaging system 305

resolution obtained from experiments in Section 4.1, this corresponds
to 2◦C of temperature difference, fact that is valid. Also, it is observed
that for every 1 cm step the output voltage is reduced as much as
1 mV which is in complete accordance with the results obtained from
the former experiment.

5. DISCUSSION AND CONCLUSIONS

In this paper, a semi-analytical technique has been presented for the
study of the estimation of the electric field inside an ellipsoidal cavity,
generated by a dipole positioned on one focal point with the presence
of a double layered model of the human head, placed on the other focus
of the elliptical reflector. The proposed method is based on a Green’s
function methodology. Validation checks of the method have been
performed in comparison with the results obtained from a simulator
for two operating frequencies, 1.5 GHz and 3.5 GHz. According to
the theoretical analysis using the human head model, both Green’s
function theory and simulations predicted to obtain a penetration
depth of more than 4 cm and less than 2 cm at 1.5 GHz and 3.5 GHz
respectively. The radius of the focal region where maximum electric
filed is observed is approximately 3 cm and 1.5 cm at 1.5 GHz and
3.5 GHz correspondingly.

The system described in the electromagnetic analysis was
designed and constructed for future possible intracranial applications.
Experiments were performed in order to evaluate the prototype non-
invasive radiometric imaging system that consists of a conducting wall
ellipsoidal cavity with a microwave radiometric system as receiver,
operating at 3.5 GHz. The temperature sensitivity of the system
according to the phantom experiments is estimated approximately
1◦C. Based on the experimental analysis, with phantoms, the system’s
spatial resolution is 1 cm.

Referring to the systems feasibility in possible clinical and medical
applications, the device may be used in cases when the temperature
variations are in the order of at least 1◦C, such as temperature
monitoring in hyperthermia sessions, heat strokes or meningioma in
the brain where significant temperature changes take place. The
system is estimated from the theoretical analysis to provide high spatial
resolution ability in presence of the human head despite the mismatch
between air and head interface. In order to achieve various penetration
depths inside subcutaneous tissues and variant spatial accuracy of the
system depending on the focusing properties of the system at different
frequency ranges, radiometric receivers operating at various frequencies
or multi-band receivers provide results in this direction.
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APPENDIX A.

The scalar coefficients appearing in equations (16c) and (16d) are
expressed as follows:

Q(η̃,ϕ̃)
mn = m(1)

mn(r̃c, k0) · φ̂− Dn

En
m(2)

mn(r̃c, k0) · φ̂ (A1)

U (η̃,ϕ̃)
mn = n(1)

mn(r̃c, k0) · φ̂− D′
n

E′
n

n(2)
mn(r̃c, k0) · φ̂ (A2)

S(η̃,ϕ̃)
mn = m(1)

mn(r̃c, k0) · t̂η −
Dn

En
m(2)

mn(r̃c, k0) · t̂η (A3)

T (η̃,ϕ̃)
mn = n(1)

mn(r̃c, k0) · t̂η −
D′

n

E′
n

n(2)
mn(r̃c, k0) · t̂η (A4)

where r̃c is the position vector of a given collocation point, expressed
according to the local coordinate system discussed above.

Dn =
{(

jn(k2a2)jd
n(k0a2) − jd

n(k2a2)jn(k0a2)
)

+ ζmn

(
yn(k2a2)jd

n(k0a2) − yd
n(k2a2)jn(k0a2)

)}
(A5)

En = −
{(

jd
n(k2a2)yn(k0a2) − jn(k2a2)yd

n(k0a2)
)

+ ζmn

(
yd

n(k2a2)yn(k0a2) − yn(k2a2)yd
n(k0a2)

)}
(A6)

D′
n =

{(
k2

0j
d
n(k2a2)jn(k0a2) − k2

2jn(k2a2)jd
n(k0a2)

)
+ ζ ′mn

(
k2

0y
d
n(k2a2)jn(k0a2) − k2

2yn(k2a2)jd
n(k0a2)

)}
(A7)

E′
n = −

{(
k2

2jn(k2a2)yd
n(k0a2) − k2

0j
d
n(k2a2)yn(k0a2)

)
+ ζ ′mn

(
k2

2yn(k2a2)yd
n(k0a2) − k2

0y
d
n(k2a2)yn(k0a2)

)}
(A8)

where jn, yn are the spherical Bessel and Neumann functions
respectively and zd

n(x) =
(
d[xzn(x)]

/
dx

)
, with zn being either of the

jn, yn functions and cmn(r̃′) = ζmnbmn(r̃′), c′mn(r̃′) = ζ ′mnb
′
mn(r̃′).

Continuing,

A(η̃,ϕ̃)
mn = −Emn

Dn

En
m(2)

mn(r̃c, k0) · φ̂ (A9)

B(η̃,ϕ̃)
mn = −Emn

D′
n

E′
n

n(2)
mn(r̃c, k0) · φ̂ (A10)

where, Emn = (−1)m −jk0

4π
2n+1

n(n+1)(−jωµ0).
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Similarly,

C(η̃,ϕ̃)
mn = −Emn

Dn

En
m(2)

mn(r̃c, k0) · t̂η (A11)

D(η̃,ϕ̃)
mn = −Emn

D′
n

E′
n

n(2)
mn(r̃c, k0) · t̂η (A12)
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