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Abstract—In this paper, the modal method is applied to analyze
coated circular waveguide terminated by a perfect electric conductor
(PEC) plate. The key to this method is the accurate calculation
of the propagation constants of modes in coated circular waveguide.
To overcome numerical difficulties, such as overflow, encountered in
solving characteristic equation, the characteristic equation is modified
using Hankel function of the second kind instead of Bessel function
of the first kind in the coated layers. The modified characteristic
equation can be accurately solved to obtain the propagation constants
even for very large circular waveguide with highly lossy coatings.
To verify the modified characteristic equation, the attenuation
and scattering property of circular waveguide structure have been
simulated. Simulation results agree well with the reference results.
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1. INTRODUCTION

Coated circular waveguide structure has been studied over the years
due to its good electromagnetic property and wide applications to
scattering problems and circuits design. As mentioned in [1], the air
intake can be modeled as an open-ended circular waveguide terminated
at one end with a perfect electric conductor (PEC), which simulates
the engine blades. This model is a simple-minded approximation of
the practical model. Rigorous modal analysis of the coated circular
waveguide can help us figure out the field inside the cavity and pinpoint
the type of material that is most effective in the reduction of scattering.
The accurate and fast solution of circular waveguide structure can also
be used to verify newly developed numerical methods and characterize
the electromagnetic property of newly developed materials, such as
nano-materials.

Through the extensive investigation of many researchers, various
methods have been developed to simulate the circular waveguide
structure, including the modal method [1–4], the shooting and
bouncing ray (SBR) method [5, 6], the Generalized Ray Expansion
(GRE) method [7], iterative physical optics (IPO) method, progressive
physical optics (PPO) method [8], method of moment (MoM) [9, 10],
and fast finite element method (FEM) [11]. The SBR method lacks
accuracy at lower frequency and fails at caustics, but it can be used
for general-purpose calculations. The GRE method overcomes the
disadvantage of the SBR by subdividing the aperture into smaller
subapertures. The IPO method provides accurate results, even for
deep cavities, with moderate computational complexity. The numerical
techniques (MoM, FEM, and their combination) can treat arbitrarily
shaped three-dimensional cavities when the cavities are small. The fast
FEM can be used for the analysis of large cavities.

In this paper, the modal method is applied to analyze coated
circular waveguide terminated by a perfect electric conductor (PEC)
plate. The reason for choosing the modal method is its accuracy
and efficiency in analyzing circular waveguide structures. The key to
this method is the accurate calculation of the propagation constants
of modes in coated circular waveguide. To overcome numerical
difficulties, such as overflow, encountered in solving characteristic
equation [12, 13], the characteristic equation is modified using the
Hankel function of the second kind, instead of Bessel function of the
first kind in the coated layers. The modified characteristic equation
can be accurately solved to obtain the propagation constants even for
very large circular waveguide with highly lossy coatings. To verify
the modified characteristic equation, the attenuation and scattering



Multilayered coated circular waveguide 245

property of the circular waveguide structure have been simulated.
Simulation results agreed well with the reference results.

2. CHARACTERISTIC EQUATION AND ITS
MODIFICATION

Figure 1. Exaggerated cross-sectional view of multilayered coated
waveguide.

Figure 1 shows an exaggerated view of the coating layers to
illustrate the geometrical features of the circular waveguide as in [12].
In real applications, the coating layers will be very thin relative to the
diameter of the guide. The waveguide walls are assumed to be perfectly
conducting. The characteristic equation for modes’ propagation
constants is derived from the well-known method of seeking nontrivial
solution of the coefficients in the field expressions of the equations
obtained by enforcing the continuity of the four tangential fields at each
interface between two layers. The z-components of the electric and
magnetic vector potential (ψe

j and ψm
j , j = 1, 2, . . . , n+ 1 denotes the

index of the region) in each layer must satisfy the Helmholz equation
and the tangent components of electric fields, derived from ψe

j and ψm
j ,

must vanish on the waveguide wall. The characteristic equation for the
coated circular waveguide shown in Fig. 1 can be expressed as follows
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The detailed derivation of the characteristic equation (1) can be found
in [12]. As mentioned in [12] and [14], mij refers to the element in row
i and column j of a 4 × 4 matrix M = M2,1M

−1
2,2M3,2 · · ·M−1

n,nMn+1,n,
in which Ma,b indicates the matrix resulted from the tangential fields
in region a matched at boundary rb. The mij is a function of
Fi(ρ), Gi(ρ), K1(ρ), K2(ρ), and their derivatives. These components
can be expressed as follows:

Fi(ρ) = Jm(kρiρ), F ′
i (ρ) = J ′

m(kρiρ), 1 ≤ i ≤ n

Gi(ρ) = Nm(kρiρ), G′
i(ρ) = N ′

m(kρiρ), 2 ≤ i ≤ n

K1(ρ) = Jm(kρ n+1ρ)Nm(kρ n+1rn+1) −Nm(kρ n+1ρ)Jm(kρ n+1rn+1)
K ′
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ρi + k2

z = k2
i , k2

i = ω2µiεi, 1 ≤ i ≤ n+ 1

Jm is the Bessel function of the first kind of order m, Nm is the Bessel
function of the second kind of order m.

It is noted that the characteristic equation (1) in [12] cannot be
directly used to determine the kz for large circular waveguide with
highly lossy coatings numerically, due to the limitation of computer
precision. We will consider the characteristic equation in detail by a
special case. As mentioned in [12], in region n + 1, the characteristic
equation involves one term K1(rn) = Jm(χ1)Nm(χ2)−Nm(χ1)Jm(χ2),
in which χ1 = kρ n+1rn, χ2 = kρ n+1rn+1. Let P1 = Jm(χ1)Nm(χ2) and
P2 = Nm(χ1)Jm(χ2). In the case of Im(kρ n+1) < 0, both P1 and P2 will
be very large, as |Im(χ1)| and |Im(χ2)| increases (for example, more
than 20). Figure 2 shows the real and imaginary parts of P1 and P2 as
a function of the imaginary part of χ2. From Fig. 2, it is obvious that
these two large numbers P1 and P2 are deemed to be equal within the
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Figure 2. The real and imaginary parts of P1 and P2 as a function of
the imaginary part of χ2 : Re(χ2) = 3.0, r1/r2 = 99%, and m = 1.

range of computer precision. As a result, P1 minus P2 calculated using
computer will leave a random value that will numerically distort the
characteristic equation. In order to accurately solve the characteristic
equation numerically using computer, the large parts contained in the
characteristic equation must be offset before programming. In fact,
one can obtain a numerically stable formula using expression of Bessel
function, given as follows,

K1(rn) = Jm(χ1)Nm(χ2) −Nm(χ1)Jm(χ2)
= [iNm(χ1) +Hm(χ1)]Nm(χ2) −Nm(χ1)[iNm(χ2) +Hm(χ2)]
= Hm(χ1)Nm(χ2) −Nm(χ1)Hm(χ2) (2)

in which Hm is the Hankel function of the second kind of order m.
Let MP1 = Hm(χ1)Nm(χ2) and MP2 = Nm(χ1)Hm(χ2). Figure 3
shows the real and imaginary parts of MP1 and MP2 as a function
of the imaginary part of χ2. From the Fig. 3, it is observed that
K1(rn) can be more accurately calculated using the modified formula
K1(rn) = MP1 −MP2, as MP1 and MP2 are of the same order of
magnitude. The formula (2) shows that the numerically calculable
expression using computer can be obtained by substituting the Bessel
function of the first kind, Jm, with the Hankel function of the second
kind, Hm. In addition, the derivative of Jm should be changed
correspondingly into that ofHm. Figure 4 shows propagation constants
kzr2 in a circular waveguide coated with one-layer material (εr2 =
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Figure 3. The real and imaginary parts ofMP1 andMP2 as a function
of the imaginary part of χ2 : Re(χ2) = 3.0, r1/r2 = 99%, and m = 1.
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Figure 4. The propagation constants kzr2 in a circular waveguide
coated with one-layer material: εr2 = 1.0, µr2 = 1.5−j2.0, r2/λ = 1.0,
and r1 = 0.99r2.
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Figure 5. The propagation constants kzr2 in a circular waveguide
coated with one-layer material: εr2 = 1.0, µr2 = 1.5−j5.0, r2/λ = 1.5,
and r1 = 0.99r2.

1.0, µr2 = 1.5 − j2.0, r2/λ = 1.0, and r1 = 0.99r2) obtained using the
original and modified characteristic equations. The two characteristic
equations can produce all the propagation constants in almost the same
accuracy. When the cross-section of the circular waveguide becomes
larger (in wavelength) and the coating materials are more lossy, some
roots of the characteristic equation will be lost using the original
characteristic equation. The entire set of roots can be found using
the modified characteristic equation. This can be clearly observed
in Fig. 5. The characteristic equation for the multi-layer coated
waveguide (n + 1 > 2) can be easily modified by using Hm and its
derivative instead of Jm and its derivative in region i (1 < i < n+ 1),
respectively. The modified characteristic equation will enable us to
accurately find all propagation constants in the multi-layer (n+1 > 2)
coated waveguide.

In the coated circular waveguide, there are no longer pure TM and
TE modes, with exception of the case with m = 0. The normal modes
in the waveguide are commonly classified into EHmn and HEmn in
such way that in the limiting case of a vanishing thin coating [12],

HEmn → TEmn and EHmn → TMmn. (3)

After determination of the propagation constants, the modal field can
be calculated using the procedure described in [12].
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3. SCATTERING ANALYSIS OF CIRCULAR COATED
WAVEGUIDE

Figure 6. Coated waveguide illuminated by a plane wave.

Figure 6 shows a circular coated waveguide terminated by a PEC
plate. The coating material is lossy. The basic steps for the evaluation
of the scattering cross section from a coated waveguide are similar
to those of the uncoated waveguide. The difference between them
is that the normal modes in the coated waveguide attenuate as they
propagate. As mentioned in [1], in the following calculations, we
make two approximations: (i) the normal modes excited in the short
uncoated portion of the waveguide are the same as those encountered
in the previous uncoated guide, and (ii) the normal modes propagate
from the waveguide without any reflection or mode conversion. When
the length of the uncoated region near the waveguide opening is
sufficiently long (> λ/2), the transmission of the incoming wave into
the waveguide is not affected by the presence of the coating and the
assumption (i) above will be satisfied. If the frequency is not too
high and the thickness of coating is gradually increased, the reflection
of the transmitted normal mode is not significant [15] and the mode
conversion is not critical, which is the requirement of the assumption
(ii) mentioned above. Note the mode conversion is more significant at
a higher frequency [16]. For the interior irradiation, the propagation
factors should be modified, namely [1]

e−jγ2L ⇒ e−j2(γL1+γL2) (4)

where L1, and L2 are the lengths of the uncoated and coated regions
of the waveguide, respectively. The bar over the propagation constant
indicates that of the coated waveguide.
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4. NUMERICAL RESULTS

An in-house code using the modified characteristic equation has
been implemented for calculating the propagation constants in the
multilayered coated circular waveguide. The in-house code can also
be used to simulate the scattering from coated circular waveguide
structure shown in Fig. 6. The Muller’s method is applied to find
the roots of the characteristic equation. In order to avoid the loss of
the roots that correspond to the important modes, the initial values of
the roots scan the interesting region in the complex plane.

The propagation constants of the HE11, HE12, and EH11 modes
in the circular coated waveguide shown in Fig. 7 are given in Figs. 8–
10. The results from our code are compared to the results available in
[12].

Figure 7. A lossy magnetic coated waveguide with εr = 1.0, µr =
1.5 − j2.0.
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Figure 8. Attenuation constants of HE11 mode.
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Figure 9. Attenuation constants of HE12 mode.
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Figure 10. Attenuation constants of EH11 mode.



256 Hu et al.

0 6 0 120 180 240 300 360
0

50

100

150

200

φ (degree)

|E
ρ

| 
(V

/m
)

0 6 0 120 180 240 300 360
-100

0

100

200

Region 1
Region 2

Region 1
Region 2

φ (degree)

a
rg

(E
ρ

) 
(d

e
g

re
e

)

(a) Eρ (ρ = a − τ)

0 6 0 120 180 240 300 360
0

10

20

30

0 6 0 120 180 240 300 360
-100

0

100

200

Region 1
Region 2

Region 1
Region 2

|E
| 

(V
/m

)

 (degree)

a
rg

(E
) 

(d
e

g
re

e
)

 (degree)

φ

φ

φ

φ

(b) Eφ (ρ = a − τ)



Multilayered coated circular waveguide 257

0 6 0 120 180 240 300 360
0

50

100

150

200

0 6 0 120 180 240 300 360
-200

-100

0

100

Region 1
Region 2

Region 1
Region 2

|E
z
| 

(V
/m

)
a

rg
(E

z
) 

(d
e

g
re

e
)

 (degree)

 (degree)

φ

φ

(c) Ez (ρ = a − τ)

0 6 0 120 180 240 300 360
0

0.01

0.02

0.03

0.04

50 100 150 200 250 300 350
-200

-100

0

100

Region 1
Region 2

Region 1
Region 2

|H
| 

(A
/m

)
a

rg
(H

) 
(d

e
g

re
e

)

 (degree)

 (degree)φ

φ

ρ
ρ

(d) Hρ (ρ = a − τ)



258 Hu et al.

0 6 0 120 180 240 300 360
0

0.2

0.4

0.6

0.8

0 6 0 120 180 240 300 360
-200

-100

0

100

Region 1
Region 2

Region 1
Region 2

|H
| 

(A
/m

)
a

rg
(H

) 
(d

e
g

re
e

)

 (degree)

 (degree)φ

φ

φ

φ

(e) Hφ (ρ = a − τ)

0 6 0 120 180 240 300 360
0

0.05

0.1

0 6 0 120 180 240 300 360
-50

0

50

100

150

Region 1
Region 2

Region 1
Region 2

|H
z
| 

(A
/m

)
a

rg
(H

z)
 (

d
e

g
re

e
)

 (degree)

 (degree)

φ

φ

(f) Hz (ρ = a − τ)

Figure 11. The fields of the EH11 mode at the interface between the
two layers.



Multilayered coated circular waveguide 259

0 10 20 30 40 50 60
-10

-5

0

5

10

15

20

 θ (degree) 

←←←←ττττ /a=0.0%

←←←←ττττ /a=0.6%

←←←←ττττ /a=1.3%

 In-house Code
 [1]          

σ
φ

φ /
(

π a
2
)

(
dB

)

(a) θθ Polarization

0 10 20 30 40 50 60
-10

-5

0

5

10

15

20

25

 θ (degree) 

σ
φ

φ /
(

π a
2
)

(
dB

)

ττττ /a=0.0% →

ττττ /a=0.6% →→→→

ττττ /a=1.3% →→→→

 In-house Code
 [1]          

(b) φφ Polarization

Figure 12. The echo area of a PEC-terminated circular waveguide
coated with a lossy material: a = 3.9525 cm, f = 9.2 GHz, L =
26.46 cm, L1 = 1 cm, εr = 12 − j0.144, µr = 1.74 − j3.306.

It is observed from Figs. 8–10 that there are slight differences
between the results published in [12] and those obtained using our in-
house code. In order to verify the results obtained using our in-house
code, the phase and amplitude of the six field components of the EH11

mode at the interface between two layers are calculated and plotted in
Fig. 11 for a coated circular waveguide with τ/a = 4%, a/λ = 1.4433.
From Fig. 11, it is clearly observed that the phase and amplitude of
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all tangential fields match very well at the interface between the two
layers. This verifies the correctness of the present method and our
in-house code.

The scattering from the coated circular waveguide has also been
simulated. Figure 12 shows the echo area of the structure shown in
Fig. 6 with a = 3.9525 cm, f = 9.2 GHz, L = 26.46 cm, L1 = 1 cm,
εr = 12 − j0.144, µr = 1.74 − j3.306. It is observed that the
results obtained by our in-house code are in good agreement with that
published in [1] and the coating material can significantly reduce the
echo area of circular waveguide.

5. CONCLUSIONS

In this paper, the characteristic equation is modified via the application
of the Hankel function of the second kind, instead of Bessel function
of the first kind in the layer i (i ≥ 2). The modified characteristic
equation enables us to smoothly and accurately determine the
propagation constants in any coated circular waveguide numerically.
This allows us to predict correctly the scattering from the circular
coated waveguide.
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8. Rodŕıguez, J. L., F. Obelleiro, and A. G. Pino, “Iterative solutions
of MFIE for computing electromagnetic scattering of large open-
ended cavities,” IEE Proc. — Microw. Antennas Propag., Vol.
144, No. 2, 141–144, April 1997.

9. Wang, T. M. and H. Ling, “Electromagnetic scattering from
three-dimensional cavities via a connection scheme,” IEEE Trans.
Antennas Propagat., Vol. 39, 1505–1513, Oct. 1991.

10. Trintinalia, L. C. and H. Ling, “Electromagnetic scattering from
3-D arbitrary coated cavities via a connection scheme using
triangular patches,” J. Electromagn. Waves Appl., Vol. 8, 1411–
1423, No. 11, 1994.

11. Jin, J. M., “Electromagnetic scattering from large, deep, and
arbitrarily-shaped open cavities,” Electromagn., Vol. 18, 3–34,
1998.

12. Chou, R. C. and S. W. Lee, “Modal attenuation in multilayered
coated waveguides,” IEEE Trans. Microwave Theory Tech.,
Vol. 36, 1167–1176, July 1988.

13. Harrington, R. F., Time-Harmonic Electromagnetic Fields,
McGraw-Hill, New York, 1961.

14. Yeh, C. and G. Lindgren, “Computing the propagation
characteristics of radially stratified fibers: an efficient method,”
Appl. Optics, Vol. 16, 483–493, Feb. 1977.

15. Collin, R. E., “The optimum tapered transmission line matching
section,” Proc. IRE, Vol. 44, 539–548, Apr. 1956.

16. Unger, H., “Circular waveguide taper of improved design,” Bell
System Tech. J., Vol. 37, 899–912, July 1958.

Fu-Gang Hu was born in October 1977, Jiangxi, P. R. China. He
received B.Eng. and M.Eng. degrees from Xidian University, Xi’an,
P. R. China, in 1999 and 2002, respectively. He has been an
Associate Scientist with Temasek Laboratories, National University of
Singapore, Singapore, since 2002. His current research interest includes
electromagnetic modeling using numerical techniques.



262 Hu et al.

Chao-Fu Wang received the B.Sc. degree in mathematics from the
Henan Normal University, Xinxiang, China, in 1985, the M.Sc. degree
in applied mathematics from the Hunan University, Changsha, China,
in 1989, and the Ph.D. degree in electrical engineering from the
University of Electronic Science and Technology of China, Chengdu,
China, in 1995, respectively. From 1987 to 1996, he was a Lecturer,
and then an Associate Professor of the Department of Applied
Mathematics at the Nanjing University of Science and Technology
(NUST). Since February 1996, he has been an Associate Professor
of the Department of Electronic Engineering at the NUST. From
1996–1999, he was a Postdoctoral Research Fellow in the Center
for Computational Electromagnetics (CCEM), University of Illinois
at Urbana-Champaign (UIUC). From 1999–2001, he was a Research
Fellow in the Department of Electrical and Computer Engineering,
National University of Singapore (NUS). He is currently a Research
Scientist and Project Leader in the Temasek Laboratories, NUS. His
current research interests include fast algorithms for computational
electromagnetics, scattering and antenna analysis, ferrite components
and their analysis, MMIC design and simulation.
Yuan Xu received the B.S., M.S. degrees in mathematics from
Suzhou University, P. R. China, and Ph.D. degrees in electromagnetic
theory and microwave technology from Nanjing University of Science
and Technology, P. R. China, in 1988, 1991, and 2001, respectively.
He is currently a Research Scientist in the Temasek Laboratories,
National University of Singapore. From 1991 to 1999, he was
with Department of Applied Mathematics, Nanjing University of
Science and Technology. From May 1999 to September 2000, he
was a research assistant in Department of Electric Engineering, City
University of Hong Kong. His research interests include computational
electromagnetics, integral equation methods, and analysis of large-scale
electromagnetic radiation and scattering problem.
Yeow-Beng Gan received the B.Eng. (Hons) and M.Eng. degrees
in electrical engineering from the National University of Singapore,
Singapore, in 1989 and 1994, respectively. He has been with the DSO
National Laboratories (formerly the Defence Science Organisation)
since 1989, and was primarily responsible for the build-up of technical
capabilities in the analysis and design of antennas in DSO. He
became a Principal Member of Technical Staff in 1998, in the area of
electromagnetics and antennas. In May 2001, he was seconded to the
Temasek Laboratories, National University of Singapore, where he is
currently a Principal Research Scientist. His research interests include
periodic arrays for antennas and radomes, wave physics, computational
electromagnetics, and modeling of composite materials.


