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Abstract—In this paper, we analyze the transient electromagnetic
response from three-dimensional (3-D) dielectric bodies using a time
domain PMCHW (Poggio, Miller, Chang, Harrington, Wu) integral
equation. The solution method in this paper is based on the Galerkin’s
method that involves separate spatial and temporal testing procedures.
Triangular patch basis functions are used for spatial expansion and
testing functions for arbitrarily shaped 3-D dielectric structures. The
time domain unknown coefficients of the equivalent electric and
magnetic currents are approximated by a set of orthonormal basis
functions that are derived from the Laguerre functions. These basis
functions are also used as the temporal testing. Use of the Laguerre
polynomials as expansion functions characterizing the time variable
enables one to handle the time derivative terms in the integral equation
and decouples the space-time continuum in an analytic fashion. We
also propose an alternative formulation using a differential form of time
domain PMCHW equation with a different expansion for the equivalent
currents. Numerical results computed by the two proposed methods
are presented and compared.
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1. INTRODUCTION

For the solution of the transient scattering from conducting and
dielectric objects using time domain integral equations, the marching-
on in time (MOT) technique is extensively employed [1]. A serious
drawback of this algorithm is the occurrence of late-time instabilities
in the form of high frequency oscillation. Several MOT formulations
have been presented for the solution of the electromagnetic scattering
from arbitrarily shaped 3-D dielectric structures using triangular patch
modeling technique [2–4]. An explicit solution of the time domain
PMCHW formulation has been presented by differentiating the coupled
integral equations and using second order finite difference [2]. But the
results become unstable for late times. The late-time oscillations could
be eliminated by approximating the average value of the current. In
addition, a backward finite difference approximation for the magnetic
vector potential term in the time domain electric field integral equation
has been used for the implicit technique to minimize these late-time
oscillations [3, 4]. Even though employing the implicit technique, the
solution obtained by using MOT has still a late-time oscillation that
is dependent on the choice of the time step.

In this paper, we present a new technique to obtain stable
responses of the time domain PMCHW formulation for arbitrarily
shaped 3-D dielectric objects using Laguerre polynomials as temporal
basis functions. The Laguerre series is defined only over the interval
from zero to infinity, and hence, are considered to be more suited
for the transient problem, as they naturally enforce causality. Using
the Laguerre polynomials, we construct a set of orthonormal basis
functions [5]. Transient quantities that are functions of time can be
spanned in terms of these orthogonal basis functions. The temporal
basis functions used in this work are completely convergent to zero
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as time increases to infinity. Therefore, transient response spanned
by these basis functions is also convergent to zero as time progresses.
Using Galerkin’s method, we introduce a temporal testing procedure,
which is similar to the spatial testing procedure of the method of
moments (MoM). By applying the temporal testing to the time domain
integral equations, we can eliminate the numerical instabilities. Instead
of the MOT procedure, we employ a marching-on in-degree procedure
by increasing the degree of the temporal testing functions. Therefore,
we can obtain the unknown coefficients of the expansion by solving a
matrix equation recursively with a finite number of basis functions.

In the next section, we describe the time domain PMCHW
formulation and set up a matrix equation by applying MoM with
spatial and temporal testing procedures. Section 3 describes an
alternative technique using a differential form of the coupled integral
equations with a different expansion for the equivalent currents.
Section 4 presents and compares numerical results followed by
Section 5, the conclusion.
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Figure 1. Homogeneous dielectric body illuminated by an electroma-
gnetic pulse.

2. FORMULATION

In this section, we discuss the time domain PMCHW formulation
and derive a matrix equation to obtain induced equivalent currents
on a dielectric scatterer, which is illuminated by an electromagnetic
pulse. We consider a homogeneous dielectric body with a permittivity
ε2 and a permeability µ2 placed in an infinite homogeneous medium
with a permittivity ε1 and a permeability µ1, as shown in Fig. 1. By
invoking the equivalence principle, the integral equation is formulated
in terms of the equivalent electric and magnetic current J and M on
the surface S of the dielectric body. By enforcing the continuity of
the tangential electric and magnetic field at S, the following PMCHW
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integral equations are obtained:

2∑
v=1

[
∂

∂t
Av(r, t)+∇Φv(r, t) +

1
εv

∇×F v(r, t)
]
tan

= [Ei(r, t)]tan, r ∈ S

(1)
2∑

v=1

[
∂

∂t
F v(r, t)+∇Ψv(r, t)−

1
µv

∇×Av(r, t)
]
tan

= [H i(r, t)]tan, r ∈ S

(2)

where v is 1 or 2, Ei and H i are the incident electric and magnetic
fields, respectively. The subscript ‘tan’ denotes the tangential
component. In (1) and (2), Av and F v are the magnetic and electric
vector potentials, respectively, and Φv and Ψv are the electric and
magnetic scalar potentials given by

Av(r, t) =
µv

4π

∫
S

J(r′, τv)
R

dS′ (3)

F v(r, t) =
εv

4π

∫
S

M(r′, τv)
R

dS′ (4)

Φv(r, t) =
1

4πεv

∫
S

qe(r′, τv)
R

dS′ (5)

Ψv(r, t) =
1

4πµv

∫
S

qm(r′, τv)
R

dS′ (6)

where R = |r − r′| represents the distance between the arbitrarily
located observation point r and the source point r′, τv = t − R/cv is
the retarded time, and cv = 1/

√
εvµv is the velocity of propagation

of the electromagnetic wave in the space with medium parameters
(εv, µv). The electric and magnetic surface charge density qe and qm
are related to the electric and magnetic current density by the equation
of continuity, respectively,

∇ · J(r, t) = − ∂

∂t
qe(r, t) (7)

∇ · M(r, t) = − ∂

∂t
qm(r, t) (8)

The integral equations described by (1) and (2) consist of the combined
field integral equation since we enforced the continuity condition on the
electric and magnetic fields.
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2.1. Spatial Expansion and Testing

The surface of the dielectric structure to be analyzed is approximated
by planar triangular patches. As in [6], we define the spatial basis
function associated with the n-th common edge as

fn(r) = f+
n (r) + f−

n (r) (9a)

f±
n (r) =




ln

2A±
n

ρ±
n , r ∈ T±

n

0, r /∈ T±
n

(9b)

where ln and A±
n are the length of the edge and the area of triangle

T±
n . ρ±

n is the position vector defined with respect to the free vertex of
T±

n . In general, the electric current J and the magnetic current M on
the dielectric structure may be approximated in terms of this spatial
basis function as

J(r, t) =
N∑

n=1

Jn(t)fn(r) (10)

M(r, t) =
N∑

n=1

Mn(t)fn(r) (11)

where Jn and Mn are constants yet to be determined and N is
the number of edges on the surface for the triangulated model
approximating the surface of the dielectric body. When (5) and (6)
are used in (1) and (2), we encounter time-integral terms which are
due to (7) and (8). For convenience and to avoid the computation of
the time derivatives numerically, we evaluate the time derivative of the
vector potential in (1) and (2) analytically. We introduce new source
vectors e and h defined by

J(r, t) =
∂

∂t
e(r, t) (12)

M(r, t) =
∂

∂t
h(r, t) (13)

where the relation between these source vectors and the charge
densities are given through

qe(r, t) = −∇ · e(r, t) (14)
qm(r, t) = −∇ · h(r, t). (15)

By using (9), we may expand the two source vectors as

e(r, t) =
N∑

n=1

en(t)fn(r) (16)
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h(r, t) =
N∑

n=1

hn(t)fn(r) (17)

where en and hn are the time-domain unknown coefficients to be
determined.

The next step in the numerical implementation scheme is to
develop a testing procedure to transform the operator equations (1)
and (2) into a matrix equation using the MoM. First, we consider the
testing of (1). By substituting (3)–(5) and (12)–(14) into (1) with
(16) and (17), and choosing the expansion function fm also as testing
functions with the standard definition of the inner product, we have

2∑
v=1

N∑
n=1

∑
p,q

[
µva

pq
mn

d2

dt2
en(τpq

mn,v) +
bpq
mn

εv
en(τpq

mn,v)

+
Ipq
1

cv

d2

dt2
hn(τpq

mn,v) + Ipq
2

d

dt
hn(τpq

mn,v)

]
= V E

m (t), m = 1, 2, . . . , N (18)

where

apq
mn =

1
4π

∫
S

fp
m(r) ·

∫
S

f q
n(r′)
R

dS′dS (19)

bpq
mn =

1
4π

∫
S
∇ · fp

m(r)
∫

S

∇′ · f q
n(r′)
R

dS′dS (20)

Ipq
k =

1
4π

∫
S

fp
m(r) ·

∫
S

f q
n(r′) × R̂

Rk
dS′dS, k = 1, 2 (21)

V E
m (t) =

∫
S

fm(r) · Ei(r, t)dS. (22)

In (21), R̂ is a unit vector along the direction r − r′. The integrals
(19) and (20) may be evaluated by the method described in [6] and [7].
The integral in (21) may be evaluated using the Gaussian quadrature
integral scheme for unprimed and primed coordinates numerically.
In deriving (18), we assumed that the functions dependent on the
following variable do not change appreciably within a given triangular
patch so that

τv = t− R

cv
→ τpq

mn,v = t− Rpq
mn

cv
, Rpq

mn = |rcp
m − rcq

n |

where p and q are + or −. rc±
n is the position vector of the center in

triangle T±
n .
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2.2. Temporal Expansion and Testing

Now, we consider the choice of the temporal basis functions and the
temporal testing procedure. An orthonormal basis function set can be
derived from the Laguerre functions through the representation [5]

φj(t) = e−t/2Lj(t) (23)

where Lj is the Laguerre polynomial of degree j. They are causal, i.e.,
exist for t ≥ 0. The coefficients for the temporal expansion functions
en(t) and hn(t) introduced in (16) and (17) are assumed to be causal
electromagnetic response functions for t ≥ 0. They can be expanded
using (23) as

an(t) =
∞∑

j=0

an,jφj(st) (24)

where an(t) represents en(t) or hn(t), an,j is the coefficient to be
determined, and s is a scaling factor. Using the orthogonality of (23)
[8], the expressions for the first and the second derivatives can be
written explicitly using the time domain coefficient and are given by

d

dt
an(t) = s

∞∑
j=0


1

2
an,j +

j−1∑
k=0

an,k


φj(st) (25)

d2

dt2
an(t) = s2

∞∑
j=0


1

4
an,j +

j−1∑
k=0

(j − k)an,k


φj(st). (26)

Substituting the expressions of expansion of the unknown and their
derivatives (24)–(26) into (18), and performing a temporal testing,
which means multiplying φi(st) and integrating from zero to infinity,
we get

2∑
v=1

N∑
n=1

∑
p,q

∞∑
j=0






(
s2

4
µva

pq
mn +

bpq
mn

εv

)
en,j+s2µva

pq
mn

j−1∑
k=0

(j−k)en,k




·Iij
(
s
Rpq

mn

cv

)


(
s2

4
Ipq
1

cv
+
s

2
Ipq
2

)
hn,j+

j−1∑
k=0

(
s2
Ipq
1

cv
(j − k)+sIpq

2

)
hn,k




· Iij
(
s
Rpq

mn

cv

)]
= V E

m,i (27)

where en,j and hn,j are unknown coefficients related to the en(t) and
hn(t), respectively, and

Iij

(
s
Rpq

mn

cv

)
=

∫ ∞

0
φi(st)φj

(
st− s

Rpq
mn

cv

)
d(st) (28)
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V E
m,i =

∫ ∞

0
φi(st)V E

m (t)d(st). (29)

Using the formula (8.971) and (8.974) in [9], the integral (28) can be
computed as

Iij(y) =

{
φi−j(y) − φi−j−1(y), j ≤ i

0, j > i
(30)

where y = sRpq
mn/cv.

We note that Iij = 0 when j > i from (30). Therefore we can
write the upper limit for the summation over j as i instead of ∞ in
(27). By moving the terms associated with en,j and hn,j , which are
known for j < i, to the right-hand side, we obtain

N∑
n=1

(
αE

mnen,i + βE
mnhn,i

)
= V E

m,i + PE
m,i +QE

m,i (31)

where

αE
mn =

2∑
v=1

∑
p,q

(
s2

4
µva

pq
mn +

bpq
mn

εv

)
exp

(
−sR

pq
mn

2cv

)
(32)

βE
mn =

2∑
v=1

∑
p,q

(
s2

4
Ipq
1

cv
+
s

2
Ipq
2

)
exp

(
−sR

pq
mn

2cv

)
(33)

PE
m,i = −

2∑
v=1

N∑
n=1

∑
p,q


(

s2

4
µva

pq
mn +

bpq
mn

εv

)
i−1∑
j=0

en,jIij

(
s
Rpq

mn

cv

)

+ s2µva
pq
mn

i∑
j=0

j−1∑
k=0

(j − k)en,kIij

(
s
Rpq

mn

cv

)
 (34)

QE
m,i = −

2∑
v=1

N∑
n=1

∑
p,q




(
s2

4
Ipq
1

cv
+
s

2
Ipq
2

)
i−1∑
j=0

hn,jIij

(
s
Rpq

mn

cv

)

+s2
Ipq
1

cv

i∑
j=0

j−1∑
k=0

(j − k)hn,kIij

(
s
Rpq

mn

cv

)

+ sIpq
2

i∑
j=0

j−1∑
k=0

hn,kIij

(
s
Rpq

mn

cv

)
 (35)

Using a similar procedure to derive (31) from (1) or applying a duality
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theorem, we obtain the following from (2) as

N∑
n=1

(
αH

mnhn,i + βH
mnen,i

)
= V H

m,i + PH
m,i +QH

m,i (36)

where

αH
mn =

2∑
v=1

∑
p,q

(
s2

4
εva

pq
mn +

bpq
mn

µv

)
exp

(
−sR

pq
mn

2cv

)
(37)

βH
mn = −

2∑
v=1

∑
p,q

(
s2

4
Ipq
1

cv
+
s

2
Ipq
2

)
exp

(
−sR

pq
mn

2cv

)
(38)

PH
m,i = −

2∑
v=1

N∑
n=1

∑
p,q


(

s2

4
εva

pq
mn +

bpq
mn

µv

)
i−1∑
j=0

hn,jIij

(
s
Rpq

mn

cv

)

+ s2εva
pq
mn

i∑
j=0

j−1∑
k=0

(j − k)hn,kIij

(
s
Rpq

mn

cv

)
 (39)

QH
m,i =

2∑
v=1

N∑
n=1

∑
p,q


(

s2

4
Ipq
1

cv
+
s

2
Ipq
2

)
i−1∑
j=0

en,jIij

(
s
Rpq

mn

cv

)

+s2
Ipq
1

cv

i∑
j=0

j−1∑
k=0

(j − k)en,kIij

(
s
Rpq

mn

cv

)

+ sIpq
2

i∑
j=0

j−1∑
k=0

en,kIij

(
s
Rpq

mn

cv

)
 (40)

V H
m,i =

∫ ∞

0
φi(st)V H

m (t)d(st) (41)

V H
m (t) =

∫
S

fm(r) · H i(r, t)dS (42)

We can write (31) and (36) in a matrix equation as


[
αE

mn

] [
βE

mn

]
[
βH

mn

] [
αH

mn

]

 [

[en,i]
[hn,i]

]
=




[
γE

m,i

]
[
γH

m,i

]

 , i = 0, 1, 2, . . . ,∞ (43)

where γE
m,i = V E

m,i + PE
m,i + QE

m,i and γH
m,i = V H

m,i + PH
m,i + QH

m,i.
We need the minimum degree or number of temporal basis functions,
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M , in computing (43). This parameter is dependent on the time
duration of the transient response and the bandwidth of the excitation
signal. When we consider a signal with a frequency bandwidth B in
the frequency domain and the time duration Tf in the time domain,
the minimum number of temporal basis functions to approximate the
transient signal becomes M = 2BTf + 1 [5]. We note that the upper
limit of the integral in (29) and (41) can be replaced by the time
duration sTf instead of infinity.

2.3. Equivalent Currents and Far Field

By solving the matrix equation (43) in a marching-on in degree manner
with M temporal basis functions, the electric and magnetic transient
current coefficients in (10) and (11) are expressed using the relation
(12) and (13) with (25) as, respectively,

Jn(t) =
∂

∂t
en(t) = s

M−1∑
j=0


1

2
en,j +

j−1∑
k=0

en,k


φj(st) (44)

Mn(t) =
∂

∂t
hn(t) = s

M−1∑
j=0


1

2
hn,j +

j−1∑
k=0

hn,k


φj(st). (45)

Once the coefficients of equivalent currents on the dielectric
scatterer have been determined, we can compute the far scattered
fields. These fields may be thought as the superposition of the fields
due to the electric currents only and with the fields due to the magnetic
currents only. We explain the analytic method to compute the far
fields directly by using the coefficient en(t) and hn(t) obtained from
(43). The scattered field due to the electric currents alone at a point
r is given by

Es
J(r, t) ≈ − ∂

∂t
A1(r, t) (46)

where the subscript J refers to the field due to the electric current.
Substituting (3), (12), and (16) into (46) with (9a), we get

Es
J(r, t) ≈ −µ1

4π

N∑
n=1

∑
q

∫
S

d2

dt2
en

(
t− R

c1

)
f q

n(r′)
R

dS′. (47)

We make the following approximations for the far field calculations:

R ≈ r − r′ · r̂ for the time retardation term t−R/c1
R ≈ r for the amplitude term 1/R
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where r̂ = r/r is a unit vector in the direction of the radiation and c1
is the velocity of light in medium 1. The integral in (47) is evaluated
by approximating the integrand by the value at the center of the source
triangle T q

n . Substituting (9b) into (47) and approximating r′ ≈ rcq
n

and ρq
n ≈ ρcq

n , we obtain

Es
J(r, t) ≈ − µ1

8πr

N∑
n=1

ln
∑
q

ρcq
n

d2

dt2
en(τ q

n) (48)

where τ q
n ≈ t− (r − rcq

n · r̂)/c1.
The scattered magnetic field is given by

Hs
M (r, t) ≈ − ∂

∂t
F 1(r, t) (49)

where the subscript M refers to the field due to the magnetic current.
By following a similar analysis as that for the electric current or
applying the duality theorem to (47), the far magnetic field is given by

Hs
M (r, t) ≈ − ε1

4π

N∑
n=1

∑
q

∫
S

d2

dt2
hn

(
t− R

c1

)
f q

n(r′)
R

dS′

= − ε1
8πr

N∑
n=1

ln
∑
q

ρcq
n

d2

dt2
hn(τ q

n). (50)

From (50), the electric field is

Es
M (r, t) = η1H

s
M (r, t) × r̂ (51)

where η1 is the wave impedance in the medium surrounding the
scatterer. Finally the total field scattered from the dielectric body
may be obtained by adding (48) and (51) with (50) as

Es(r, t) ≈ − 1
8πc1r

(
η1

N∑
n=1

An +
N∑

n=1

F n × r̂

)
(52)

where

An = ln
∑
q

ρq
n

d2

dt2
en(τ q

n) (53)

F n = ln
∑
q

ρq
n

d2

dt2
hn(τ q

n). (54)

The second derivative of the time-domain coefficient is obtained from
(26) with M − 1 as the upper limit of summation over j instead of ∞.
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3. ALTERNATIVE FORMULATION

In this section, we present an alternative method using the expansion
for the equivalent currents directly instead of using the two source
vectors. Taking a derivative with respect to time, we derive the
following integral equations from (1) and (2)

2∑
v=1

[
∂2

∂t2
Av(r, t) + ∇ ∂

∂t
Φv(r, t) +

1
εv

∇× ∂

∂t
F v(r, t)

]
tan

=
[
∂

∂t
Ei(r, t)

]
tan

, r ∈ S (55)

2∑
v=1

[
∂2

∂t2
F v(r, t) + ∇ ∂

∂t
Ψv(r, t) −

1
µv

∇× ∂

∂t
Av(r, t)

]
tan

=
[
∂

∂t
H i(r, t)

]
tan

, r ∈ S. (56)

This form of PMCHW formulation has been solved by using MOT
technique in [2]. Using (10) and (11), the time domain electric and
magnetic current coefficients are expanded as

Jn(t) =
∞∑

j=0

Jn,jφj(st) (57)

Mn(t) =
∞∑

j=0

Mn,jφj(st) (58)

where Jn,j and Mn,j are the time domain current coefficients to be
determined. Substituting (57) and (58) with (3)–(11) into (55) and
(56), and following a similar procedure as that for (43), we have a
matrix equation


[
αE

mn

] [
βE

mn

]
[
βH

mn

] [
αH

mn

]

 [

[Jn,i]
[Mn,i]

]
=




[
γE

m,i

]
[
γH

m,i

]

 , i = 0, 1, 2, . . . ,∞

(59)
where the impedance matrix elements in the left hand side are same
to those used in (43) in the previous section and the elements related
to the right hand side are obtained by replacing Jn,j and Mn,j instead
of en,j and hn,j , respectively, and

V E
m (t) =

∫
S

fm(r) · ∂
∂t

Ei(r, t)dS (60)
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V H
m (t) =

∫
S

fm(r) · ∂
∂t

H i(r, t)dS. (61)

By solving (59) with a marching-on in degree algorithm with M
temporal basis functions, we can obtain the electric and magnetic
current coefficients directly as given in (57) and (58) by replacing M−1
instead of ∞. The far field is obtained by the same expression as (52),
where

An = ln
∑
q

ρq
n

d

dt
Jn(τ q

n) (62)

F n = ln
∑
q

ρq
n

d

dt
Mn(τ q

n). (63)

The first derivative of the equivalent current coefficients is given in (25)
with M − 1 as the upper limit of summation over j instead of ∞.

4. NUMERICAL EXAMPLES

In this section, we present the numerical results for various
representative 3-D dielectric scatterers with a ralative permittivity
εr = 2, placed in the free space. In this section, c and η mean the
speed of the wave propagation and the wave impedance of the free
space, respectively. The scatterers are illuminated by a Gaussian plane
wave, in which the electric and magnetic fields are given by

Ei(r, t) = E0
4√
πT

e−γ2
, H i(r, t) =

1
η
k̂ × Ei(r, t) (64)

where γ = (4/T )(ct− ct0 − r · k̂), k̂ is the unit vector in the direction
of the wave propagation, T is the pulse width of the Gaussian impulse,
and t0 is a time delay which represents the time at which the pulse
peaks at the origin. In this work, the field is incident from φ = 0◦ and
θ = 0◦ with k̂ = −ẑ, and E0 = x̂. In the numerical computation,
we use a Gaussian pulse of T = 2 lm and ct0 = 4 lm. The unit ‘lm’
denotes a light meter. One light meter is the length of time taken
by the electromagnetic wave to travel 1 m in the free space. This
pulse has a frequency spectrum of 500 MHz, which include several
internal resonant frequencies of the structures to be analyzed. We set
s = 2 × 109 and M = 80, which is sufficient to get accurate solutions.
All the solutions computed by our presented methods are compared
with the inverse discrete Fourier transform (IDFT) of the solutions
by the frequency-domain PMCHW formulation described in [10] in
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the range of 0–500 MHz interval with 128 samples. All the far field
solutions are θ- (or x-) component of electric fields taken along the
backward direction (+z axis) from the scatterers. In all legends of
figures to be shown, ‘FD-PMCHW’ means IDFT solutions. ‘PMCHW
(I)’ and ‘PMCHW (II)’ mean results computed by the formulation
described in Section 2 and the alternative formulation in Section 3,
respectively.

As a first example, we consider a dielectric sphere of radius 0.5 m
centered at the origin. This has a total of 528 patches and 792 edges.
Fig. 2 shows the transient response for the θ-directed electric and
magnetic currents on the sphere at θ = 90◦ computed by the two
presented methods and compares them with the IDFT solution. The
current directions to be observed are designated by arrows on the
common edges of triangle pairs. We can see that the solutions of
two presented methods are stable and the agreement with the IDFT
solutions is good. Fig. 3 presents the transient response for the back-
scattered far field obtained by the two techniques just presented along
with the Mie series solution and the IDFT solution. All the four
solutions agree well as is evident from the figure.

Next, we show several examples of far field response from the
various dielectric structures from Fig. 4 to Fig. 10. Fig. 4 presents the
transient response for the far field from a dielectric hemisphere with the
IDFT solution. The hemisphere has a radius of 0.5 m. This has a total
of 432 patches and 648 edges. The transient responses for the far field
computed by the proposed methods are stable. All the three solutions
agree well as is evident from the figure. Fig. 5 shows the far field from a
dielectric cone, which has a base of 0.5 m radius placed at z = 0 and 1 m
height along the z-direction. This cone is divided into 624 triangular
patches with a total number of 936 edges. Back-scattered far-zone field
obtained using the two proposed method are stable. A good agreement
in the three results is evident for this example. Next the structure of
the dielectric double cones is considered, which is shown in Fig. 6. The
height of the cones along z-direction is 1 m and the radius at z = 0 is
0.5 m. This structure is divided into 528 triangular patches with a total
number of 792 edges. In this figure, the back-scattered fields computed
by our proposed methods are compared with the IDFT result.

The next example is the structure of a hemisphere terminated by
a cone, which is shown in Fig. 7. The radius of the hemisphere is
0.5 m and the height of the cone along the z-direction is 0.5 m. This
structure is divided into 528 triangular patches with a total number
of 792 edges. In Fig. 7, the back-scattered fields are computed by our
proposed methods and are compared with the IDFT results. The next
structure to be analyzed is the dielectric cylinder centered at the origin,
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(a)

(b)

Figure 2. Transient current responses on the dielectric sphere at
θ = 90◦. (a) Electric current density at φ = 7.5◦. (b) Magnetic
current density at φ = 172.5◦.
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Figure 3. Backward scattered field from the dielectric sphere along
the +z direction. Number of edges N = 792.

Figure 4. Backward scattered field from the dielectric hemisphere
along the +z direction. Number of edges N = 648.
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Figure 5. Backward scattered field from the dielectric cone along the
+z direction. Number of edges N = 936.

Figure 6. Backward scattered field from the dielectric double cones
along the +z direction. Number of edges N = 792.
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Figure 7. Backward scattered field from the dielectric hemisphere-
cone along the +z direction. Number of edges N = 792.

which is shown in Fig. 8. The radius of the cylinder is 0.5 m and the
height along the z-direction is 1 m. This structure is divided into 720
triangular patches with a total number of 1,080 edges. In Fig. 8, the
back-scattered fields computed by our proposed methods are compared
with the IDFT results.

The next example is the structure of a hemisphere terminated by
a cylinder, which is shown in Fig. 9. The radius of the hemisphere is
0.5 m and the height of the cylinder along z-direction is 0.5 m. This
structure is divided into 624 triangular patches with a total number
of 936 edges. In Fig. 9, the back-scattered fields computed by our
proposed methods are compared with the IDFT results. As a final
example, the dielectric body of a cone-cylinder is considered. The
radius of the cylinder is 0.5 m and the height of the cylinder along
the z-direction is 0.5 m. The heigh of the cone along z-direction is
0.5 m. This structure is divided into 576 triangular patches with a total
number of 864 edges. Fig. 10 shows the back-scattered fields computed
by our proposed methods and compares with the IDFT result. The
agreement of all the solutions computed by the proposed methods and
the IDFT solutions is excellent and it is difficult to distinguish between
the two presented results.
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Figure 8. Backward scattered field from the dielectric cylinder along
the +z direction. Number of edges N = 1, 080.

Figure 9. Backward scattered field from the dielectric hemisphere-
cylinder along the +z direction. Number of edges N = 936.
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Figure 10. Backward scattered field from the dielectric cone-cylinder
along the +z direction. Number of edges N = 864.

5. CONCLUSION

We have presented a novel method to solve the time-domain PMCHW
integral equations for scattering from three-dimensional arbitrarily
shaped dielectric structures. To apply a MoM procedure, we used
triangular patch functions as spatial basis and testing functions. We
introduced a temporal basis function set derived from the Laguerre
polynomials and exponential functions. With the representation of the
derivative of the transient coefficient in an analytic form, the temporal
derivative in the integral equation can be treated analytically. The
advantage of the proposed method is to guarantee late-time stability.
Transient equivalent currents and far field obtained by the two methods
presented in this paper are accurate and stable. The agreement
between the solutions obtained using the two proposed methods and
the IDFT of the frequency-domain solution is excellent.
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