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Abstract—This paper presents the adaptive integral method (AIM)
utilized to solve scattering problem of mixed dielectric/conducting
objects. The scattering problem is formulated using the Poggio-Miller-
Chang-Harrington-Wu-Tsai (PMCHWT) formulation and the electric
field integral equation approach for the dielectric and conducting
bodies, respectively. The integral equations solved using these
approaches can eliminate the interior resonance of dielectric bodies and
produce accurate results. The method of moments (MoM) is applied
to discretize the integral equations and the resultant matrix system
is solved by an iterative solver. The AIM is used then to reduce the
memory requirement for storage and to speed up the matrix-vector
multiplication in the iterative solver. Numerical results are finally
presented to demonstrate the accuracy and efficiency of the technique.
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1. INTRODUCTION

Integral equation methods have been widely used to solve electromag-
netic scattering problems. By using this approach, one has formulated
various scattering problems using appropriate integral equations and
discretized them using the method of moments (MoM). The MoM pro-
cedure converts the integral equation to a system of linear equations
which can be solved using either a direct or an iterative solver. The
direct solvers, for example, the Gaussian Elimination and LU decompo-
sition methods, require O(N3) operations while iterative solvers, such
as the Gauss-Seidel and Conjugate Gradient techniques, need O(N2)
operations for the matrix-vector multiplication in each iteration. The
memory requirement for these two solvers is usually O(N2). Such com-
putational complexity and memory requirement are too expensive to
solve a large-scale scattering problem.

The bottleneck of the iterative solvers is the matrix-vector
multiplication during its iteration. Several algorithms have been
proposed to speed up the matrix-vector multiplication such as fast
multipole method (FMM) [1, 2] and its extensions, multilevel fast
multipole algorithm (MLFMA) [3–5] in O(N1.5) and O(N logN),
respectively. However, the large constant factor in the asymptotic
bound of FMM requires a large value of N in order to gain advantage
over the direct MoM. Grid-based solvers such as conjugate-gradient
fast Fourier Transform (CG-FFT) method [6] and the pre-corrected
fast Fourier Transform (P-FFT) algorithm [7, 8] have been proposed
to solve scattering problems of conducting objects. The CG-FFT uses
uniform rectangular grids to model arbitrarily shaped geometry, thus
it will produce slightly inaccurate results in the final solution due to
the staircase approximation. Another powerful grid-based solver is
the adaptive integral method (AIM) which was originally proposed by
Bleszynski et al. to solve electromagnetic scattering problems [9, 10]. It
has also been extended to the analysis of radiation problems and large-
scale microstrip structures [11, 12]. The computational complexities for
the AIM are O(N1.5 logN) and O(N logN) for surface and volumetric
scatterers, respectively.

The analyses of electromagnetic scattering by penetrable dielectric
objects have been reported in Ref. [13–15]. However, the proposed
methods are limited to characterize small-scaled scattering problems
due to the aforementioned reasons. This limitation can be overcome
by using a fast algorithm such as AIM although other approaches
can also be employed. In this paper, AIM is applied to solve
electromagnetic scattering problems of mixed conducting/dielectric
bodies which cannot handle easily by the conventional MoM. The
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surface integral equation used to define electromagnetic fields in the
presence of multiple homogeneous dielectric objects and conducting
objects will be formulated using the Poggio-Miller-Chang-Harrington-
Wu-Tsai (PMCHWT) formulation [16–18] and electric field integral
equation (EFIE) approach, respectively. The resultant integral
equations are discretized by using the MoM and by applying the AIM
to speed up the matrix-vector multiplication in the iterative solver.
Numerical examples are presented to demonstrate the capability of
AIM algorithm for analyzing electromagnetic scattering problems of
mixed conducting and dielectric objects.

2. FORMULATION

The integral equations for scattering problems of penetrable dielectric
scatterers and conducting scatterers are well established and the
detailed derivations can be obtained from literature. In this section,
a brief introduction to the derivations and a summary of formulations
will be given for reader’s complete understanding and convenience.

2.1. Mixed Dielectric Objects

First of all, we consider an arbitrarily shaped 3-D scatterer coated
by another dielectric material. The scatterer and coating material
have different material properties. The object is immersed in a
homogeneous medium with permittivity ε1 and permeability µ1. The
interface between media i and j is denoted as Sji, and Sji = Sij .
The unit vector normal to Sji and pointing toward the medium i is
denoted as n̂ji. Fig. 1(a) illustrates the notation for an object coated
by dielectric material while Fig. 1(b) depicts two discrete objects of
different materials.

Using the surface equivalence principle at the interfaces S21 and
S32, we obtain the electric field integral equations (EFIE) as

n̂21 × Ēi = −K̄2

−n̂21 ×
{
∇∇ · Ā21 + k2

1Ā21

jωε1
−∇× F̄21

}
on S21 (1a)

n̂21 ×
{
∇∇ · Ā32 + k2

2Ā32

−jωε2
+ ∇× F̄32

}
= K̄2

−n̂21 ×
{
∇∇ · Ā22 + k2

2Ā22

jωε2
−∇× F̄22

}
on S21 (1b)
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(a) Coated object (b) Discrete objects

Figure 1. Geometry of a two dielectric scatterers in an isotropic
homogeneous medium.

n̂32 ×
{
∇∇ · Ā22 + k2

2Ā22

−jωε2
+ ∇× F̄22

}
= −K̄3

−n̂32 ×
{
∇∇ · Ā32 + k2

2Ā32

jωε2
−∇× F̄32

}
on S32 (1c)

0 = K̄3−n̂32×
{
∇∇ · Ā33 + k2

3Ā33

jωε3
−∇× F̄33

}
on S32; (1d)

and the magnetic field integral equations (MFIE) as

n̂21 × H̄ i = J̄2

−n̂21 ×
{
∇× Ā21 +

∇∇ · F̄21 + k2
1F̄21

jωµ1

}
on S21 (2a)

n̂21 ×
{
−∇× Ā32 −

∇∇ · F̄32 + k2
2F̄32

jωµ2

}
= −J̄2

−n̂21 ×
{
∇× Ā22 +

∇∇ · F̄22 + k2
2F̄22

jωµ2

}
on S21 (2b)

n̂32 ×
{
−∇× Ā22 −

∇∇ · F̄22 + k2
2F̄22

jωµ2

}
= J̄3

−n̂32 ×
{
∇× Ā32 +

∇∇ · F̄32 + k2
2F̄32

jωµ2

}
on S32 (2c)
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0 = −J̄3−n̂32×
{
∇×Ā33+

∇∇ · F̄33+k2
3F̄33

jωµ3

}
on S32; (2d)

where the vector potentials Āji and F̄ji are given by

Āji =
∫∫

J̄jgi
(
r, r′

)
dS (3)

F̄ji =
∫∫

K̄jgi
(
r, r′

)
dS (4)

gi
(
r, r′

)
=

e−jki|r−r′|

4π|r − r′| (5)

with j is the subscript of the equivalent source current and i denotes
the medium into which the equivalent source current radiates, and the
wavenumber is obtained as ki = ω

√
µiεi. The J̄j and K̄j are the

equivalent surface electric and magnetic currents defined by

J̄j = n̂ji × H̄ on Sji (6)

K̄j = Ē × n̂ji on Sji. (7)
Using the PMCHWT approach, we combine the Eqs. (1a)–(1d) and
(2a)–(2d) and obtain

n̂21 × Ēi = −n̂21 ×
{
∇∇ · Ā21 + k2

1Ā21

jωε1
+

∇∇ · Ā22 + k2
2Ā22

jωε2

−∇× F̄21 −∇× F̄22 −
∇∇ · Ā32 + k2

2Ā32

jωε2
+ ∇× F̄32

}
(8a)

n̂21 × H̄ i = −n̂21 ×
{
∇× Ā21 + ∇× Ā22 +

∇∇ · F̄21 + k2
1F̄21

jωµ1

+
∇∇ · F̄22 + k2

2F̄22

jωµ2
−∇× Ā32 −

∇∇ · F̄32 + k2
2F̄32

jωµ2

}
(8b)

0 = −n̂32×
{
−∇∇ · Ā22+k2

2Ā22

jωε2
+∇× F̄22+

∇∇ · Ā32+k2
2Ā32

jωε2

+
∇∇ · Ā33 + k2

3Ā33

jωε3
−∇× F̄32 −∇× F̄33

}
(8c)

0 = −n̂32×
{
−∇×Ā22−

∇∇ · F̄22+k2
2F̄22

jωµ2
+∇×Ā32+∇×Ā33

+
∇∇ · F̄32 + k2

2F̄32

jωµ2
+

∇∇ · F̄33 + k2
3F̄33

jωµ3

}
. (8d)



148 Ewe, Li, and Leong

Next we consider the discrete scatterers as shown in Fig. 1(b).
Applying the same procedure, we can obtain

n̂21 × Ēi = −n̂21 ×
{
∇∇ · Ā21 + k2

1Ā21

jωε1
+

∇∇ · Ā22 + k2
2Ā22

jωε2

−∇× F̄21 −∇× F̄22 +
∇∇ · Ā31 + k2

1Ā31

jωε1
−∇× F̄31

}
(9a)

n̂21 × H̄ i = −n̂21 ×
{
∇× Ā21 + ∇× Ā22 +

∇∇ · F̄21 + k2
1F̄21

jωµ1

+
∇∇ · F̄22 + k2

2F̄22

jωµ2
+ ∇× Ā31 +

∇∇ · F̄31 + k2
1F̄31

jωµ1

}
(9b)

n̂31 × Ēi = −n̂31 ×
{
∇∇ · Ā21 + k2

1Ā21

jωε1
−∇× F̄21

+
∇∇·Ā31 + k2

1Ā31

jωε1
+
∇∇·Ā33+k2

3Ā33

jωε3
−∇×F̄31−∇×F̄33

}
(9c)

n̂31 × H̄ i = −n̂31 ×
{
∇× Ā21 +

∇∇ · F̄21 + k2
1F̄21

jωµ1
+ ∇× Ā31

+∇× Ā33 +
∇∇ · F̄31 + k2

1F̄31

jωµ1
+

∇∇ · F̄33 + k2
3F̄33

jωµ3

}
. (9d)

2.2. Mixed Conducting-Dielectric Body

Now, we replace the core of the coated object with a perfectly
conducting scatterer as shown in Fig. 2(a) and the material properties
of the coating layer are characterized by ε2 and µ2. By applying the
surface equivalence principle on the surface S21 and S02, we obtain the
EFIE as

n̂21 × Ēi = −K̄2

−n̂21 ×
{
∇∇ · Ā21 + k2

1Ā21

jωε1
−∇× F̄21

}
on S21 (10a)

n̂21 ×
{
∇∇ · Ā02 + k2

2Ā02

−jωε2

}
= K̄2

−n̂21 ×
{
∇∇ · Ā22 + k2

2Ā22

jωε2
−∇× F̄22

}
on S21 (10b)
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(a) Coated object (b) Discrete objects

Figure 2. Geometry of a dielectric and perfectly conducting scatterers
in an isotropic homogeneous medium.

n̂02 ×
{
∇∇ · Ā22 + k2

2Ā22

−jωε2
+ ∇× F̄22

}
=

−n̂02 ×
{
∇∇ · Ā02 + k2

2Ā02

jωε2

}
on S02 (10c)

and the MFIE as

n̂21 × H̄ i = J̄2

−n̂21 ×
{
∇× Ā21 +

∇∇ · F̄21 + k2
1F̄21

jωµ1

}
on S21 (11a)

n̂21 ×
{
−∇× Ā02

}
= −J̄2

−n̂21 ×
{
∇× Ā22 +

∇∇ · F̄22 + k2
2F̄22

jωµ2

}
on S21 (11b)

n̂02 ×
{
−∇× Ā22 −

∇∇ · F̄22 + k2
2F̄22

jωµ2

}
= J̄0

−n̂02 ×
{
∇× Ā02

}
on S02; (11c)

Using PMCHWT approach, we combine Eqs. (10a)–(10b) and (11a)–
(11b) to obtain

n̂21 × Ēi = −n̂21 ×
{
∇∇ · Ā21 + k2

1Ā21

jωε1
+

∇∇ · Ā22 + k2
2Ā22

jωε2
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−∇× F̄21 −∇× F̄22 −∇∇ · Ā02 + k2
2Ā02

jωε2

}
(12a)

n̂21 × H̄ i = −n̂21 ×
{
∇× Ā21 + ∇× Ā22

+
∇∇ · F̄21 + k2

1F̄21

jωµ1
+

∇∇ · F̄22 + k2
2F̄22

jωµ2
−∇× Ā02

}
(12b)

Next we consider the conducting scatterer placed beside a discrete
dielectric scatterer as shown in Fig. 2(b). Following the same
procedure, we can obtain the following equations:

n̂21 × Ēi = −n̂21 ×
{
∇∇ · Ā21 + k2

1Ā21

jωε1
+

∇∇ · Ā22 + k2
2Ā22

jωε2

−∇× F̄21 −∇× F̄22 +
∇∇ · Ā01 + k2

1Ā01

jωε1

}
(13a)

n̂21 × H̄ i = −n̂21 ×
{
∇× Ā21 + ∇× Ā22

+
∇∇ · F̄21 + k2

1F̄21

jωµ1
+

∇∇ · F̄22 + k2
2F̄22

jωµ2
+ ∇× Ā01

}
(13b)

n̂01 × Ēi = −n̂01 ×
{
∇∇ · Ā21 + k2

1Ā21

jωε1

−∇× F̄21 +
∇∇ · Ā01 + k2

1Ā01

jωε1

}
(13c)

2.3. Method of Moments

The integral equations given in the previous subsections are discretized
using method of moments. The arbitrarily shaped 3D objects in this
paper are modeled using triangular patches. Hence it is convenient to
use the planar triangular basis functions or Rao-Wilton-Glisson (RWG)
basis functions fn [19] to expand the equivalent surface electric and
magnetic currents J̄i and K̄i (i = 2 or 3) as follows:

J̄i =
∑

Ini−1fni−1 (14a)

K̄i =
∑

Mni−1fni−1 . (14b)

Substituting Eqs. (14a)–(14b) into (8a)–(8d) and (9a)–(9d), and
applying the Galerkin’s testing procedure, we convert the integral
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equations to a linear equation system written as


[
Z11

mn

] [
C11

mn

]
θ

[
Z12

mn

]
θ

[
C12

mn

]
[
D11

mn

] [
Y 11

mn

]
θ

[
D12

mn

]
θ

[
Y 12

mn

]
θ

[
Z21

mn

]
θ

[
C21

mn

] [
Z22

mn

] [
C22

mn

]
θ

[
D21

mn

]
θ

[
Y 21

mn

] [
D22

mn

] [
Y 22

mn

]







[I1]
[M1]
[I2]
[M2]


 =




[
E1

m

]
[
H1

m

]
δ

[
E2

m

]
δ

[
H2

m

]




(15)
where the ([I1] , [M1]) and ([I2] , [M2]) are the coefficients of the
equivalent electric and magnetic currents on S2i and S3i, respectively.
The elements of the sub-matrices, for u �= v, are defined as

Zuv
mn = −

∫
Tmu

fmu(r)·
(
jωµaP

a
nv

+
j

ωεa
Qa

nv

)
dSmu (16a)

Y uv
mn = −

∫
Tmu

fmu(r)·
(
jωεaP

a
nv

+
j

ωµa
Qa

nv

)
dSmu (16b)

Cuv
mn = −

∫
Tmu

fmu(r)·
(
∇× P a

nv

)
dSmu (16c)

Duv
mn = −Cuv

mn (16d)

and for u = v, as:

Zuu
mn =

∫
Tmu

fmu(r)·
(
jωµbP

b
nu

+
j

ωεb
Qb

nu

+jωµu+1P
u+1
nu

+
j

ωεu+1
Qu+1

nu

)
dSmu (17a)

Y uu
mn =

∫
Tmu

fmu(r)·
(
jωεbP

b
nu

+
j

ωµb
Qb

nu

+jωεu+1P
u+1
nu

+
j

ωµu+1
Qu+1

nu

)
dSmu (17b)

Cuu
mn =

∫
Tmu

fmu(r)·
(
∇× P b

nu
+∇× P u+1

nu

)
dSmu (17c)

Duu
mn = −Cuu

mn (17d)

where

P u
nv

=
∫

Tnv

fnv(r
′)gu

(
r, r′

)
dSnv (18)
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Qu
nv

= ∇
∫

Tnv

∇′
s · fnv(r

′)gu
(
r, r′

)
dSnv . (19)

and the symbols, µu and εu, denote the permeability and permittivity
in medium u, respectively. The elements of the excitation electric and
magnetic fields are expressed as

Eu
m =

∫
Tmu

fmu · ĒidSmu (20a)

Hu
m =

∫
Tmu

fmu · H̄ idSmu (20b)

For the problems discussed in subsection 1, we let (δ = 0, θ = 1,
a = 2, b = u) and (δ = 1, θ = −1, a = 1, b = 1) for cases shown
in Fig. 1(a) and 1(b), respectively. As for the problems discussed in
subsection 2, the conversion of integral equations to a matrix equation
is straightforward using the same procedure. The elements of sub-
matrices can be deduced easily from (12a)–(12b) and (10c), and (13a)–
(13c).

2.4. Adaptive Integral Method

The AIM was proposed to reduce the memory requirement and to
accelerate the matrix-vector multiplication process in an iterative
solver. The basic idea of the AIM is to approximate the far-zone
interaction using the fast Fourier Transform (FFT), and to calculate
the near-field interaction directly in order to reduce the computational
time. The matrix-vector multiplication can be split into two parts, i.e.,

[Z][I]=[Znear][I]+[Zfar][I]

where [Znear] denotes a sparse matrix that contains only the nearby
elements within a threshold distance and [Zfar] represents the far-zone
interaction of the elements.

To employ AIM, the object is enclosed in a rectangular grid and
is then recursively subdivided into small rectangular grids. We need
to transform the RWG basis functions to the surrounding Cartesian
grids in order to use the FFT to approximate the far-zone interaction.
We note that all the matrix elements can be expressed in the following
unified form

Zmn =
∫

Tm

∫
Tn

γm (r)g(r, r′)γn(r′)dr′dr (21)
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where γn (r) = {fn(r),∇ · fn(r),∇× fn(r)}. The γn (r) can be
certainly approximated as a linear combination of Dirac delta
functions,

γn (r) ≈ γ̂n (r) =
(M+1)3∑

v=1

Λnvδ
(
r − r′

)
(22)

where M is the expansion order, and Λnv denotes the expansion
coefficients of γn (r), which can be determined by using multipole
expansion [10] or far-field approximation [11]. The multipole expansion
method is based on the criteria that the coefficients Λnv produce the
same multipole moments of the original basis function

(M+1)3∑
v=1

(xnv − x0)
m1 (ynv − y0)

m2 (znv − z0)
m3 Λnv

=
∫
Tn

γn (r) (x− x0)
m1 (y − y0)

m2 (z − z0)
m3 dSn

for 0 ≤ {m1,m2,m3} ≤ M

(23)

where the reference point r0=(x0,y0,z0) is chosen as the centre of the
basis function. The far-field approximation method matches the far-
field produced by γn (r) and γ̂n (r) on a unit sphere, and thus the
expansion coefficients are obtained. Once the transformation functions
are determined, the matrix elements can be approximated as

Ẑmn =
(M+1)3∑

u=1

(M+1)3∑
v=1

Λmug(ru, rv
′)Λnv. (24)

By using the approximation, now we are able to compute two
components in the matrix-vector multiplication with

Zfar = ΛgΛT (25a)

Znear = ZMoM
nz − Zfar (25b)

where ZMoM
nz is the matrix containing only the direct interaction of

neighbor elements and Λ represents the basis transformation matrix of
the elements. The [g] is Toeplitz, and this enables the use of FFT
to compute the 3D convolution in (25a) efficiently. Hence we can
represent the matrix-vector multiplication as

ZI = ZnearI + ZfarI

= ZnearI + ΛF−1
{
F {g} · F

{
ΛT I

}}
(26)

where F {•} and F−1 {•} are FFT and inverse FFT, respectively.
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3. NUMERICAL RESULT

In this section, several examples will be presented to show the accuracy
of the proposed method and correctness of the developed algorithms.
All the computations are carried out on a Pentium IV personal
computer and the generalized minimum residual (GMRES) solver is
used. The relative error norm of 10−3 is used in the solver to terminate
the iterations. The first example is computed using the far-field
approximation while other examples are computed using the multipole
expansion technique.

The first three examples are considered for validating the accuracy
of the code developed while the remaining examples are considered
to produce some new results which cannot be found elsewhere in
literature. The first example we consider is a coated dielectric sphere
having a radius of 1 m. The core of the sphere has a radius of 0.9 m
and a relative permittivity of εr1 = 1.4 − j0.3, and the thickness of
coating layer is 0.1 m with a relative permittivity of εr2 = 1.6 − j0.8.
The bistatic RCSs for the VV- and HH-polarizations at 750 MHz are
computed and the results are shown in Fig. 3. The results are compared
with Mie series solutions and good agreements have been observed in
the comparisons.

Figure 3. Bistatic RCS of a coated dielectric sphere (a1 = 0.9 m,
εr1 = 1.4 − j0.3; a2 = 1 m, εr2 = 1.6 − j0.8) at 750 MHz.
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Figure 4. Bistatic RCS of a 1 m × 1 m × 1 m dielectric cube
(εr = 1.6 − j0.4) at 450 MHz.

The second example is a 1 m × 1 m × 1 m dielectric cube with
relative permittivity of εr = 1.6− j0.4. The bistatic RCSs for VV- and
HH-polarizations of this cube at 450 MHz are computed considering
9100 unknowns and the results are compared with the MoM solutions
in Fig. 4. A good agreement is also observed between the results.

The third example we consider is a coated conducting sphere
having a radius of 1 m. The conducting core has a radius 0.9 m and
the thickness of the coating layer is 0.1 m with relative permittivity of
εr = 1.6 − j0.8. The bistatic RCSs for VV- and HH-polarizations are
computed considering 45540 unknowns and the results are shown in
Fig. 5. The results are compared with Mie series solution and a good
agreement is observed.

The fourth example considered is a PEC-dielectric cylinder. The
diameter of the cylinder is 7.62 cm while the length of the PEC and
dielectric cylinders are 5.08 cm each. The monostatic RCSs for VV-
and HH-polarizations are computed at 3 GHz and 10 GHz, and are
shown in Fig. 6. The RCSs computed at 3 GHz agree well with the
published results [13].

The fifth example analyzed is the scattering by two dielectric
spheres with different radii. The spheres are only radiatively closely
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Figure 5. Bistatic RCS of a coated conducting sphere (a1 = 0.9 m;
a2 = 1 m, εr = 1.6 − j0.8) at 600 MHz.

coupled and the relative permittivities of the spheres respectively
placed right and left in Fig. 7 are 1.75 − j0.3 and 2.25 − j0.5. The
bistatic RCSs for VV- and HH-polarizations are shown in Fig. 7. The
RCSs of the spheres with radius of 0.4λ are compared with those in
[14] and a good agreement is observed. The sixth example is the
scattering by nine agglomerated spheres, of which five spheres have
εr1 = 1.75 − j0.3 and four spheres have εr2 = 2.25 − j0.5. Resulted
from 90060 unknowns, the bistatic RCSs for VV- and HH- polarizations
are obtained and shown in Fig. 8.

The last example considered is a system consisting of four
agglomerated dielectric spheres on the top of a PEC plate. The
diameter of each of the four spheres is 2λ and the relative permittivity
of each of the spheres is 1.6− j0.4. The 8λ×8λ PEC plate is placed at
z = 0 and the centers of the spheres are located 1.3λ above the PEC
plate. The scattering of plane waves by the spheres in the presence
and absence of the finite PEC plate are computed and shown in Fig. 9.
As expected, the RCS is higher for the case in the presence of the PEC
plate.
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(a) VV-polarization

(b) HH-polarization

Figure 6. Monostatic RCS of a PEC-dielectric cylinder (a = 5.08 cm,
b = 10.16 cm, d = 7.62 cm, and εr = 2.6).
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(a) VV-polarization

(b) HH-polarization

Figure 7. Bistatic RCS of two dielectric spheres (εr1 = 1.75 − j0.3,
and εr2 = 2.25 − j0.5) with different radii.
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Figure 8. Bistatic RCS of nine dielectric spheres, each of diameter
2λ (εr1 = 1.75 − j0.3, and εr2 = 2.25 − j0.5).

4. CONCLUSION

In this paper, the AIM has been extended to solve electromagnetic
scattering by mixed dielectric/conducting bodies. The problem is
formulated using the PMCHWT and EFIE approaches for dielectric
and conducting bodies, respectively. After the resultant integral
equations are discretized using the MoM, the AIM is employed to
reduce the memory requirement and to speed up the matrix-vector
multiplication in the iterative solver. Numerical results are presented
to demonstrate the accuracy and capability of the proposed method.
Simple tests are conducted by firstly comparing the results obtained
from the present method with Mie scattering exact results, and by
secondly comparing the present results with those results from the
standard MoM. Fairly good agreements were found in the comparison.
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(a) VV-polarization

(b) HH-polarization

Figure 9. Bistatic RCS of four agglomerated dielectric spheres
(r = 1λ, εr = 1.6 − j0.4) in the presence and absence of a 8λ×8λ
PEC plate.
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