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Abstract—Scattering of electromagnetic waves from a groove in
an infinite conducting plane is studied using the Coifman wavelets
(Coiflets) under the integral equation formulation. The induced
current is expressed in terms of the known Kirchhoff solution plus a
localized correction current in the vicinity of the groove. The Galerkin
procedure is implemented, employing the Coiflets as expansion and
testing functions to find the correction current numerically. Owing to
the vanishing moments, the Coiflets lead to a one-point quadrature
formula in O(h5), which reduces the computational effort in filling
the impedance matrix entries. The resulting matrix is sparse, which is
desirable for iterative algorithms. Numerical results show that the new
method is 2 to 5 times faster than the pulse based method of moments.
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1. INTRODUCTION

Scattering of electromagnetic waves from a 2D groove in an infinite
conducting plane has been studied in [1] using the hybrid PO-MoM
technique, where Haar wavelets were implemented to solve the integral
equation. While their formulation is excellent, the computational
efficiency of their approach may be less effective than the standard
MoM [2], due to the poor performance of the Haar wavelets.
In recent years, wavelets have found application in computational
electromagnetics. Usually, wavelets are defined on the whole real
line, while many practical problems are restricted to finite intervals.
Therefore, wavelets have to be modified so they can be easily adopted
on the finite interval to solve boundary value problems. Examples of
such modified wavelets are intervallic [3] and periodic [4] wavelets. At
the same time, the simple Haar wavelets seem to be able to handle the
boundaries easily, but the move from advanced wavelets to the oldest
Haar wavelets is a leap backward.

In this paper we modified the formulation in [1] to employ
the Coifman wavelets (Coiflets) in combination with the physical
optics approach [5]. The Coiflets possess one-point quadrature and
thus are used for the hybrid PO-MoM technique. This reduces the
computational effort in filling the MoM impedance matrix entries. As
a result, the Coifman wavelet approach with two-fold integration is
faster than that of the traditional pulse based one-fold integration. The
difficulty of using wavelets in dealing with boundaries is bypassed by
[1] formulation, because the local correction current smoothly decays
to negligible level without a sharp boundary. As a result, the Coifman
wavelets are used on a finite interval without any modification (such
as the periodic wavelets or intervallic wavelets). Following [1], the
unknown induced current is expressed in terms of the known PO
current of the scattering by an infinite conducting plane plus the
localized correction current placed in the vicinity of the groove. Due
to its local nature, the correction current spreads out only several
wavelengths from the groove.

The localized correction current is numerically evaluated using
the Coiflets under Galerkin’s procedure [6, 7]. The obtained system
of linear equations is solved using the standard LU decomposition [8]
and the iterative BI-CGSTAB [9] technique. When the size of the
impedance matrix is large, the BI-CGSTAB method is faster than
the LU decomposition approach, especially when sparse matrices are
involved.
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2. HYBRID PO-MOM FORMULATION

The PO-MoM formulation was derived in [1]. For ease of references,
we quoted the major steps of the formulation in [1] here, upon which
our modification was built. We also added the TEz case here, in
addition to TMz time-harmonic electromagnetic plane waves in the
aforementioned reference.

Figure 1. Geometry of the two-dimensional groove in a conducting
plane.

The cross-sectional view of the two-dimensional scattering
problem is shown in Figure 1. The angle of incidence φinc is measured
with respect to the y axis. The depth and width of the groove are h
and d, respectively. For the TMz polarization of the incident plane
wave the induced current 	Js is z-directed and independent of z, that
is 	Js = ẑ · Jz(x, y). For the TEz scattering case current 	Js is also
z-independent and lies in the (x, y) plane.

First, we consider the case of the TMz scattering. We split the
geometry of our scattering problem into segments {ls}, s = 1, . . . , 6,
as shown in Figure 2.

The segments l1 and l5 are semi-infinite. We write Jz in terms of
four current distributions JPO, JPO

L , JC and J̃C as

Jz = JPO − JPO
L + JC + J̃C . (1)

In the Equation (1) we partitioned the induced current Jz into the
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Figure 2. The partition of the induced current Jz.

following components:

i. JPO is the known physical optics current solution of the
unperturbed problem (the current that would be induced on a
perfectly infinite plane formed by ∪5

s=1ls).
ii. JPO

L is the portion of the physical optics current JPO residing on
∪4

s=2ls.
iii. JC is the unknown surface correction current on the groove region

l6 and its vicinity l2 and l4.

iv. J̃C is the unknown surface correction current, defined on l1 and
l5.

The widths of the segments l2 and l4 are chosen sufficiently large to
ensure that on the segments l1 and l5 the induced current is essentially
equal to the physical optics current JPO on an infinite plane.

The following boundary condition is used on the surface of the
perfect conductor

Ls
z(Jz) + Einc

z = 0 on lt. (2)

to find the induced current Jz, where the operator Ls
z(·) denotes the

scattered electric field component which is tangential to the surface of
the groove scatterer and due to the current Jz and lt = l1 ∪ l2 ∪ l6 ∪
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l4 ∪ l5. The electric field component Einc
z is the tangential component

of the incident electric field. From (1) and (2) one obtains

Ls
z

(
JPO − JPO

L + JC + J̃C

)
+ Einc

z = 0 on lt. (3)

The operator Ls
z(·), which describes the scattered field is a linear

function of the induced current and thus

Ls
z(J

PO) − Ls
z(J

PO
L ) + Ls

z(JC) + Ls
z(J̃C) = −Einc

z on lt. (4)

We should notice here that the electric field due to the physical
optics current JPO will cancel the incident field Einc

z on and below of
the surface ∪5

s=1 ls. It means that

Ls
z(J

PO) = −Einc
z on lt. (5)

If we combine (4) and (5) together, then we obtain

Ls
z(JC + J̃C) = Ls

z(J
PO
L ) on lt. (6)

We can further simplify the Equation (6) if we recall that the induced
current on l1 and l5 is almost equal to the physical optics current JPO.
This gives the following approximation

J̃C ≈ 0. (7)

From (7) and (6) it immediately follows that Ls
z(J̃c) ≈ 0 and hence

Ls
z(JC) = Ls

z(J
PO
L ) on lt, (8)

where the right-hand side is the known tangential electric field due to
the current JPO

L , while JC is the unknown correction current. The
correction current JC is defined on l2 ∪ l6 ∪ l4 and therefore (8) can be
rewritten in the following way

Ls
z(JC) = Ls

z(J
PO
L ) on l2 ∪ l6 ∪ l4. (9)

For the TMz scattering the operator Ls
z(·) has the following form

Ls
z(J) = −κη

4

∫
l
J(	ρ ′)H(2)

0 (κ|	ρ− 	ρ ′|)dl′, (10)

where κ is the wave number, η =
√

µ0/ε0, H
(2)
0 is the Hankel function

of the second kind of order 0 and ejωt time convention is used.
Therefore, we can rewrite (9) as follows∫

l2+l6+l4
JC(	ρ ′)H(2)

0 (κ|	ρ−	ρ ′|)dl′ =
∫

l2+l3+l4
JPO

C (	ρ ′)H(2)
0 (κ|	ρ−	ρ ′|)dl′,

(11)
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where 	ρ ∈ l2 ∪ l6 ∪ l4.
Eq. (11) is sufficient for the determination of the correction current

JC The unknown current JC is defined on the finite segments l2∪ l6∪ l4
and is almost equal to the physical optics current JPO at the starting
and end points of the interval. The integral equation (11) is solved
numerically using the MoM. To use the Coifman wavelets without
any modification in the MoM on the finite interval, we change (11)
to another form. The idea is to modify the integral equation (11) into
a form for which the solution is essentially zero at the end points of
the computational interval and beyond. For our correction current JC

we know that it is approximately equal to the physical optics current
JPO at the end points of the interval l2 and l4. We then subtract the
known current JPO defined on the intervals l2 and l4 from the unknown
current JC by doing so, we tailor (11) into the following form∫

l2+l6+l4
JC(	ρ ′)H(2)

0 (κ|	ρ− 	ρ ′|)dl′−
∫

l2+l4
JPO

L (	ρ ′)H(2)
0 (κ|	ρ− 	ρ ′|)dl′

=
∫

l3
JPO

L (	ρ ′)H(2)
0 (κ|	ρ− 	ρ ′|)dl′. (12)

Let us define a new unknown current

Jp =

{
JC on l6,

JC − JPO
L on l2 ∪ l4.

(13)

Using the above unknown current Jp, we rewrite (12) in a compact
form∫

l2+l6+l4
Jp(	ρ ′)H(2)

0 (κ|	ρ− 	ρ ′|)dl′ =
∫

l3
JPO

L (	ρ ′)H(2)
0 (κ|	ρ− 	ρ ′|)dl′,

	ρ ∈ l2 ∪ l6 ∪ l4. (14)

Eq. (14) is the finite form of the new PO-MoM integral equation
formulation. To solve the unknown current Jp in (14), we first expand
Jp in terms of the basis functions {qi}N

i=1 defined on l2 ∪ l6 ∪ l4 as

Jp =
N∑

n=1

anqn. (15)

We then conduct Galerkin’s procedure to discretize the integral
equation (14) into a matrix equation

[Z][I] = [V ] (16)
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where

Zmn =
∫

sm

∫
sn

qm(l)qn(l′)H(2)
0 (κ|	ρ− 	ρ ′|)dl′dl, (17)

In = an, (18)

Vm =
∫

sm

∫
l3

qm(l)JPO
L (l′)H(2)

0 (κ|	ρ− 	ρ ′|)dl′dl. (19)

In the previous equations sm denotes the support of the basis function
qm. By solving (16) numerically one may obtain an approximate
solution for the scattering problem of Fig. 1 with a finite number of
unknowns.

To evaluate Vm of the right-hand side in (14), we use (19), in which
the physical optics current JPO

L for the TMz scattering is given in [5]
as

	JPO
L = 2n̂× 	Hinc. (20)

More specifically, the incident electric and magnetic fields are

	Einc = ẑ · η · ejκ(x sin φinc+y cos φinc) (21)
	Hinc = (−x̂ · cosφinc + ŷ · sinφinc)ejκ(x sin φinc+yφinc). (22)

where the time convention again is understood and suppressed. Upon
substituting (22) into (20) one obtains

	JPO
L = ẑ · 2 cosφinc · ejκx sin φinc . (23)

The TEz scattering can be formulated in a similar way. For the
sake of simplicity we omit the detailed derivation of the TEz case and
only present the final equation to be solved

Jp(	ρ )
(
− j

π

)
+

∫
l2+l6+l4

Jp(	ρ ′)H(2)
1 (κ|	ρ− 	ρ ′|) cosψ′dl′

=
∫

l3
JPO

L (	ρ ′)H(2)
1 (κ|	ρ− 	ρ ′|) cosψ′dl′, 	ρ ∈ l2 ∪ l6 ∪ l4, (24)

with
	JPO
L = x̂ · 2 · ejκx sin φinc , (25)

where

cosψ′ =
	n′ · (	ρ− 	ρ ′)
|	ρ− 	ρ ′| , (26)

	n′ is the unit normal placed at the source point on the groove surface
and H

(2)
1 is the Hankel function of the second kind of order 1.
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3. BASIC PRINCIPLES OF ORTHOGONAL WAVELETS

Basic wavelet theory can be found in many excellent books [7, 10, 11].
However, for readers without rigorous mathematical training, it is not a
trivial task to comprehend some of the main concepts and convert them
into meaningful engineering tools. In this section we briefly list basic
wavelet principles that are used to construct and facilitate the wavelets.
A multiresolution analysis of L2(R) is defined as a sequence of closed
subspaces Vj of L2(R), j ∈ Z. A scaling function ϕ(x) ∈ V0, with a
non-vanishing integral, exists such that the collection {ϕ(t− l)|l ∈ Z}
forms a Riesz basis of V0.

Since ϕ ∈ V0 ⊂ V1, a sequence {hk} ∈ &2 exists such that the
scaling function satisfies

ϕ(x) =
√

2
∑
k

hkϕ(2x− k). (27)

This functional equation is referred to as the dilation equation, where
{hk} are coefficients of the lowpass filter, and∑

k

hk = 1. (28)

The collection of functions {ϕj,l|l ∈ Z}, with

ϕj,l(x) = 2j/2ϕ(2jx− l) (29)

forms a Riesz basis of Vj .
We will use Wj to denote a space complementing Vj in Vj+1, that

is, a space that satisfies

Vj+1 = Vj ⊗Wj (30)

and ⊗
j

Wj = L2(R). (31)

A function ψ is a wavelet if the collection of functions {ψ(x − l)|l ∈
Z} forms a Riesz basis of W0. The collection of wavelet functions
{ψj,l|l, j ∈ Z} then forms a Riesz basis of L2(R). The definition of ψj,l

is similar to that of ϕj,l. Since the wavelet ψ is an element of V1, a
sequence {gk} ∈ &2(R) exists such that

ψ(x) =
√

2
∑
k

gkϕ(2x− k). (32)
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In the previous equation, the bandpass filter for the orthogonal
wavelets can be represented by the lowpass filters as

gk = (−1)k−1h−(k−1). (33)

In addition to the general properties of the orthogonal wavelet
family, the Coifman scaling functions have a unique feature. Let
us select the orthogonal Coifman scaling function with 6N non-zero
coefficients, where L = 2N is the order of the Coifman wavelets.
The Coifman wavelets have the vanishing moments properties in both
scaling functions and wavelets, namely∫

ϕ(x)dx = 1, (34)∫
xpϕ(x)dx = 0, p = 1, 2, . . . , 2N − 1, (35)∫
xpψ(x)dx = 0, p = 0, 1, 2, . . . , 2N − 1. (36)

Scaling functions under the L2 norm exhibit Dirac-δ like sampling
property for smooth functions. Namely, if ϕ(x) is supported in [p, q],
and we expand f(x) at a point x0 within [p, q], then∫ q

p
f(x)ϕ(x− x0)dx

=
∫ q

p

(
f(x0)+f ′(x0)(x−x0) + · · · + f2N−1(x0)(x− x0)2N−1

(2N − 1)!
+ · · ·

)

·ϕ(x− x0)dx

= f(x0) + O(h2N ) (37)

where h is the discretization size. This property in a simple sense is
similar to Dirac-δ function property∫

f(x)δ(x− x0)dx = f(x0). (38)

Of course, the Dirac-δ function is the extreme example of localization
in the space domain, with infinite number of vanishing moments. The
Dirac-δ like nature of the Coiflets allows us to simplify a numerical
integration into a single point value, and thus speeds up the matrix
element evaluations greatly.
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4. COIFMAN BASED MOM

The Coifman scaling functions of order L = 2N and resolution level j0
were employed as the basis functions to expand the unknown surface
current Jp in (14) in the form

Jp(t′) =
∑
n

anϕj0,n(t′), (39)

where ϕj0,n(t′) = 2j0/2ϕ(2j0t′ − n). Again, all equations are presented
only for the TMz scattering and TEz case is treated in the same way.

After testing the integral equation (14) with the same Coifman
scaling functions {ϕj0,m(t)}, we have the impedance matrix with the
mn-th entry

Zm,n =
∫

Sm

∫
Sn

H
(2)
0 (κ|	ρ(t) − 	ρ ′(t′)|)ϕj0,m(t)ϕj0,n(t′)dt′dt (40)

and

Vm =
∫

Sm

∫
l3

ϕj0,m(t)JPO
L (t′)H(2)

0 (κ|	ρ(t) − 	ρ ′(t′)|)dt′dt (41)

where Sn and Sm are supports of the expansion and testing wavelets,
respectively.

The following one point integration rule [3]∫
Sm

∫
Sn

H
(2)
0 (t, t′)ϕj0,m(t)ϕj0,n(t′)dt′dt ≈ 1

2j0
H

(2)
0

(
m

2j0
,

n

2j0

)
(42)

is employed to evaluate the system matrix elements for which
H

(2)
0 (κ|	ρ− 	ρ ′|) is free of singularity within the interval of integration.

To be more specific, the one-point quadrature formula (42) is used to
calculate elements of the MoM matrix, for which |m − n| ≥ 1. In
addition to that, it is also used to construct right hand side vector
(41).

For all diagonal elements, the kernel of the integral (40) has a
singularity at t = t′. As a result, the diagonal elements are computed
by standard Gauss-Legendre quadrature [8]. We used different number
of Gaussian points with respect to t and t′ to avoid the case of t = t′.
For instance, for the standard pulse based MoM, we use 4 and 6
Gaussian points with respect to t′ and t. These numbers have been
found numerically and they are the minimum numbers of Gaussian
points required to get accurate and stable numerical results. At the
same time, for the Coifman based MoM we split a support of each
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Figure 3. Coifman scaling function and mother wavelet (L = 4, j0 =
0, n = 0).

scaling function into 5 small segments and used 4 and 6 points on each
subinterval to make an integration over t′ and t, respectively.

In all numerical examples we applied the Coifman wavelets of order
L = 2N = 4. Shown in Figure 3 are the Coifman wavelets of order
L = 4, resolution level j0 = 0, and shift n = 0. Although, the higher
order Coifman wavelets provide more vanishing moments and produce
a better approximation, the support of these wavelets is wider and it
would take a longer time to compute the singular integrals in (40). The
choice of L = 4 is a good trade off between accuracy and computation
time.

It has been also noticed that in actual numerical computations the
accuracy of the expression (42) depends on a resolution level j0. The
higher the resolution level is, the better result one can get using the one
point quadrature rule (42). In this paper, we select the Coifman scaling
functions with resolution level j0 = 5 to construct the MoM matrix
and then perform the fast wavelet transform (FWT) [12] to obtain the
standard form sparse matrix for further numerical computation.

5. BI-CGSTAB ALGORITHM

The solution of the linear algebraic system (16) can be obtained
from the standard LU decomposition in combination with the back-
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substitution, available in many books on numerical analysis. When
the size of the impedance matrix [Z] becomes large, it is better to
apply the iterative method to speed up the numerical computation. In
this paper, we use the standard LU decomposition technique as well
as the stabilized variant of the bi-conjugate gradient (BI-CG) iterative
solver, named BI-CGSTAB [9].

It is important to note that the Bi-CGSTAB method does
not involve any use of the transpose matrix [Z]T . Therefore, the
computation time of matrix manipulation is reduced. The actual
stopping criterion in solving [Z]|x〉 = |b〉 is to force the residue

‖ri‖L2 < EPS · ‖b− Zx0‖L2 (43)

with EPS = 10−5. It has been found from the experiment that
with this value of the parameter EPS we have quick solution, while
maintaining good numerical accuracy.

We also employed the sparse version of the Bi-CGSTAB algorithm
when wavelets are involved. The special algorithm from [8] has been
adopted to store the sparse matrix in the computer memory. To
be more specific, the row-indexed sparse storage technique has been
implemented. Moreover, the special algorithm has been also used to
compute the fast product of a sparse matrix with a given vector at
every iteration step in the Bi-CGSTAB.

6. NUMERICAL RESULTS

Example 1. TMz scattering from the groove.

Referring to Figure 1, the following dimensions are in use: b =
3.09375λ, h = 0.5λ, d = 0.5λ. While we use 256 Coifman scaling
functions to expand the unknown current Jp, we employ 246 pulse
bases for comparison. The order of the Coiflets was chosen L = 2N = 4
with the resolution level j0 = 5. The obtained numerical results
for different incident angles are presented in Figures 4 and 5. We
plotted the normalized correction current JC with respect to the length
parameter (arclength) given in wavelength λ. The correction current
JC is evaluated by (13) from the integral equation solution of the
unknown current Jp.

Notice, that magnitudes of the normalized current JC at segment
l2 and l4 ends are really close to current values (which depend from
the angle of incidence for the TMz mode) predicted by (23).

To demonstrate the advantage of the Coifman wavelets and Bi-
CGSTAB algorithm, we present in Tables 1 and 2 the results of the
computational time. In the tables, Np and Nc denote the number of
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Figure 4. Normalized induced current versus length parameter
(λ), TMz case, b = 3.09375λ, h = 0.5λ, d = 0.5λ, φinc = 0◦, Np =
246, Nc = 256.

Figure 5. Normalized induced current versus length parameter
(λ), TMz case, b = 3.09375λ, h = 0.5λ, d = 0.5λ, φinc = 60◦, Np =
246, Nc = 256.
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Table 1. Computation time for the pulse basis, TMz scattering.

Pulse basis
LU Bi-CGSTAB

Np time (sec) time (sec) Nit

1014 522.86 331.85 61
502 85.94 73.21 44
246 16.57 16.47 33

Table 2. Computation time for the Coifman wavelets, TMz scattering.

Coifman wavelets
LU Bi-CGSTAB Sparse Bi-CGSTAB Sparsity

Nc time (sec) time (sec) Nit time (sec) Nit %
1024 354.42 168.82 61 60.91 62 11.94
512 45.94 31.50 43 18.19 45 15.78
256 8.03 8.49 34 6.65 34 22.28

pulses and Coiflets in the MoM, Nit is the number of iterations in the
Bi-CGSTAB algorithm. The following parameters are used to create
data in Tables 1, 2:

• b=3.09375λ, h=0.5λ, d=0.5λ, φinc =60◦, Np =246, Nc =256
• b=6.34375λ, h=1.0λ, d=1.0λ, φinc =60◦, Np =502, Nc =512
• b=12.84375λ, h=2.0λ, d=2.0λ, φinc =60◦, Np =1014, Nc =1024

We implemented LU and Bi-CGSTAB methods to solve a system
of linear equations. We also decomposed the system matrix in the
Coifman based MoM into a sparse matrix of the standard form using
5 resolution levels. Then, the sparse version of the Bi-CGSTAB is
imposed to solve the linear equations. The threshold level of 10−4 · p
has been adjusted to sparsify the system matrix in the MoM, where
parameter p is the impedance matrix element with the maximum
absolute value. The relative error of 10−5 has been used as a stopping
criterion for the Bi-CGSTAB. The sparsity of a matrix is defined as the
percentage of the number of matrix elements which are above a certain
threshold level to the total number of matrix entries. From Tables 1
and 2 we can see that the Coiflet approach has gained a factor of
2 to 5 in CPU time savings over the pulse-based MoM with the LU
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Figure 6. Normalized induced current versus length parameter
(λ), TMz case, b = 6.34375λ, h = 1.0λ, d = 1.0λ, φinc = 60◦, Np =
502, Nc = 512.

Figure 7. Normalized induced current versus length parameter
(λ), TMz case, b = 12.84375λ, h = 2.0λ, d = 2.0λ, φinc = 60◦, Np =
1014, Nc = 1024.
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Figure 8. The standard matrix form, TMz scattering.

decomposition. This achievement is due to the one-point quadrature
formula, fast wavelet transform and fast sparse matrix solver.

Figures 6 and 7 show the correction current JC in the TMz

scattering with the parameters in Tables 1, 2. Figure 8 illustrates
the sparse matrix in the standard matrix form with 1024 unknowns
and 5 resolution levels.

We also compared results in the far-field zone. We presented here
only one example of such comparison. Figure 9 shows the normalized
scattering coefficient (

√
σ/λ), which has been calculated using only

the current Jp (13) for the TMz scattering problem, having the same
geometrical parameters as those, used to generate Figure 7.

For all numerical results, presented so far, we implemented the
Coiflets with the resolution level j0 = 5. This level has been chosen
after a number of numerical tests. It has been noticed that j0 = 5 is
the minimum resolution level to achieve a high precision. When we
decreased the resolution level to j0 = 4 for the case of Figure 4, we
ended with 133 Coifman scaling functions. Correspondingly, we used
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Figure 9. Normalized scattering coefficient
√

σ/λ versus scattering
angle (in degrees), TMz case, b = 12.84375λ, h = 2.0λ, d =
2.0λ, φinc = 60◦, Np = 1014, Nc = 1024.

Figure 10. Normalized induced current versus length parameter
(λ), TMz case, b = 3.09375λ, h = 0.5λ, d = 0.5λ, φinc = 0◦, Np =
123, Nc = 133.
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Figure 11. Normalized induced current versus length parameter
(λ), TEz case, b = 3.09375λ, h = 0.5λ, d = 0.5λ, φinc = 0◦, Np =
246, Nc = 256.

Figure 12. Normalized induced current versus length parameter
(λ), TEz case, b = 3.09375λ, h = 0.5λ, d = 0.5λ, φinc = 60◦, Np =
246, Nc = 256.
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123 pulse functions to have the results in Figure 10. We still have good
agreement between the two approaches, except a small discrepancy at
the groove edges. The current Jp is also plotted in Figure 10.

Example 2. TEz scattering from the groove.

Although, the main emphasis in this paper has been maid on the
TMz case, we also studied the case of TEz scattering which is not
discussed in [1]. Here we present just two numerical results, which are
obtained using the following dimensions: b = 3.09375λ, h = 0.5λ, d =
0.5λ. Results are shown in Figures 11 and 12 for two different incident
angles.

7. CONCLUSIONS

The Coifman wavelets were employed for the numerical simulation of
scattering from a groove in a conducting plane. Under the modified
PO-MoM formulation, the compactly supported Coiflets are used
on a finite interval without any alteration. The standard Galerkin
procedure was used to convert the integral equation into a system
of linear algebraic equations. The zero moment property of the
Coifman scaling functions leads the single-point quadrature rule for
the generation of the majority entries in the MoM matrix. As a result,
the new method with double integration is 2–5 times faster then the
traditional pulse-δ based MoM of single integration. This superiority
over the standard MoM is also due to orthogonality, multi resolution
analysis (MRA) and fast wavelet transform of the Coiflets, which
generate wavelet sparsified matrix. Additional factor in CPU time
savings has been achieved with the use the fast Bi-CGSTAB iterative
algorithms.
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