
Progress In Electromagnetics Research, PIER 47, 123–133, 2004

MALVAR WAVELET BASED POCKLINGTON
EQUATION SOLUTIONS TO THIN-WIRE ANTENNAS
AND SCATTERERS

Y. Tretiakov

IBM Microelectronics
Essex Junction, VT 05452, USA

G. Pan

Department of Electrical Engineering
Arizona State University
Tempe, AZ 85287, USA

Abstract—Malvar wavelets are often referred to as smooth local
cosine (SLC) functions. In this paper the SLC functions are employed
as the basis and testing functions in the Galerkin-based Method of
Moments (MoM) for the Pocklington equation of thin-wire antennas
and scatterers. The SLC system has rapid convergence and is
particularly suitable to handle electrically large scatterers, where the
integral kernel behaves in a highly oscillatory manner. Numerical
examples demonstrate the scattering of electromagnetic waves from
a thin-wire scatterer as well as wave radiation from the gull-shaped
antenna. A comparison of the new approach versus the traditional
MoM is provided.
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1. INTRODUCTION

Recently, wavelets found their application in solving integral equations,
resulting in sparse impedance matrices [1–4]. This is due to features
of vanishing moments, orthogonality and multiresolution analysis in
wavelets. Despite the above nice properties, standard wavelets are
defined on the whole real line, while practical electromagnetic problems
are often restricted to a finite interval or domain. To incorporate
structures with physical constraints, modified wavelets, including
periodic wavelets and intervallic wavelets, were introduced [5, 6]. In
this article we use the Malvar wavelets, namely the SLC bases [7] for
a thin-wire scatterer and antenna. The SLC basis has been previously
employed in [8] for the modeling of 2D scatterers.

Smooth local trigonometric systems (SLT) were proposed by
Malvar [9] and followed by Coifman and Meyer [10]. They are
trigonometric functions multiplied by a smooth bell shaped window
and form an orthogonal basis in the L2. Similar to wavelets, the SLT
system constructs its basis functions utilizing both translation and
dilation of a single function. However, the construction is in a more
flexible manner, thereby overcoming the inconvenience of conventional
wavelets in handling the end points of non-periodic functions. The
basic idea of SLT is to use smooth cutoff functions to split the function
and to fold overlapping parts back into the intervals of interest, so that
the orthogonality of the system is preserved. Moreover, by choosing the
correct trigonometric basis, rapid convergence in the case of smooth
functions is ensured. Intuitively, one may use a relatively small number
of the SLT bases (in comparison to the number of pulse basis) to cover
dominating spectral components of the unknown spatial current of the
scatterer. In addition, the SLT allows the usage of the FFT-like fast
numerical technique, e.g., the fast discrete cosine transform (DCT) for
all numerical integrations. Hence, accurate and fast algorithm can be
developed.

In this paper we apply the SLC functions to integral equations
to solve thin-wire scattering and radiation problems. If scatterer or
antenna consists of several segments, we divide the contour into pieces
according to the geometric and physical nature of the problem. The
SLC bases are allocated on each segment and overlapping with the
SLC bases of the neighboring segments, so that the continuity of the
solution is guaranteed.

Numerical examples of a thin-wire scatterer and antenna are
presented. The results are compared with those obtained by using
the standard pulse-based MoM [11]. It has been noticed, that the use
of the fast discrete cosine transform DCT-IV [12] can drastically reduce
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Figure 1. The thin-wire scatterer.

computational time and increase accuracy of numerical calculations.

2. FORMULATION OF PROBLEM

As an example of a scattering problem, which is solved using the SLC-
based MoM, let us consider the scattering from a curved thin wire,
shown in Figure 1. The problem under consideration is described in
terms of the generalized Pocklington electric field integral equation (see
[13]):

L∑
l=1

∫
Cl

Jl(�r ′)

(
∂2

∂s∂s′
− κ2ŝ · ŝ′

)
·G(�r, �r ′)ds′ = jωεŝ · �Ei(�r ′) (1)

where Jl is the current over a l-th wire. Parameter L denotes the
number of thin wires, �Ei is the incident excitation field, s and s′ are
the length variables. Unit vectors ŝ and ŝ′ are tangent vectors of the
wires at �r and �r ′, respectively. The function G(�r, �r ′) is the free-space
Green’s function given by

G(�r, �r ′) =
e−jκ|�r−�r ′|

4π|�r − �r ′| . (2)

To avoid singularity of the Green’s function during the impedance
matrix calculation in the MoM, the observation point �r is always
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assumed to be on the wire surfaces and the source point �r ′ is on the
wire axis as shown in Figure 1.

After one obtains the induced electric current Jl numerically over a
thin-wire scatterer or antenna using (1) with a given excitation �Ei(�r ),
far-zone parameters, such as electromagnetic fields, radar cross section
and antenna pattern, can be easily calculated.

3. SLC-BASED METHOD OF MOMENTS

The SLC-based MoM has been introduced in [8]. First, we map
a curved scatterer or antenna onto a straight interval, where the
unknown current Js is defined. Then, a straight interval is split into
subintervals Ij (j = 0, 1, . . . ,M − 1). We use Nj SLCs on each j-th
subintervals to expand the unknown current Js in the form

Js(t) =
M−1∑
j=0

Nj−1∑
k=0

qj,kψj,k(t), (3)

where the basis functions {ψj,k(t)} are defined as

ψj,k(t) = bj(t)

√
2
|Ij |

cos

[
π

|Ij |

(
k +

1
2

)
(t− αj)

]
. (4)

with the same bell-shaped window bj(t) as in [8]. Figure 2 shows an
example of two SLCs, defined on adjacent intervals.

The unknown coefficients {qj,k} are found using the Galerkin MoM
[11]. The same functions as in (4) are chosen to be the testing functions
for the MoM. The elements of the impedance matrix are formed by the
double integration

Ak+j·Nj ,k′+j′·Nj′ =
∫ ∫

K(t, t′)ψj′,k′(t′)ψj,k(t)dt′dt, (5)

where Nj denotes the number of frequency components used on the
interval Ij = [αj , αj+1] to approximate the unknown current, and
K(t, t′) is the kernel of the integral equation (1).

The double integral (5) is evaluated by the 2D fast discrete
cosine transform DCT-IV [12]. The fast DCT-IV provides us with
the opportunity to generate the impedance matrix of the MoM very
rapidly and accurately.
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Figure 2. Two local cosine basis functions with different Ij and εj ,
defined on adjacent intervals.

4. NUMERICAL RESULTS

Example 1. Straight-wire scatterer

As the first example of a thin-wire scatterer we consider the simple
straight wire scatterer of length l = λ and radius r = 0.01348λ. The
scatterer is excited by a plane wave which has 45◦ angle of incidence.
This example has been taken from the well-known book [11].

Figure 3 shows the induced current distribution. It has been found
that we need 70 pulse functions to achieve stable numerical solution.
At the same time, only 20 SLCs has been used. First approach
runs for 15.7 seconds on the standard PC computer with the AMD
400 MHz CPU, 256 Mb memory and Linux operational system. The
new technique needs only 1.05 seconds to compute solution. The gain
in the computational time is approximately 15.7/1.05 ≈ 15.

Example 2. Thin-wire scatterer

In this example we consider scattering from the thin-wire
scatterer, shown in Figure 4. This example is taken from [3]. The
thin-wire scatterer consists of two elliptic arc wires of radius 0.01λ
with the following parameters: a = 1.6λ, b = 0.8λ. The scatterer
is excited by a plane wave. The integral equation (1) is solved using
pulse- and SLC-based Galerkin MoM.
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Figure 3. The normalized current magnitude: straight-wire scatterer.
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Figure 4. The thin-wire scatterer.

In Figure 5 we plot results using pulse and SLC bases for the
MoM. Due to the symmetry, the induced current is depicted versus
the normalized arclength only for one wire. The normalized arclength
starts at the major axis and stops at the minor axis.

It has been found numerically, that we need at least 128 pulses
per wire to obtain a stable solution, which is in a good agreement with
the results published in [3]. The corresponding computation time is
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Figure 5. The normalized current magnitude versus normalized
arclength: thin-wire scatterer.

193.31 seconds. At the same time, we need only 24 SLCs per wire to
reach an accurate numerical result (see Figure 5). The corresponding
CPU time here is only 6.94 seconds. This makes the SLC based
MoM 193.31/6.94 ≈ 27 times faster than the standard Galerkin MoM
with pulses. In addition to that, we need approximately 5 times less
unknowns.

Example 3. Straight-wire antenna

As the third example we consider the simple straight-wire antenna
of length l = 2λ and radius r = 0.01348λ. This simple example has
been taken from [11].

Figure 6 shows the normalized current magnitude for this straight-
wire antenna. Due to symmetry, only half of the current distribution
is shown.

In this example, we found that we need at least 140 pulses to
obtain numerically stable solution. At the same time we observed, that
the minimum number of required SLCs is equal to 60. The computation
time for the pulse-based MoM is 64.9 seconds and for the SLC’s based
MoM is 9 seconds. Therefore, we conclude that here the new approach
is 64.9/9 ≈ 7 faster than the standard pulse-based MoM.

Example 4. Gull-shaped antenna

In the last example, we will model the gull-shaped piecewise linear
antenna as shown in Figure 7. Antenna has the following parameters:
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Figure 6. The normalized current magnitude: straight-wire antenna.
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Figure 7. Geometry of the gull-shaped piecewise linear antenna.

h1 = 0.0714λ, h2 = 0.4286λ, h3 = 0.25λ, r = 0.005λ, α = 50◦. This
example was taken from [14].

Figure 8 shows the normalized current magnitude for the gull-
shaped antenna. Due to symmetry, current is shown only for half of
the antenna. We used 150 pulses and only 20 SLCs to obtain numerical
results, presented in Figure 8. The computation time for the pulse-
based MoM is 159.15 seconds. At the same time, SLC-based MoM
runs only 15.13 seconds. This gives us a factor of 159.15/15.13 ≈ 10
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Figure 8. The normalized current magnitude versus arclength: gull-
shaped antenna.
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Figure 9. Radiation pattern of the gull-shaped antenna in the xy
plane.
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the CPU time savings. Finally, Figure 9 presents radiation pattern of
the gull-shaped antenna in the xy plane.

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we have applied the SLC basis to the MoM for thin-
wire scattering and radiation problems. The SLC forms an orthogonal
system which is more suitable to approximate unknown functions in
a restricted interval or domain numerically. Because of the smooth
window function, rapid convergence of the expansion, and a fast
computational algorithm can be achieved. The SLC is particularly
useful when the integral kernel behaves in a highly oscillatory manner.
Examples of the use of the SLC-based MoM are presented and
compared with the standard pulse-based MoM approach. These
examples demonstrate that the SLC works effectively in terms of
computational time and numerical accuracy.
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