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1. INTRODUCTION

The concept of a left-handed material (LHM)1 was originally
postulated by Veselago in the 1960’s [1]. A LHM medium is one
in which the real parts of both the permittivity and permeability
are negative. Materials with such intrinsic properties are not
known to occur in nature. However, recent experiments have
shown that such properties can be simulated over limited frequencies
with discrete arrangements of electrically small elements [2–4].
Proceeding from the curl form of Maxwell’s equations, Veselago
deduced a number of interesting properties for the behavior of time
harmonic electromagnetic waves in LHM media. Recently a series of
experimental and analytical investigations have examined some of the
unique properties of LHM media [5–7].

In this communication we examine four cases bearing on
Veselago’s original conjectures using surface integral equation (SIE)
formulations of Maxwell’s equations solved with the Galerkin MM
technique. Initially the formulations are given for a general penetrable
medium with subsequent specialization to a LHM medium. Specifically
we examine: (a) plane wave scattering from a conducting target
surrounded by a penetrable medium, (b) radiation from a finite source
embedded within a such medium, (c) propagation of a localized source
outside such a medium and (d) plane wave propagation through the
medium, a subcase of which is the lensing problem considered by
Veselago in [1]. Finally, we discuss the implications of using SIE/MM
formulations when the medium is non-causal, specifically where in
a lossless LHM medium the real parts of the relative constitutive
parameters, i.e., ε′r = µ′r → −1 as considered by Veselago.

1.1. Case a: Scattering by a p.e.c. Target Surrounded by
Penetrable Medium

This problem has been studied much earlier by a number of authors.
[8, 9] However, it provides a convenient starting point to lay out
a hierarchy of SIE/MM formulations that encompass and test the
Veselago conjectures. A generic depiction of this case is shown in
Figure 1(a). The region R1 surrounding the coated target is free space
with ε1r = µ1r = 1. A penetrable region R2 characterized by (

∫
2r, B2r)

and enclosed by the surface S1 surrounds the target. The inner core
is defined by a perfectly electrically conducting (p.e.c.) surface S2

enclosing a region R0. For generality, we assume that both
∫
2r and B2r

1 Here the term “left-handed” is not associated with the handedness of chiral materials,
but with negative refraction. This terminology was originally introduced by Veselago.
Alternately, LHM media are also called negative index materials (NIM).
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Figure 1. Generic cases– (a) plane wave illuminating a coated p.e.c.
target, (b) localized source radiating from inside a penetrable region,
(c) localized outside source illuminating a penetrable target, and (d)
plane wave illuminating a penetrable target. The surface currents are
from Schelkunoff equivalence.

may be complex having a real part that is either positive or negative.
The target is illuminated by a plane wave.

Using the equivalence principle, the original problem can be
replaced with equivalent electric and magnetic surface currents on
surface S1 and S2. As shown in [8, 10] the total electric and magnetic
fields in the respective regions can be written as follows. In region R1
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they are:

θ(�r ) �E1(�r ) = �Einc − L1
�J1(�r ) +K1

�M1(�r ) (1)

θ(�r ) �H1(�r ) = �H inc −K1
�J1(�r ) − 1

η2
1

L1
�M1(�r ) (2)

Similarly for region R2 the corresponding equations are:

θ(�r ) �E2(�r ) = −L2
�J2(�r ) +K2

�M2(�r ) − L2
�J0(�r ) (3)

θ(�r ) �H2(�r ) = −K2
�J2(�r ) − 1

η2
2

L2
�M2(�r ) −K2

�J0(�r ) (4)

where θ(�r ) is the Heaviside function defined on the surface boundaries
as

θ(�r ) =




1, �r ∈ Ri, i = 1, 2
1
2
, r ∈ ∂Ri, i = 1, 2

0, otherwise

(5)

For notational compactness we have introduced the pair of integro-
differential operators L and K above. They are defined as

Li
�X(�r ) =

∫
∂Ri

[
jωµi

�X(�r ′) +
j

ωεi
∇∇′ · �X(�r′)

]
Φ

(
ki

∣∣�r − �r ′∣∣) ds′(6)

Ki
�X(�r ) =

∫
∂Ri

[
�X(�r ′) ×∇Φ

(
ki

∣∣�r − �r ′∣∣)] ds′ (7)

where Φ(·)is the Green’s function for an unbounded medium with the
constitutive parameters εi = ε0εir and µi = µ0µir; ε0 and µ0 are
the permittivity and permeability of free space, respectively.2 The
propagation constant ki = k0

√
µir

√
εir and k0 is that of free space.

Note the propagation constant can be that of a conventional or LHM
medium.3 The sign ambiguity of ki associated with LHM media in
the curl formulations of Maxwell’s equations is avoided here. The time
harmonic case with ejωt is implied. When �r = �r ′ the integrals in the
L and K operators are defined in the Cauchy principal value sense.

Imposing the continuity conditions on the tangential fields at
surface S1 and the vanishing of the tangential electric fields on surface
2 For problems in 3-D, Φ(kR) = (4πR)−1 exp(−jkR), R = |r − r ′|; for problems in 2-D,

Φ(kR) = j(4π)−1H
(2)
0 (kR), R = |ρ − ρ ′|, where H

(2)
0 (kR) is the Hankel function of the

zeroth order and second kind.
3 The term “conventional medium” is one where the real parts of the permittivity ε′r ≥ 1
and permeability µ′

r ≥ 1.
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S2, yields the following coupled SIEs:[
(L1 + L2) �J1(�r ) − (K1 +K2) �M1(�r ) − L2

�J0(�r )
]
tan S1

= �Einc |tan S1

(8)[
(K1+K2) �J1(�r )+

(
1
η2
1

L1+
1
η2
2

L2

)
�M1(�r )−K2

�J0(�r )
]
tan S1

= �H inc|tan S1

(9)[
L2
�J1(�r ) −K2

�M1(�r ) − L2
�J0(�r )

]
tan S2

= 0 (10)

where we have used the fact that �J2(�r )|S1 = − �J1(�r ′)|S1 and
�M2(�r )|S1 = − �M1(�r ′)|S1 . The surface currents �J0(�r ), �J1(�r ) and �M1(�r )
are the unknowns.4

To solve Eqs. (8)–(10), we apply the Galerkin form of the method
of moments (MM) expanding the unknown surface currents in a finite
set of basis functions and test the resulting system with their complex
conjugates. Specifically we expand �J1(�r ), �M1(�r ) and �J0(�r ) as

�J1(�r ) =
∑
j

{
a1j

�f1j(�r ) + a2j
�f2j(�r )

}
(11)

�M1(�r ) = η0

∑
j

{
b1j
�f1j(�r ) + b2j

�f2j(�r )
}

(12)

�J0(�r ) =
∑
j

{
c1j
�f1j(�r ) + c2j

�f2j(�r )
}

(13)

where η0 =
√

µ0

ε0
. The coefficients a, b, and c are the corresponding

unknowns in these expansions. The terms �f1j and �f2j are the elements
of the basis set spanning each of the orthogonal directions on the
surfaces.5

We form the inner products with Eqs. (8)–(10) using the complex
conjugates of the basis set, i.e., �wαi = (�fαi)∗ where α = 1, 2. The i, j-
th element of the inner products of the two operators can be written
explicitly as:

Lαβ
ij (S1, S2;R) =

〈
�wαi(s), L�fβj(s′)

〉
=

∫∫
S1S2

dsds′
{
jωµ�wαi(s) · �fβj(s′)

4 We have implicitly assumed that there are no internal resonances within region R0

enclosed by S2. If there are internal resonances, a combined formulation must be used
such as given in [9, 11].
5 For example for a 2-D problem where the object are infinite along the z-axis, the
orthogonal directions are along z and t. The latter is a parametric variable describing
the generating curve of the object. See [13, 14] for a full discussion of such cases.
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+
j

ωε
(∇ · �wαi(s))

(
∇′ · �fβj)(s′)

)}
Φ(k|�r − �r ′|) (14)

Kαβ
ij (S1, S2;R) =

〈
�wαi(s), �fβj(s′)

〉
= η0

∫∫
S1S2

dsds′ �wαi(s)

·
{
�fβj(s′) ×∇Φ(k|�r − �r ′|)

}
(15)

where the parameters R, B,
∫

refer to the region where the
operators are evaluated. Similar expressions can be written
for Lαβ

ij (S1, S1;R), Lαβ
ij (S2, S2;R), Kαβ

ij (S1, S1;R) and Kαβ
ij (S1, S1;R).

Using these Galerkin transformed operators, Eqs. (8)–(10) written in
a general matrix form become:


Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33






I1
I2
I3


 =



V1

V2

V3


 (16)

where the i, j-th element of the submatrices are:

(Z11)ij = Lαβ
ij (S1, S1;R1) + Lαβ

ij (S1, S1;R2) (16a)

(Z21)ij = −(Z12)ij = Kαβ
ij (S1, S1;R1) + Kαβ

ij (S1, S1;R2) (16b)

(Z22)ij =
1
η2
1

Lαβ
ij (S1, S1;R1) +

1
η2
2

Lαβ
ij (S1, S1;R2) (16c)

(Z31)ij = Lαβ
ij (S2, S1;R2) (16d)

(Z13)ij = −Lαβ
ij (S1, S2;R2) (16e)

(Z32)ij = −Kαβ
ij (S2, S1;R2) (16f)

(Z23)ij = −Kαβ
ij (S1, S2;R2) (16g)

(Z33)ij = −Lαβ
ij (S2, S2;R2) (16h)

and

I1j = aβj ; I2j = bβj ; I3j = cβj (16i)

V1i = E inc
i =

〈
�wαi, �E

inc
〉

; V2i =Hinc
i =

〈
�wαi, �H

inc
〉

; V3i = 0 (16j)

The submatrices in Eq. (16) represent all the electromagnetic
interactions between the two surfaces S1 and S2. The i-th element
of the RHS of Eq. (16) denotes the inner product of the testing
function and the incident electric and magnetic fields on surface S1.
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The foregoing matrix equation is solved for the unknown expansion
coefficients in Eqs. (11)–(13) using conventional direct or iterative
methods. Knowing these coefficients, the electric and magnetic
fields are uniquely determined everywhere. Detailed expressions for
numerical implementation of the terms in Eq. (16) and following are
given in [14].

1.2. Case b: Source inside Penetrable Region

In this case shown in Figure 1(b), the source is an electric field �E0

impressed on the p.e.c. surface S2 enclosing region R0.6 The total
electric and magnetic fields in the respective regions in terms of the
equivalent currents on the various surfaces are as follows. The fields in
region R1 are:

θ(�r ) �E1(�r ) = −L1
�J1(�r ) +K1

�M1(�r ) (17)

θ(�r ) �H1(�r ) = −K1
�J1(�r ) − 1

η2
1

L1
�M1(�r ) (18)

and similarly in region R2

θ(�r ) �E2(�r ) = −L2
�J2(�r ) +K2

�M2(�r ) − L2
�J0(�r ) (19)

θ(�r ) �H2(�r ) = −K2
�J2(�r ) − 1

η2
2

L2
�M2(�r ) −K2

�J0(�r ) (20)

Imposing the boundary conditions on the exterior and interior surfaces
in Figure 1(b), one obtains a system of SIEs.7 As before application
of the Galerkin procedure, yields a system matrix identical to that in
Eq. (16). The RHS of Eq. (16) becomes: V1 = V2 = 0 (i.e., no incident
fields) and V3 =< �wαi, �E0 >, where �E0 is the impressed field of the
source over the surface S2.8

1.3. Case c: Localized Source outside Penetrable Region

A generic depiction of this case is given in Figure 1(c). The case
of a line source illuminating a homogeneous LHM slab discussed in
[4], is a subcase of the present problem. Let the source consist of an
electric field �E0 impressed on the p.e.c. surface S2 enclosing region R0.
6 This impressed field could be localized over S2 as in the case of an aperture antenna
embedded in S2.
7 Again it is assumed that there are no internal resonances within region R0.
8 In a practical problem if the source is an antenna embedded in S2, then E0 is the electric
field over the antenna aperture.
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The surrounding region R1 is free space. The penetrable region R2

characterized by (ε2r, B2r) is enclosed by the surface S1. Again the
fields in region R1 are:

θ(�r ) �E1(�r ) = − �E0 − L1
�J1(�r ) +K1

�M1(�r ) − L1
�J0(�r ) (21)

θ(�r ) �H1(�r ) = −K1
�J1(�r ) − 1

η2
1

L1
�M1(�r ) −K1

�J0(�r ) (22)

and similarly in region R2

θ(�r ) �E2(�r ) = −L2
�J2(�r ) +K2

�M2(�r ) (23)

θ(�r ) �H2(�r ) = −K2
�J2(�r ) − 1

η2
2

L2
�M2(�r ) (24)

Imposing the boundary conditions on S1 and S2 and applying the
Galerkin procedure yields a matrix equation whose elements are similar
to those in Eq. (16) except now that the operators in row 3 and column
3 are evaluated in region R1 instead of R2, i.e.,

Z31 = Lαβ
ij (S2, S1;R1) (25a)

Z13 = Lαβ
ij (S1, S2;R1) (25b)

Z32 = −Kαβ
ij (S2, S1;R1) (25c)

Z23 = Kαβ
ij (S1, S2;R1) (25d)

Z33 = Lαβ
ij (S2, S2;R1) (25e)

Since the only source is the excitation �E0 on surface S2, the RHS of
Eq. (16) is V1 = 0; V2 = 0; V3 = − < �wαi, �E0 >. Note here V3 is the
negative of the same term in Case b.

1.4. Case d: Plane Wave Illumination of Penetrable Region

This case is depicted in Figure 1(d). It is a generalization of the lens
problems discussed by Veselago. See Fig. 5 in [1]. The surface S1

enclosing the penetrable region R2 (i.e., the lens) is illuminated with
a plane wave. Using the equivalent current representation in Fig. 1(d)
and applying the MM Galerkin procedure, yields a system matrix of
the form: [

Z11 Z12

Z21 Z22

] [
I1
I2

]
=

[
V1

V2

]
(26)

where the elements of the matrix are given in Eqs. (16a)–(16c), (16i)
and (16j). This matrix system is reduced to a 2×2 block since there is
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only one surface S1 on which the boundary conditions for the tangential
electric and magnetic fields are imposed.

2. IMPLICATIONS OF A LHM MEDIUM

In the foregoing derivations we purposely left the permittivity and
permeability of the penetrable medium unspecified so that the
derivations may apply equally well for conventional and LHM media.
In a conventional medium, the propagation constant is

k = k0
√
εrµr = k0

√
ε′r − jε′′r

√
µ′r − jµ′′r

= k0(k′r − jk′′r ) (27)

For a LHM medium, the corresponding constant is

k− = k0
√
εrµr = k0

√
−ε′r − jε′′r

√
−µ′r − jµ′′r

= j2k0

√
ε′r + jε′′r

√
µ′r + jµ′′r = −k0(k′r + jk′′r )

= −k∗ (28)

where k∗ is the complex conjugate of the (complex) propagation
constant of the corresponding conventional medium. Noting that the
Φ(k−R) = Φ(−k∗R), ∇Φ(k−2 R) = −∇Φ(k∗2R) and η2

− = (η2)∗, it
can be shown that the Galerkin transformed operators in the LHM
medium are the negative of the complex conjugate of the operators for
a conventional medium, i.e., L− = −L∗ and K− = −K∗. Using the
relationships in Eqs. (14)–(15) yields

Lαβ−
ij (S1, S2;R) = −

(
Lαβ

ij (S1, S2;R)
)∗

(29)

Kαβ−
ij (S1, S2;R) = −

(
Kαβ

ij (S1, S2;R)
)∗

(30)

Thus the matrix elements for the LHM medium can be formed from
the corresponding ones for a conventional medium.

3. A LIMITING CASE

A special situation arises for a lossless LHM medium as the real parts
of the relative permittivity ε′1r → −1 and permeability µ′1r → −1.
For brevity we designate this limiting case here as “negative” free
space (NFS). It was used by Veselago to articulate several properties
of LHM media. [1] In the NFS case, several of the submatrix blocks
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in the system matrices of the SIE/MM formulations, associated with
Cases (a)–(d) discussed above, become null matrices. For example,
the submatrix blocks in Eq. (16), i.e., Z11, Z12, Z21 and Z22 are null
matrices making the system insoluble. It may seem strange that a
SIE/MM formulation that is well-posed for a conventional medium, is
not well-posed for a NFS one until one realizes that the latter medium
is non-physical since it violates causality.9 The null matrices in the
SIE/MM formulations are mathematical reflections of this fact. For a
LHM medium where ε′2r = µ′2r = −1 and lossy (ε′′r = 0, µ′′r = 0), or
ε′2r = −1 and µ′2r = −1 and lossless, the foregoing formulations yield
well behaved results as illustrated below.10

4. DISCUSSION OF EXAMPLES

Representative numerical calculations were carried out for several of
the foregoing cases using the MM-based CARLOS software. [15, 16]
Convergent results were achieved throughout with a 10/8 surface
discretization. As an example of Case (b), Fig. 2 depicts the results
for a source embedded in a penetrable region. For this case the
penetrable region is an infinite (2-D) slab with a cross sectional area of
10.16λ×3.387λ. The cylindrical (line) source is located at the center of
the slab, polarized perpendicular to the cross sectional area of the slab.
The frequency of the source is 10 GHz. The results for a lossy LHM
medium with εr = −2.0−j0.2 and µr = −1.0−j0, are contrasted with
that for a conventional medium with εr = 2.0− j0.2 and µr = 1.0− j0.
Examining the map of the ultra-near electric field intensities for the
LHM slab, we observe a field concentration (“focusing”) on either side
of the slab, absent in the conventional medium slab. This effect has
also been observed previously in FDTD calculations. [4] At 10 GHz the
slab is 3.387λ thick. In passing it should be noted that via a ray trace
argument, one can show that this field concentration is due to negative
refraction effects inherent in a LHM medium as postulated by Veselago.
However, ray tracing only accounts for one of the electromagnetic
effects present here, namely refraction. Since the slab has finite height
9 The Kramers-Kronig relationships require that there be loss when the permittivity or
permeability becomes negative. Note in FDTD calculations of the EM fields are postulated
on the causal behavior of a material constituting the penetrable region. In time harmonic
analysis, this is not a priori requirement. However as our discussion shows, the lack of
causality leads to a mathematically ill-posed problem for NFS.
10 For nongyrotropic plasmas with µr = 1 and εr can be positive or negative and also
complex. For the case of a Lorentzian plasma where ε′r = 1 − ω2

p(ω2 + v2)−1 and

ε′′r = ω2
pv(ω2 +v2)−1, if the plasma radian frequency ωp � ω ≥ v, then ε′r < −1. SIE/MM

formulations have been successful in modeling these cases. In the lossless plasma case, the
collision frequency Λ = 0. A negative permittivity requires that ωp > ω. However, this is
hard to achieve in a collisionless environment.
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(10.16λ), diffraction effects are also important. These contribute to
the irregular intensity contours arising in both media in seen in Fig. 2.

Next we consider the situation of a localized source outside a
penetrable region, exemplifying Case (c). First for comparison, Fig. 3
depicts the case of a cylindrical source outside an infinite “free space”
slab (i.e., with εr = µr = 1.0). The source is 1.524λ from the left side
of the slab, polarized again perpendicular to the cross sectional area of
the slab. The dimensions and geometry of the slab are identical with
those in Fig. 2. The frequency of the source is 10 GHz. As expected the
ultra-near electric fields radiated by the source are unaffected by the
presence of the “free space” slab. These results were compared with
calculations made in the absence of a slab. The two calculations were
indistinguishable. They provide a check of the numerical algorithms
used in the CARLOS code and are a reference for the results obtained
for a LHM slab considered next.

Figure 4 shows the map of the ultra-near electric fields in the
presence of LHM slab. The intensity and the constant phase loci
are plotted. The parameters of the problem are the same as those
in Fig. 3, except the permittivity and permeability of the slab are
εr = −3.0 − j0.0 and µr = −1.0 − j0.0, respectively. Note in this case
the LHM medium is lossless. As seen previously for the case of the line
source within a LHM slab in Fig. 2(a), a series of field concentration
points exist and there is a “channeling” or “beaming” of the fields
along a centerline of slab occurs. Similar trends were observed by
Ziolkowski and Heyman. [5] The other prominent features are the
series of “vee” shaped intensity lines within the slab, indicative of the
negative refraction predicted by Veselago. The negative refraction can
also be deduced from the constant phase plots. If the LHM slab is
lossy, these intensity lines are much diminished. FDTD simulations
have shown similar effects. There also appear to be significant surface
waves on the left hand surface of the slab.

The ultra-near electric fields (intensity and phase) produced by a
line source outside the slab when the permittivity εr = −1.001−j0.013
and permeability µr = −1.001 − j0.013 approach negative free space
(NFS), illustrated in Fig. 5. As was discussed earlier, to use SIE/MM
formulations it is necessary to have a lossy medium when ε′r → −1 and
µ′r → −1. The other parameters for this problem are unchanged from
those in Fig. 4. Two mechanisms are operative here: channeled wave
propagation through the slab and the presence of surface waves on the
left hand boundary of the slab. This correlates well with earlier results
obtained with the FDTD technique for a line source illuminated slab.
[4] Additional calculations not shown here for very weakly lossy LHM
media, show similar effects with the field intensities more and more
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 a)

 b)

Figure 2. Contour map of the ultra-near electric field intensities due
to a cylindrical (line) source embedded in an infinite penetrable slab.
The cross sectional area of the slab is 12 in. × 4 in. (10.16λ× 3.387λ
at 10 GHz.) The source is in the center of the slab, polarized
perpendicular to the cross section of the slab. (a) lossy LHM medium
with εr = −2.0− j0.2; µr = −1.0− j0. (b) conventional lossy medium
with εr = 2.0 − j0.2; µr = 1.0 − j0. The intensity map is limited for
visual clarity.



Progress In Electromagnetics Research, PIER 51, 2005 39

Figure 3. Contour map of the ultra-near electric field intensities due
to a cylindrical (line) source outside an infinite “free space” slab with
εr = µr = 1.0. The source is 1.8 in. (1.54λ at 10 GHz) from the left
surface of the slab. It is polarized perpendicular to the cross section
of the slab. The geometry of the slab is as in Fig. 2.

defocused and with the presence of secondary field intensity structures.
Finally, we explored Veselago’s conjecture that convex and

concave lenses “have changed places” when they are made of a LHM
medium. Specifically according to this conjecture, a concave LHM
lens produces converging rays resulting in focusing in the manner of a
convex lens made of a conventional medium. In arriving at this result,
Veselago used ray trace arguments assuming that a plane wave (parallel
rays) impinged on the lens. Initially we used the formulation in Case
(d) for this problem. For the numerical simulations the concave LHM
lens with εr = µr = −2.0 − j0.0 was finite in height (i.e., 10.1612λ
at 10 GHz). The lens dimensions are given in Fig. 6. A plane wave
illumination of this lens (and larger ones not shown here) produced
significant edge diffraction masking the basic focusing effect of interest
here.

As an alternative, we used fields produced by a uniform current
sheet to illuminate the lens. The current sheet was 3.387λ wide and
centered 5.08λ from the left hand surface of the lens at 10 GHz.11

11 This arrangement can be thought of as the dual of a plane wave through a slit. The
resulting field is approximately planar in the central portion of the lens. The lens problem
with the finite source is an example of Case c, considered earlier.
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Figure 4. Contour map of the ultra-near electric fields due to a
cylindrical (line) source outside an infinite lossless LHM slab with
εr = −3.0 − j0.0, µr = −1.0 − j0.0. The other parameters of the
problem are as in Fig. 3. (a) amplitudes, (b) constant phase contours.
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Figure 5. Contour map of the ultra-near electric fields due to
a cylindrical (line) source outside an infinite lossy LHM slab with
εr = −1.001 − j0.013, µr = −1.001 − j0.013 . The other parameters
of the problem are as in Fig. 3. (a) amplitudes, (b) constant phase
contours.
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Figure 6. Contour map of the ultra-near electric fields due to a
uniform sheet current source propagated through a concave 2-D lossless
LHM lens with εr = µr = −2. The right and left hand lens surfaces
are formed by radii of curvature of 10.158λ and 10.97λ, respectively.
The current sheet is 4 in. (3.387λ) wide, centered 6 in. (5.08λ) from
the left hand surface of the lens. The polarization is perpendicular
to the cross sectional area of the lens. The frequency of the source is
10 GHz. (a) amplitudes, (b) constant phase contours.
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Figure 7. Contour map of the ultra-near electric fields due to an
uniform sheet current source propagated through a modified concave
2-D lossless LHM lens with εr = µr = −2. The source, polarization,
and height and right hand curvature of the lens are those given in
Fig. 6. (a) amplitudes, (b) constant phase contours.
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Figure 8. Contour map of the ultra-near electric fields due to an
uniform sheet current source propagated through a modified concave
2-D lens with εr = 2 and µr = 1.0. The source, polarization, and
height and right hand curvature of the lens are those given in Fig. 6.
(a) amplitudes, (b) constant phase contours.
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The resulting electric field wave fronts were approximately planar in
the central part of the lens. The field was polarized perpendicular
to the cross section of the lens. Figure 6 depicts the resulting ultra-
near electric fields propagated through the lens with this source. In
concordance with Veselago’s conjecture, the fields become focused.
The irregularity of the intensity contours is principally due to edge
diffraction arising from the finiteness of the lens. Parenthetically, the
corresponding results for a convex lens made of a conventional medium,
showed divergent fields, i.e., no focusing.

Additional numerical simulations were carried out for modified
convex lenses of LHM and conventional media. A representative
example for the LHM case is shown in Fig. 7. The height and right
hand curvature of the lens and as well as the illuminating source are
the same as those in Fig. 6. The LHM medium is εr = 2.0 − j0.0.
The corresponding results for a conventional medium lens with εr =
2.0−j0.0 and µr = 1.0−j0.0 are given in Fig. 8. Note in the latter case
no focusing occurs. These, and other results not shown here, support
the conjectures of Veselago regarding the behavior of LHM media in
lenses. While his conclusions were based solely on ray trace arguments,
the present results also incorporate all nonspecular electromagnetic
interactions including waves and diffraction.

5. SUMMARY

We have examined four cases using SIE/MM formulations involving
LHM media bearing on Veselago’s original conjectures regarding
the behavior of electromagnetic propagation and scattering in the
presence of such media. For illustration, numerical simulations were
carried out for line and distributed sources inside and outside such
media. Specifically, the case of a finite planar LHM slab, and
convex and modified convex LHM lenses were considered confirming
Veselago’s conjectures. The results were also contrasted with those
for conventional media. It was shown that SIE/MM formulations
are well-posed and computationally robust, except in cases where the
relative permittivity and permeability are εr = µr = −1.0 − j0, i.e.,
the “negative” free space case originally considered by Veselago.
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