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Abstract—The differential method for arbitrary profiled one-
dimensional gratings made of anisotropic media is reformulated by
taking into account Li’s Fourier factorization rules [10] though the
present formulation uses the intuitive Laurent rule only. The
study concerns arbitrary profiled gratings with both types of electric
and magnetic anisotropy, and includes the case of lossy materials.
Diffraction efficiencies computed by the present formulation are
compared with previous ones, and numerical results show that
convergence of the present formulation is superior to the conventional
one and comparable convergence with the previous works based on Li’s
rules.

1 Introduction

2 Statement of the Problem

3 Constitutive Relations in Fourier Space

4 Comparison with Previous Works

5 Conclusion

References

1. INTRODUCTION

The differential theory [1, 2] is one of the most commonly used
approaches in the analyses of various gratings because of its simplicity
and wide applicability. The theory introduce a generalized Fourier
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series expansion, and Maxwell’s equations are transformed into a
coupled ordinary differential-equation set by using Fourier factorization
rules. Outside the groove region, the fields can be expressed in Rayleigh
expansions, and thus the solution inside the grating region can be
matched to them. Then the diffraction problem is reduced to the
numerical integration problem of a coupled differential-equation set
with the boundary condition at the top and the bottom of the grating
layer. The differential method in narrow sense (DM) transforms this
problem into an initial-value problem through the shooting method[2]
and then solved with the help of numerical integration algorithms.
Besides there is a widely used variant of the theory called the rigorous
coupled-wave method (RCWM) [3–5], which introduces a staircase
approximation and each grating profile is represented by several layers
of lamellar gratings. The coefficients of the coupled differential-
equation set are constant in each layer, and then the problem can
be solved by eigensystem analysis.

Various types of gratings are shown in Fig. 1 and they can be
analyzed using the differential theory when the gratings are shallow or
made of nonconducting materials. However, numerical experiments
for deep gratings with large truncation order show in many cases
numerical instabilities occur. Trouble comes from the accumulation
of contamination linked with growing exponential functions. A
simple way to get rid of this problem is to use the scattering-
matrix (S-matrix) propagation algorithm [6–8]. Also, a difficulty
concerning to the convergence was criticized for deep gratings made of
conducting materials[9] and this approach was thought to be limited
in its application range during about 30 years. The origin of poor
convergence was explained by Li’s Fourier factorization rules [10],
which gave an idea for accelerating the convergence. Li proposed
RCWM formulations for isotropic[10] and anisotropic[11] gratings
made of conducting materials by taking into account the rules. RCWM
is well suited for lamellar profiled gratings shown as Fig. 1(a) but recent
papers [12, 8] showed the staircase approximation used on RCWM was
doubtful about its efficiency for arbitrary profiled gratings made of
conducting materials. Popov and Nevière [13] investigated the TM
diffraction problem on arbitrary profiled gratings made of isotropic
materials and presented DM formulations based on Li’s Fourier
factorization rules. Watanabe et al. [14, 15] introduced continuous
intermediary functions and proposed a DM formulation for smooth
profiled gratings (Fig. 1(b)) made of anisotropic materials. Popov
and Nevière [16] formally generalized this approach to the scattering
problems on arbitrary profiled periodic surface that is assumed
to have normal vector everywhere and separates two anisotropic
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(e) Multi-layered grating

Figure 1. Various types of gratings.
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media. However, their idea seems not to be easy to apply individual
problems, and also they gave no numerical experiment of anisotropic
grating. Also, cylindrical rod gratings (Fig. 1(c)) made of anisotropic
materials are formulated in Ref. [17]. Watanabe [18] presented
another approach for nonsmooth profiled gratings (Fig. 1(d)) made
of anisotropic materials with the use of discontinuous intermediary
functions. One of the remained profiles important in engineering is
a multi-layered grating as shown in Fig. 1(e). Metallic gratings are
sometimes coated with one or more dielectric layers to prevent the
grating surface from tarnishing or to enhance diffraction efficiency [19].

This paper generalizes the formulation given in Ref. [17] and
proposes a DM formulation that is applicable to all the one-dimensional
gratings shown in Fig. 1. The study concerns both types of electric and
magnetic anisotropy and includes the case of lossy materials. Also, it
concerns conical diffraction problem, in which the incident plane is
not parallel to the direction of grating periodicity. The formulation
uses the continuous intermediary functions introduced in Refs. [14, 15]
and Li’s Fourier factorize rules are applied to derive the constitutive
relations in Fourier space. As mentioned above, there have been
many formulations based on Li’s Fourier factorization rules [10, 11, 13–
18]. However, all of them have been proposed for individual types
of gratings and limited their application ranges. Also, the Fourier
coefficients of the grating profile functions are required to derive the
coupled differential-equation set, but their analytical expressions are
rarely obtained and a long computation time is necessary for numerical
integration in many problems. The present formulation covers all the
gratings in Fig. 1 and gets rid of the processes of numerical integrations
for arbitrary profiled gratings. Numerical experiments show a great
advantage of the present formulation compared with the conventional
one, in which the Laurent rule is used for Fourier factorization without
any care of the continuity properties, and comparable convergence with
the previous works based on Li’s rules.

2. STATEMENT OF THE PROBLEM

We shall investigate the diffraction problem on gratings made of
anisotropic materials. Figure 2 shows an example of geometry
under consideration. We consider time harmonic fields assuming a
time-dependence in e−i ω t, and deal with the plane incident wave
propagating in the direction of polar angle θ (0 ≤ θ < π/2) and
azimuth angle φ (−π < φ ≤ π). The grating structure is uniform in
the z-direction, and the x-axis is parallel to the direction of periodicity.
The grating depth is denoted by h and, the relative permittivity and
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Figure 2. Geometry of a grating under consideration.

the relative permeability are given by ε(x, y) and µ(x, y) that are
periodic in the x-direction with the period d. Inside the grating layer
0 ≤ y ≤ h, the electromagnetic parameters ε(x, y) and µ(x, y) are
supposed to be piecewise constant functions of x for each y, and have
L discontinuous boundaries in a periodicity cell though the number
L may be depend on y. As shown in Fig. 3, the equations of these
discontinuous boundaries are denoted by x = gj(y) (j = 1, · · · , L)
in such a way that 0 < g1(y) < · · · < gL(y) ≤ d, and we put
g0(y) = gL(y) − d for the sake of convenience. The (p, q)-entries
(p, q = x, y, z) of the relative permittivity and the relative permeability
matrices are constant in gj−1(y) < x < gj(y) (j = 1, · · · , L) and
the values are εj,pq and µj,pq, respectively. Also, the angles between
the tangent at x = gj(y) and the x-angle are denoted by ηj(y). The
cover region y > h is filled with a lossless, homogeneous, and isotropic
material described by the relative permittivity εc and the relative
permeability µc, and a homogeneous and anisotropic material which
fills the substrate region y < 0 is described by a relative permittivity
matrix εs and µs. Throughout the paper, we normalize the fields,
namely the E-field by 4

√
µ0/ε0, the H-field by 4

√
ε0/µ0, the D-field by

ε0
4
√
µ0/ε0, and the B-field by µ0

4
√
ε0/µ0, where ε0 and µ0 denote the

permittivity and the permeability in free space, respectively.
The Floquet theorem claims that the Cartesian components of the

fields are pseudo-periodic when the structure is periodic. Therefore
all the components can be approximately expressed by truncated
generalized Fourier series; for example the x component of E-field can
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Figure 3. Discontinuous boundaries inside the grating layer.

be written as

Ex(x, y, z) =
N∑

n=−N
Ex,n(y) ei k0(αn x+γ z) (1)

with

αn =
√
εc µc sin θ cosφ+ n

λ0

d
(2)

γ =
√
εc µc sin θ sinφ (3)

where N is the truncation order, λ0 is the wavelength in free
space, and Ex,n(y) are the nth-order generalized Fourier coefficients
that are functions of y only. To treat the generalized Fourier
coefficients systematically, we introduce column matrices; for example
the coefficients of Ex are expressed by a column matrix [Ex] that is
defined by

[Ex] = (Ex,−N · · · Ex,N )t , (4)

where the superscript t denotes the transpose matrix. The coefficients
of other field components are expressed in the same way.

All the periodic and pseudo-periodic functions in Maxwell’s curl
equations are replaced with their Fourier series and the constitutive
relations in the Fourier space, which express the relations between the
generalized Fourier coefficients of E, H-fields and D, B-fields, are given.
Then, as shown by Popov and Nevière[16], we may obtain the following
coupled differential-equation set:

d

dy
f(y) = i k0M(y)f(y) (5)
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with

f(y) =




[Ex]
[Ez]
[Hx]
[Hz]


 (6)

where the expression of (8N + 4) × (8N + 4) square matrix M(y) is
given in Refs. [16, 18].

As mentioned before, the electromagnetic fields outside the grating
layer can be expressed in Rayleigh expansions, and then the problem
is reduced to the problem of a coupled differential-equation set
with boundary conditions at the top and the bottom of the grating
layer. In order to apply the S-matrix propagation algorithm, the
grating layer is decomposed into several or more sublayers. Then
the transmission matrices of each sublayer, which are obtained by
usual numerical integration schemes, built up the S-matrix for entire
grating structure. We calculate the transmission matrices by using
the two-stage fourth-order implicit Runge-Kutta scheme based on
Gauss-Legendre quadrature because Ref. [8] pointed out that implicit
integration schemes provide stable calculations.

3. CONSTITUTIVE RELATIONS IN FOURIER SPACE

The important point for fast converging formulation is that the
expression of the constitutive relations in the Fourier space is
constructed by following Li’s Fourier factorization rules. The
constitutive relations in the original space are written as follows:(

Dx
Dy
Dz

)
=

L∑
m=1

wm

(
εm,xx εm,xy εm,xz
εm,yx εm,yy εm,yz
εm,zx εm,zy εm,zz

) (
Ex
Ey
Ez

)
(7)

(
Bx
By
Bz

)
=

L∑
m=1

wm

(
µm,xx µm,xy µm,xz
µm,yx µm,yy µm,yz
µm,zx µm,zy µm,zz

) (
Hx
Hy
Hz

)
(8)

These relations are transformed into the truncated Fourier space and
expressed as follows:

[Dx]
[Dy]
[Dz]


 =

L∑
m=1

C(e)
m


[wmEx]

[wmEy]
[wmEz]


 (9)
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[Bx]

[By]
[Bz]


 =

L∑
m=1

C(h)
m


[wmHx]

[wmHy]
[wmHz]


 (10)

with

C(e)
m =

(
εm,xx I εm,xy I εm,xz I
εm,yx I εm,yy I εm,yz I
εm,zx I εm,zy I εm,zz I

)
(11)

C(h)
m =

(
µm,xx I µm,xy I µm,xz I
µm,yx I µm,yy I µm,yz I
µm,zx I µm,zy I µm,zz I

)
(12)

where I denotes the identity matrix. In order to derive the
constitutive relation in the Fourier space, we need to factorize the
Fourier coefficients of the products of wm and the electromagnetic
field components. Li [10] pointed out that the Laurent rule is valid
only for a product of two periodic functions that have no concurrent
jump discontinuities (type 1 product in Li’s terminology), and another
Fourier factorization rule named the inverse rule can be adopted, in
many case, to a product of two functions that have only pairwise-
complementary jump discontinuities (type 2 product). However, a
product of two functions have concurrent but not complementary jump
discontinuities (type 3 product) can be Fourier factorized by neither
the Laurent nor the inverse rules. As a conclusion, we have to derive
the constitutive relations in the Fourier space by using type 1 and
type 2 products only. Also, since the inverse rule is noticed to be a
consequence of the Laurent rule [14], we try to present a formulation
leading to type 1 products only.

Here, we consider two continuous functions s(x, y) and c(x, y)
that are sj(y) = sin[ηj(y)] and cj(y) = cos[ηj(y)] on the boundaries
x = gj(y) and appropriately interpolated between the boundaries.
The linear interpolation is used in this paper and they are given in
gj−1(y) < x < gj(y) as follows:

s(x, y) =
sj − sj−1

gj − gj−1
x+

gj sj−1 − gj−1 sj
gj − gj−1

(13)

c(x, y) =
cj − cj−1

gj − gj−1
x+

gj cj−1 − cj−1 sj
gj − gj−1

. (14)

However, we should note that s(x, y) and c(x, y) must be defined so as
not to vanish simultaneously for any x. This condition is required for
the inversion calculation appeared later in Eq. (46).
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Now, we introduce the intermediary functions Dn, Et, Bn, and
Ht, which are defined by the functions s(x, z) and c(x, z) as follows:

(
Dn
Et

)
=

L∑
m=1

wm

(
t
(e)
m,nx t

(e)
m,ny t

(e)
m,nz

c s 0

) (
Ex
Ey
Ez

)
(15)

(
Bn
Ht

)
=

L∑
m=1

wm

(
t
(h)
m,nx t

(h)
m,ny t

(h)
m,nz

c s 0

) (
Hx
Hy
Hz

)
(16)

with

t(e)m,np(x, y) = −εm,xp s(x, y) + εm,yp c(x, y) (17)

t(h)m,np(x, y) = −µm,xp s(x, y) + µm,yp c(x, y). (18)

These four functions have no physical meaning but, on the boundaries
x = gj(y), Dn, Bn give the normal components of D, B-fields, and
Et, Ht give the tangential component of E, H-fields. Hence, they
are continuous functions of x for each y because of the laws of
electromagnetism, and pseudo-periodic in the x-direction like the field
components.

Multiplying equations (15) and (16) by wl, and using the relations:
wl wm = δl,mwl, we obtain

wl

(
Dn
Et

)
= wl

(
t
(e)
l,nx t

(e)
l,ny t

(e)
l,nz

c s 0

) (
Ex
Ey
Ez

)
(19)

wl

(
Bn
Ht

)
= wl

(
t
(h)
l,nx t

(h)
l,ny t

(h)
l,nz

c s 0

) (
Hx
Hy
Hz

)
. (20)

Then, after inversion calculation, we get

wl

(
Ex
Ey
Ez

)
= wl



a

(e)
l,xn a

(e)
l,xt a

(e)
l,xz

a
(e)
l,yn a

(e)
l,yt a

(e)
l,yz

0 0 1




(
Dn
Et
Ez

)
(21)

wl

(
Hx
Hy
Hz

)
= wl



a

(h)
l,xn a

(h)
l,xt a

(h)
l,xz

a
(h)
l,yn a

(h)
l,yt a

(h)
l,yz

0 0 1




(
Bn
Ht
Hz

)
(22)
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with

a
(e)
l,xn = −s/ξ(e)l (23)

a
(e)
l,xt = − (εl,xy s− εl,yy c) /ξ(e)l (24)

a
(e)
l,xz = − (εl,xz s− εl,yz c) s/ξ(e)l (25)

a
(e)
l,yn = c/ξ(e)l (26)

a
(e)
l,yt = (εl,xx s− εl,yx c) /ξ(e)l (27)

a
(e)
l,yz = (εl,xz s− εl,yz c) c/ξ(e)l (28)

a
(h)
l,xn = −s/ξ(h)l (29)

a
(h)
l,xt = − (µl,xy s− µl,yy c) /ξ(h)l (30)

a
(h)
l,xz = − (µl,xz s− µl,yz c) s/ξ(h)l (31)

a
(h)
l,yn = c/ξ(h)l (32)

a
(h)
l,yt = (µl,xx s− µl,yx c) /ξ(h)l (33)

a
(h)
l,yz = (µl,xz s− µl,yz c) c/ξ(h)l (34)

ξ
(e)
l = εl,xx s2 − (εl,xy + εl,yx) s c+ εl,yy c2 (35)

ξ
(h)
l = µl,xx s2 − (µl,xy + µl,yx) s c+ µl,yy c2. (36)

Since Dn, Et, Ez, Bn, Ht, Hz and the functions given by Eqs. (23)–
(34) are continuous everywhere, all terms on the right-had sides in
Eqs. (21) and (22) are type 1 products. Consequently, Eqs. (21) and
(22) are transformed into the Fourier space with careful use of the
Laurent rule, and we obtain the following relations:


[wlEx]

[wlEy]
[wlEz]


 = A

(e)
l


[Dn]

[Et]
[Ez]


 (37)


[wlHx]

[wlHy]
[wlHz]


 = A

(h)
l


[Bn]

[Ht]
[Hz]


 (38)
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with

A
(f)
l =




[[wl]] [[a
(f)
l,xn]] [[wl]] [[a

(f)
l,xt]] [[wl]] [[a

(f)
l,xz]]

[[wl]] [[a
(f)
l,yn]] [[wl]] [[a

(f)
l,yt]] [[wl]] [[a

(f)
l,yz]]

0 0 [[wl]]


 (39)

for f = e, h. Considering the relations:
∑L

l=1wl = 1, we can
derive the relations between the generalized Fourier coefficients of the
electromagnetic fields components and the intermediary functions as
follows: ([Ex]

[Ey]
[Ez]

)
=

L∑
l=1

A
(e)
l

([Dn]
[Et]
[Ez]

)
(40)


[Hx]

[Hy]
[Hz]


 =

L∑
l=1

A
(h)
l


[Bn]

[Ht]
[Hz]


 . (41)

These equations are substituted into Eqs. (37) and (38), and we have
[wmEx]

[wmEy]
[wmEz]


 = A(e)

m

(
L∑
l=1

A
(e)
l

)−1

[Ex]

[Ey]
[Ez]


 (42)


[wmHx]

[wmHy]
[wmHz]


 = A(h)

m

(
L∑
l=1

A
(h)
l

)−1

[Hx]

[Hy]
[Hz]


 . (43)

Then, from Eqs. (9) and (10), the constitutive relations in the Fourier
space can be derived in the following form:

[Dx]
[Dy]
[Dz]


 = Q(e)


[Ex]

[Ey]
[Ez]


 (44)


[Bx]

[By]
[Bz]


 = Q(h)


[Hx]

[Hy]
[Hz]


 (45)

with

Q(f) =

(
L∑

m=1

C(f)
m A(f)

m

) (
L∑
l=1

A
(f)
l

)−1

(46)

for f = e, h. The coupled differential-equation set (5) is derived by
using the obtained relations (44)–(46).
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4. COMPARISON WITH PREVIOUS WORKS

In order to validate the proposed formulation, we consider below
specific examples and show some numerical results concerning the
diffraction efficiencies of gratings made of anisotropic and conducting
materials. On numerical calculation, a TM polarized (the H-field
is perpendicular to the y-axis) plane incident wave with θ = 30◦,
φ = 20◦, and the wavelength in free space λ0 = 0.6328µm is
always used. Cobalt is chosen as the anisotropic material, in which
the Cartesian components of the relative permittivity matrix are
εxx = εyy = εzz = −8.19 + i 16.38, εxz = −εzx = −0.495 − i 0.106,
εxy = εyx = εyz = εzy = 0 and the relative permeability is given by the
identity matrix. Also, 50 steps (5 layers in the S-matrix propagation
algorithm and 10 steps per layer) with equal thickness are used to
integrate the coupled-equation set. This step number is large enough
to give precise integration when the grating depth is less than the
wavelength in free space [8]. The obtained results are compared with
the conventional formulation [20], in which the coefficient matricesQ(f)

(f = e, h) appeared in Eqs. (44) and (45) are given by

Q(f) =
L∑

m=1

C(f)
m

([[wm]] 0 0
0 [[wm]] 0
0 0 [[wm]]

)
. (47)

The Fourier coefficients of a(f)
l,pq (f = e, h; l = 1, · · · , L; p =

x, y, z; and q = n, t, z) defined by Eqs. (23)–(34) are required to
calculate the coefficient matrix of the coupled differential-equation set
(5) for each y. However their explicit expressions are unknown in
many problems and long computation time is necessary for numerical
integration. To reduce the computation time, the coefficients of
a

(f)
l,pq are calculated from those of s(x, y) and c(x, y) with the use of

the approximation formulas given in Appendix A of Ref. [15]. Note
that several equivalent expressions can be obtained depending on
how we apply the approximation formulas on the various products.
In this paper, we omit these long and tedious expressions, but the
author confirms the convergence speed is almost independent of these
equivalent expressions and is ready to provide the used expressions to
any interested reader.

First, we consider lamellar profiled gratings, which include binary
gratings shown in Fig. 1(a) and stacks of binary gratings. In this
case, the discontinuous boundaries for each y in the grating layer
are perpendicular to the x-axis. Therefore, if we set ηj(y) = π/2
for all j and use the approximation formulas, the present formulation
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is equivalent to the formulation in Ref. [14]. The present formulation
is also shown to be equivalent to the formulation in Ref. [11] when
the permeability is assumed to be a constant µ0 everywhere. These
formulations proposed in Refs. [11, 15] are numerically validated by a
strong improvement of the convergence speed compared with that for
the conventional formulation (47).

Next, we consider smooth profiled gratings including sinusoidal
profiled gratings shown in Fig. 1(b). Supposing that the equation
of the discontinuous boundary inside the grating layer is given by
y = p(x), p(x) is a known periodic and continuous function that with
a continuous derivative. References [14, 15] were devoted to them and
got fast converging formulations, which is almost equivalent with the
present formulation but uses

s(x) =
p′(x)√

1 + {p′(x)}2
(48)

c(x) =
1√

1 + {p′(x)}2
(49)

instead of the functions s(x, y) and c(x, y) given in Eqs. (13) and
(14) on the present formulation. In these equations, p′(x) is the
derivative of p(x). Figure 4 shows the efficiencies of −1st and 0th-
order diffraction waves computed by three formulations for a sinusoidal
profiled bare grating as functions of the truncation order N , which
truncates the Fourier series expansion from −Nth to Nth order. The
grating parameters are chosen as follows: d = 0.6µm, h = 0.5µm,
p(x) = (h/2) [1 + cos(2π x/d)], and the region y > p(x) is free space
and the region y < p(x) is filled with the anisotropic material. Then,
the number of discontinuous boundaries for each y inside the grating
layer is L = 2, and the calculations use the following functions:

g1(y) =
d

2π
arccos

(
2
h
y − 1

)
(50)

g2(y) = d− g1(y) (51)

η1(y) = − arctan

(
2π

√
y (h− y)
d

)
(52)

η2(y) = −η1(y). (53)

The solid curves are the results of the present formulation, the dotted
curves are those of the conventional formulation, and the dashed curves
are those of Ref. [15]’s formulation. The convergence speeds of the
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Figure 4. Comparison of convergences of diffraction efficiencies
computed by the present, Ref.[15]’s, and the conventional formulations
for a sinusoidal grating.
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present and Ref. [15]’s formulations, which are both based on Li’s
Fourier factorization rules, are similar, and superior to that of the
conventional formulation. On the formulation in Ref. [15], since s(x)
and c(x) given in Eqs. (48) and (49) are independent of y, the Fourier
coefficients are calculated once for entire integration process. Hence,
Ref. [15]’s formulation costs the shortest computation time to obtain
the required precision. However, explicit expressions of the Fourier
coefficients of the functions s(x) and c(x) are rarely known for arbitrary
profiled gratings and numerical integrations that consume computation
time are required in many problems. When the explicit expressions
cannot be derived, the computation time of the present formulation
becomes comparable with that of Ref. [15] formulation.

For cylinder rod gratings shown in Fig. 1(c), the present
formulation becomes same with the formulation published separately
in Ref. [17]. Let a be the radius of circular cylinder, and the grating
depth becomes h = 2 a and the discontinuous boundaries are given by
the following functions:

g1(y) =
√
y (2 a− y) (54)

g2(y) = d− g1(y). (55)

The tangential angle at the boundary x = g1(y) can be written as

η1(y) =
π

2
− arctan

a− y
g1(y)

. (56)

We should note that the numerical calculation fails if the tangential
angle on the boundary x = g2(y) is set in such a way η2(y) = −η1(y).
Because |η1(a)− η2(a)| = π and, as mentioned before, s(x, y) and
c(x, y) defined in Eqs. (13) and (14) vanish simultaneously at the
middle point of the boundaries for y = a. Consequently, we have
to care about the expression of η2(y). One choice of the expression is
given as

η2(y) =
{
−η1(y) for a

2 < |y − a| < a
π − η1(y) for |y − a| ≤ a

2

. (57)

Here, we do not show numerical experiments because there are some
results of numerical examples in Ref. [17].

Non-smooth profiled gratings including echelette profiled gratings
shown in Fig. 1(d) are formulated in Ref. [18] by taking into account Li’s
Fourier factorization rules. The intermediary functions used in Ref. [18]
are discontinuous though they are continuous on the discontinuous
boundaries of the electromagnetic parameters. Using the notation ξ
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illustrated in Fig. 1(d), the discontinuous boundaries are given by the
following functions:

g1(y) =
ξ

h
y (58)

g2(y) = −d− ξ
h

y + d (59)

and then the tangential angle at the boundaries can be written
as η1(y) = arctan(h/ξ), η2(y) = − arctan(h/(d − ξ)). Figure 5
provides convergences of the diffraction efficiencies computed by several
formulations. The cover region y > h and the region g2(y) − d < x <
g1(y) are free space, and the substrate region y < 0 and the region
g1(y) < x < g2(y) are filled with the anisotropic material. The grating
parameters are chosen as follows: d = 0.6µm, h = 0.5µm, and ξ =
0.4µm. The solid and the dashed curves, which are calculated by the
formulations based on Li’s Fourier factorization rules, are comparable
and provide significant improvements of the convergence compared
with the dotted curves calculated by the conventional formulation.

Finally, we show a numerical example of multi-layered grating.
We assume that the grating profile is characterized by two sinusoidal
equations: y = p1(x) = (ξ/2) [1 + cos(2π x/d)] and y = p2(x) =
(ξ/2) [1 + cos(2π x/d)] + h − ξ where the notation ξ is defined in
Fig. 1(e). The region y > p2(x) is free space, the region p1(x) < y <
p2(x) is filled with the anisotropic material, and the region y < p1(x)
is filled with an isotropic and homogeneous material, for which the
relative permittivity and permeability are supposed to be 1.552 and
1, respectively. Supposing ξ > h/2, the number of discontinuous
boundaries inside the grating layer is depend on y, namely, L = 2
for 0 < y < h − ξ and ξ < y < h, and L = 4 for h − ξ < y < ξ.
The discontinuous boundaries and the tangential angles are given for
0 < y < h− ξ:

g1(y) =
d

2π
arccos

(
2
ξ
y − 1

)
(60)

g2(y) = d− g1(y) (61)

η1(y) = − arctan

{
2π

√
y (ξ − y)
d

}
(62)

η2(y) = −η1(y), (63)

for h− ξ < y < ξ:

g1(y) =
d

2π
arccos

(
2
ξ
y − 1

)
(64)
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Figure 5. Comparison of convergences of diffraction efficiencies
computed by the present, Ref. [18]’s, and the conventional formulations
for a echelette grating.
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Figure 6. Comparison of convergences of diffraction efficiencies
computed by the present and the conventional formulations for a multi-
layered grating.
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g2(y) =
d

2π
arccos

{
2
ξ

(y − h+ ξ)− 1
}

(65)

g3(y) = d− g2(y) (66)
g4(y) = d− g1(y) (67)

η1(y) = − arctan

{
2π

√
y (ξ − y)
d

}
(68)

η2(y) = − arctan

{
2π

√
(y − h+ ξ)(h− y)

d

}
(69)

η3(y) = −η2(y) (70)
η4(y) = −η1(y), (71)

and for ξ < y < h:

g1(y) =
d

2π
arccos

{
2
ξ

(y − h+ ξ)− 1
}

(72)

g2(y) = d− g1(y) (73)

η1(y) = − arctan

{
2π

√
(y − h+ ξ)(h− y)

d

}
(74)

η2(y) = −η1(y). (75)

Figure 6 shows the convergences of the present and the conventional
formulation by using the following parameters: d = 0.6µm, h =
0.5µm, and ξ = 0.4µm. It is observed that the present formulation
provides a significant improvement of convergence.

5. CONCLUSION

This paper presented a fast converging and widely applicable
formulation of the differential theory for arbitrary profiled one-
dimensional gratings made of anisotropic materials. The formulation is
based on Li’s Fourier factorization rules [10] though this approach gets
rid of the use of the inverse rule and uses the Laurent rule only. The
aim of this paper is to show that it can be used successfully for a large
class of anisotropic gratings. In this paper, the prescriptive gratings
are chosen as numerical examples, but the reader will understand that
the application to a lot of other profiles is straightforward without
the use of numerical integration. Also, we have supposed that the
electromagnetic parameters between the discontinuous boundaries are
constant but there is no doubt that extensions to more complicated
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profiles with inhomogeneous materials could be also done at the cost
of some additional work.
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