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Abstract—We show in this paper that metamaterials in which some
components of the permittivity and permeability tensors can have
negative real values (thus associated with left-handed metamaterials)
call for a reconsideration of the common concepts of critical angle and
Brewster angle. By studying the reflection coefficient for isotropic and
biaxial half-spaces and slabs, we show that a metamaterial for which
the Brewster angle appears beyond the critical angle is realizable. In
addition, we also show that the Goos-Hänchen shift induced by left-
handed isotropic slabs is not necessarily negative but could be positive
when the second interface of the slab supports a surface plasmon.

Finally, upon studying a bianisotropic metamaterial, we show that
propagation at a negative angle can occur, although it would not if
only the permittivity and permeability tensors were considered. All
the results have been obtained using an eigenvalue method which we
extend to bianisotropic media in this paper.
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1. INTRODUCTION

The propagation of electromagnetic waves in anisotropic and
bianisotropic media is a topic that has been addressed for many
years already, originally because this type of media can be directly
found in nature (e.g. optical activity can be simply observed in corn
syrup or any other glucose or fructose molecules that have asymmetric
carbon atoms, Faraday rotation can be measured in a wave propagation
through the Earth’s atmosphere) and later because they were realized
in the laboratory (e.g. a plasma medium to which an external magnetic
field is applied yields a gyrotropic medium where the same Faraday
rotation can be measured).

Although these media are often characterized by sparse
constitutive matrices, theoretical approaches have been developed to
deal with the most general cases where, for the case of bianisotropic
media, 36 coefficients are needed to relate the electric and magnetic
fields and inductions. A key contribution to this topic was offered in [2],
where a 4×4 matrix approach was used for the first time, generalizing
the 2 × 2 approach of previous works in optics. Based on this work,
and starting from a 6 × 6 representation of Maxwell’s equations, an
improved approach also based on 4 × 4 tensors was developed in [3]
and served as a reference for long after. The method was validated
by studying both an anisotropic slab in an isotropic medium and
a boundary between an anisotropic half-space and an isotropic half-
space. Radiation problems in presence of anisotropic slabs were later
studied in [4, 5], and the method was generalized to bianisotropic slabs
in [6]. Finally, a simpler approach, yet as general, was proposed in [1]
for layered anisotropic media, and a generalization to bianisotropic
media is proposed in this paper.

More recently, the interest in studying electromagnetic waves
in anisotropic and bianisotropic media has been renewed by the
man-made realization of chiral media [7] and more importantly by
the appearance of a new type of metamaterials exhibiting left-
handed properties [8–11]. The latter were first characterized as
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isotropic effective materials and retrieval processes, already used in [12]
in another context, were developed to estimate the corresponding
isotropic constitutive parameters [13, 14]. However, it was quickly
realized that these metamaterials are anisotropic and, in fact, could
also exhibit bianisotropic properties depending on the shape of the
inclusions [15]. A very general case of bianisotropic medium retrieval
applied to both a specific type of chiral medium (studied analytically
in [16]) and left-handed medium was proposed in [17], where the quasi-
static Lorentz theory was used to compute the polarizability matrix
and eventually the macroscopic constitutive relations. Unfortunately,
values for the constitutive tensors were only given for the chiral medium
and not for the left-handed medium.

In this paper, we are interested in studying left-handed media and
their counterpart right-handed (or standard) media as anisotropic and
bianisotropic metamaterials. Toward this purpose, we first generalize
the formulation presented in [1] to layered bianisotropic media where
the real parts of the constitutive parameters can take negative values.
The results yield both the polarization states (equivalent to the
eigenvectors of the problem) and the propagation constants (equivalent
to the eigenvalues of the problem) of the electromagnetic fields in
each medium as a response to an arbitrary polarized incident wave,
from which the reflection and transmission coefficients can be directly
obtained. The method is then used to study various metamaterials as
isotropic, anisotropic biaxial, and bianisotropic media. A particular
focus is given to the reflection coefficients, which we calculate for both
half-space of metamaterials (the top half-space being free-space) and
for slabs where the top half-space is again free-space and the bottom
one is case dependent. In all cases, we express the reflection coefficients
analytically and study the critical angle, the Brewster angle, and the
Goos-Hänchen shift. In contrast with well-accepted rules, we show
here that for a biaxial metamaterial, the definition of critical angle
needs to be generalized to account for a new phenomenon where total
reflection occurs for low incident angles until a cutoff angle beyond
which transmission occurs. In addition, for well-chosen constitutive
parameters, it is possible to have a Brewster angle in the angular
region where transmission occurs, thus yielding a material where the
critical angle is smaller than Brewster angle. In addition, we also
show that when total transmission occurs at a boundary with a left-
handed slab, the surface plasmon generated at the second interface is
related to a positive Goos-Hänchen shift, in contrast to the negative
shift usually observed when left-handed media are used. Finally, we
conclude our study by showing the transmission of a TM wave through
the bianisotropic medium characterized in [15], which would otherwise
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be cutoff if bianisotropy was not considered.

2. FORMULATION OF THE PROBLEM

In this section, we shall generalize the method exposed in [1] to
layered bianisotropic media where the constitutive parameters can have
negative real parts. The medium under consideration is depicted in
Fig. 1, where an incident wave of arbitrary polarization is incident on
a multilayer bianisotropic medium. The problem is to find the fields
inside each layer and the global reflection and transmission coefficients.

z
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Figure 1. Configuration of the problem: a plane wave with wave
vector ki is incident with the polar angles (θ, φ) onto a multilayered
medium of arbitrary constitutive bianisotropic tensors.

We obviously start with Maxwell’s equations in tensorial form,
and we suppose a source-free environment. Assuming an e−iωt time
dependence, we write

∇̄ × Ē(r̄) = iωB̄(r̄) , (1a)
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∇̄ × H̄(r̄) = −iωD̄(r̄) , (1b)

and the constitutive relations in the E-H (or Tellegen) representation

D̄(r̄) = ε · Ē(r̄) + ξ · H̄(r̄) , (2a)

B̄(r̄) = µ · H̄(r̄) + ζ · Ē(r̄) . (2b)

where the constitutive parameters are supposed homogeneous. The
normalization of the constitutive parameters is as follows

ε = ε0εr , µ = µ0µr , ξ = ξr/c0 , ζ = ζr/c0 . (3)

where the subscript ‘r’ denotes relative quantities. Upon inserting
Eqs. (2) into Eqs. (1), writing the 3 × 3 tensors as

ε =

[
εss εsz
εzs εzz

]
(4)

and similarly for µ, ξ, ζ, and separating the transverse and longitudinal
components, we eventually obtain:

∇̄s × ẑEz(r̄) + ẑ × ∂

∂z
Ēs(r̄) = iωµss · H̄s(r̄) + iωµsz · ẑHz(r̄)

+iωζss · Ēs(r̄) + iωζsz · ẑEz(r̄) ,
(5a)

∇̄s× Ēs(r̄) = iωµzs ·H̄s(r̄)+iωµzz ẑHz(r̄)+iωζzs · Ēs(r̄)+iωζzz ẑEz(r̄) ,
(5b)

∇̄s × ẑHz(r̄) + ẑ × ∂

∂z
H̄s(r̄) = −iωεss · Ēs(r̄) − iωεsz · ẑEz(r̄)

−iωξss · H̄s(r̄) − iωξsz · ẑHz(r̄) ,
(5c)

∇̄s×H̄s(r̄) = −iωεzs ·Ēs(r̄)−iωεzz ẑEz(r̄)−iωξzs ·H̄s(r̄)−iωξzz ẑHz(r̄) .
(5d)

For homogeneous media, we are looking for plane wave solutions of the
form eik̄s·r̄s , so that we can replace ∇̄s by ik̄s. After some mathematical
manipulations, we can express the longitudinal ẑ components in terms
of the transverse components only as:
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Ēz(r̄) =
1
D

[
−ξzz

ω
k̄s×I3 · +ξzzζzs · −µzzεzs·

]
Ēs(r̄)

+
1
D

[
ξzzµzs · −µzz

ω
k̄s×I3 · −µzzξzs·

]
H̄s(r̄) , (6a)

H̄z(r̄) =
1
D

[
εzz

ω
k̄s×I3 · −εzzζzs · +ζzzεzs·

]
Ēs(r̄)

+
1
D

[
−εzzµzs · +

ζzz

ω
k̄s×I3 · +ζzzξzs·

]
H̄s(r̄) , (6b)

where

k̄s×I3 =




0 0 ky

0 0 −kx

−ky kx 0


 . (7)

and D = (εzzµzz − ξzzζzz) . (8)

Note that for anisotropic media, for which ξ = ζ = 0, Eqs. (6)
simplify to yield:

Ēz(r̄) = − 1
ωεzz

k̄s × H̄s(r̄) −
1
εzz

εzs · Ēs(r̄) , (9a)

H̄z(r̄) =
1

ωµzz
k̄s × Ēs(r̄) −

1
µzz

µzs · H̄s(r̄) , (9b)

which are known equations for anisotropic media [1, 18]. From Eqs. (5)
and Eqs. (6), we can further express the transverse components in
terms of their derivatives only as:

∂

∂z
Ēs(r̄) =

1
D

[
− iξzz

ω
ẑ×I3 · k̄s×I3 · k̄s×I3 · +iξzz ẑ×I3 · k̄s×I3 · ζzs ·

−iµzz ẑ×I3 · k̄s×I3 · εzs · −iωDẑ×I3 · ζss ·
−iεzz ẑ×I3 · µsz · k̄s×I3 · +iωεzz ẑ×I3 · µsz · ζzs ·
−iωζzz ẑ×I3 · µsz · εzs · +iξzz ẑ×I3 · ζsz · k̄s×I3 ·

−iωξzz ẑ×I3 · ζsz · ζzs · +iωµzz ẑ×I3 · ζsz · εzs ·
]
Ēs(r̄) ,

+
1
D

[
iξzz ẑ×I3 · k̄s×I3 · µzs · − iµzz

ω
ẑ×I3 · k̄s×I3 · k̄s×I3 ·

−iµzz ẑ×I3 · k̄s×I3 · ξzs · −iωDẑ×I3 · µss ·



Progress In Electromagnetics Research, PIER 51, 2005 89

+iωεzz ẑ×I3 · µsz · µzs · −iζzz ẑ×I3 · µsz · k̄s×I3 ·
−iωζzz ẑ×I3 · µsz · ξzs · −iωξzz ẑ×I3 · ζsz · µzs ·

+iµzz ẑ×I3 · ζsz · k̄s×I3 · +iωµzz ẑ×I3 · ζsz · ξzs·
]
H̄s(r̄) ,

(10a)

∂

∂z
H̄s(r̄) =

1
D

[
iεzz

ω
ẑ×I3 · k̄s×I3 · k̄s×I3 · −iεzz ẑ×I3 · k̄s×I3 · ζzs ·

+iζzz ẑ×I3 · k̄s×I3 · εzs · +iωDẑ×I3 · εss ·
−iξzz ẑ×I3 · εsz · k̄s×I3 · +iωξzz ẑ×I3 · εsz · ζzs ·
−iωµzz ẑ×I3 · εsz · εzs · +iεzz ẑ×I3 · ξsz · k̄s×I3 ·

−iωεzz ẑ×I3 · ξsz · ζzs · +iωζzz ẑ×I3 · ξsz · εzs·
]
Ēs(r̄)

+
1
D

[
−iεzz ẑ×I3 ·k̄s×I3 · µzs · +

iζzz

ω
ẑ×I3 · k̄s×I3 · k̄s×I3 ·

+iζzz ẑ×I3 · k̄s×I3 · ξzs · +iωDẑ×I3 · ξss ·
+iωξzz ẑ×I3 · εsz · µzs · −iµzz ẑ×I3 · εsz · k̄s×I3 ·
−iωµzz ẑ×I3 · εsz · ξzs · −iωεzz ẑ×I3 · ξsz · µzs ·

+iζzz ẑ×I3 · ξsz · k̄s×I3 · +iωζzz ẑ×I3 · ξsz · ξzs·
]
H̄s(r̄)

(10b)

where

ẑ×I3 =


 0 −1 0

1 0 0
0 0 0


 . (11)

Note that obviously, Eqs. (10) are related by the duality conditions,
which is easily verified. We eventually write Eqs. (10) in a matrix form
as [1, 3, 12]:

∂

∂z

(
Ēs(r̄)
H̄s(r̄)

)
=

(
F 11 F 12

F 21 F 22

)
·
(
Ēs(r̄)
H̄s(r̄)

)
, (12)

where each F ij ({i, j} ∈ {1, 2}) is a 2 × 2 matrix obtained from
Eqs. (10) (note that we can reduce the size of the system because
the other components of the matrices are zero). The solution of this
differential equation is straightforward, and is expressed as the product
of four eigenvectors multiplied by exponential functions, all weighted
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by four coefficients to be determined from the boundary conditions.
The eigenvectors correspond to the polarization states of the transverse
electric and magnetic fields, while the four eigenvalues correspond
to the propagation constants in the ẑ direction. Following [1], we
organize the four eigenvectors and eigenvalues such that the first two
components correspond to upward propagation waves and the last
two components correspond to downward propagating waves. This
ordering is done by examining the direction of the power carried by
the four waves in each medium.

Upon defining the vector V̄ (z) as the 4× 1 vector [Ēs(r̄); H̄s(r̄)]T
(where the superscript T denotes the transpose operator), we can
rewrite Eq. (12) as ∂

∂z V̄ (z) = F · V̄ (z), where the 4 × 4 tensor F
is straightforwardly defined from Eq. (12).

Following the notation of [1], we denote by an the tensor
containing the four (sorted) eigenvectors of medium #n, and βn the
diagonal 4×4 tensor containing the four (sorted) eigenvalues of medium
#n. Thus, the transverse polarization state in medium #n (V̄n(z)) can
be written as

medium1 : V̄1(z) = a1 · eiβ1z ·
[
R

I2

]
·
[
A31

A41

]
, (13a)

medium n : V̄n(z) = an · eiβnz · Ān , (13b)

V̄n(z) = Pn(z, zn−1) · V̄n(zn−1) , (13c)

where A31 and A41 are the amplitudes of the two polarizations of the
down-going incident waves (thus are known quantities), Ān is a 4 × 1
vector containing the coefficients of the four waves in medium #n, and
where the definition of P (the propagator matrix) is [1]

Pn(z, zn−1) = an · eiβn(z−zn−1) · a−1
n . (14)

Once V̄n(z) is obtained, the other components of the fields can be
directly obtained from Eqs. (6). Using these relations in conjunction
with the boundary conditions (V̄n(zn−1) = V̄n−1(zn−1)), we can write
the recurrence between the media [19]:

V̄1(z1) = V̄2(z1) = P 2(z1, z2) · V̄2(z2) , (15a)

V̄2(z2) = V̄3(z2) = P 3(z2, z3) · V̄3(z3) , (15b)
... (15c)

V̄n−2(zn−2) = V̄n−1(zn−2) = Pn−1(zn−2, zn−1) · V̄n−1(zn−1) , (15d)
V̄n−1(zn−1) = V̄n(zn−1) . (15e)
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Combining all the terms, we get

V̄1(z1) = P 2(z1, z2) · P 3(z2, z3) · . . . · Pn−1(zn−2, zn−1) · V̄n(zn−1)

= PA(z1, . . . , zn−1) · V̄n(zn−1) . (16)

Upon using Eq. (13a) and Eq. (13c), we write

V̄n(z) = Pn(z, zn−1)·P
−1

A (z1, . . . , zn−1)·a1·eiβ1z1 ·
[
R

I2

]
·
[
A31

A41

]
(17)

In summary, the state vector in any layer n is given by:
• First medium:

V̄1(z) = a1 · eiβ1z ·
[
R

I2

]
·
[
A31

A41

]
, (18a)

• Last medium:

V̄N (z) = aN · eiβNz ·
[

0
T

]
·
[
A31

A41

]
. (18b)

• Other media:

V̄n(z) = an · eiβn(z−zn−1) · a−1
n · P

−1

A (z1, . . . , zn−1) · a1 · eiβ1z1

·
[
R

I2

]
·
[
A31

A41

]
. (18c)

Therefore, in order to solve for the 2 × 2 matrices R and T , we
need to apply V̄1(z) at z = z1 and V̄N (z) at z = zN−1, which yields:

a1 · eiβ1z1 ·
[
R

I2

]
= PA(z1, . . . , zN−1) · aN · eiβNzN−1

[
0
T

]
(19)

which is a simple matrix equations which can be directly solved to
obtain R and T . Finally, using Eqs. (18) and Eqs. (6), the fields in
each medium can be directly obtained.

We have validated the equations obtained here by comparing the
predicted results with those published in [20], where the authors give all
the components of the R and T matrices for single slabs as well as two
and three stacked slabs of bianisotropic omegaferrite and chiroferrite
materials. Although the comparison is not shown, the agreement
between the results confirmed the validity of the method.
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3. REFLECTION COEFFICIENTS AND
GOOS-HÄNCHEN SHIFTS

Using the approach described in the previous section, the reflection and
transmission coefficients for general bianisotropic layered media can
be obtained (note that adding a ground plane is directly equivalent
to adding the proper boundary condition on the state vector of the
last medium V̄N (z) and is therefore considered as straightforward).
In addition, the method outlined above yields simple analytical
expressions when the constitutive tensors are not too complicated. For
example, the isotropic case yields the well-known Fresnel coefficients,
which can be generalized to isotropic biaxial media or bianisotropic
left-handed media as studied in [15], as we shall show hereafter.

From the knowledge of the reflection coefficient, we also investigate
the magnitude and most importantly the sign of the Goos-Hänchen
shift experienced by a Gaussian beam incident on various media.
This topic has been addressed for isotropic half-spaces in [21], for an
isotropic slab in [22, 23] and for a multilayer structure in [24]. In
all these works, it has been emphasized that a wave impinging on
a left-handed medium at an angle beyond the critical angle yields a
negative Goos-Hänchen shift. In addition, an interesting observation
was reported in [23], where it was shown that for a left-handed slab, the
Goos-Hänchen shift at the first interface would be increased because
of the surface plasmon supported at second interface.

In this work, we shall show that with the help of this surface
plasmon, we can create a case where an isotropic left-handed slab
does not induce a negative shift but a positive shift. In addition,
by considering biaxial media, we also show that the concept of critical
angle should be revisited and that total reflection can happen below
critical angle, yielding a Goos-Hänchen shift as well. Finally, we study
a bianisotropic split-ring resonator medium and show that with the
numerical values adapted from [15], propagation at a negative index
of refraction can occur, although it would not if only the permittivity
and permeability tensors were considered.

3.1. Visualizing Positive and Negative Goos-Hänchen Shifts

As mentioned above, the Goos-Hänchen shift for right-handed and left-
handed isotropic media has already been addressed in the literature so
that we shall just illustrate some of these results here before proceeding.

First, Fig. 2 confirms the fact that a negative Goos-Hänchen shift
occurs when a wave (here a Gaussian beam) impinges on a boundary
between an isotropic right-handed half-space and an isotropic left-
handed half-space. This situation is standard and has been studied
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(a) View in the (x, z) plane.
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(b) Reflected field at z = 0.

Figure 2. Negative Goos-Hänchen shift experienced by a TE Gaussian
beam impinging from free-space (from the left) at and angle of 50◦ onto
an isotropic half-space with εr = µr = −0.5 (f = 10 GHz). Units of
the electric field are [V/m].
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in [21].
Next, we also confirm that this phenomenon persists if the medium

is made into a slab and backed by free-space, as studied in [22]. This
situation is depicted in Fig. 3, where again a positive shift can be seen
for an isotropic right-handed slab and a negative shift for an isotropic
left-handed slab.

These results have prompted researchers to conclude that a left-
handed medium would yield negative Goos-Hänchen shifts. Although
this is true in the previous examples, we shall show that this is not
always the case, even if the media are isotropic.

3.2. Positive Goos-Hänchen Shift with an Isotropic
Left-Handed Slab

The propagation of electromagnetic waves in layered isotropic left-
handed materials has already been exposed in details in [25], where
the fields inside the layers as well as the reflection and transmission
coefficients have been given.

Based on this work, we consider here a three media configuration
where each medium is lossless and isotropic. Medium #1 is free-space,
media #2 and #3 are left-handed and right-handed, respectively, and
are matched, i.e. |εr2| = |εr3| and |µr2| = |µr3| (where the subscript
“r” denotes relative values). In order to have a critical angle, we
set the second medium to be less dense than the first one, with
εr2 = µr2 = −0.5 in our example. Since media #2 and #3 are matched,
the reflection at their interface is zero and the z component of the
wavevectors have the same amplitude. This means that kz3 = iα and
kz2 = ±iα. From Eqs. (64) and (65)–(67) of [25], we can study the two
possible cases to obtain:

• Case 1: kz2 = kz3 = iα.

R(1) =
1

R
(1)
12

, T (1) =
2

1 − p
(1)
12

e−2αd , (20a)

E+
1

(1) = 0, E−
1

(1) =
2

1 − p
(1)
12

. (20b)

• Case 2: kz2 = −kz3 = −iα.

R(2) = R
(2)
12 , T (2) =

2

1 + p
(2)
12

e−2αd , (21a)

E+
1

(2) =
2

1 + p
(2)
12

, E−
1

(2) = 0 , (21b)
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(a) Positive shift with a right-handed slab (εr2 = µr2 = 0.5).

(b) Negative shift with a left-handed slab (εr2 = µr2 = −0.5).

Figure 3. Goos-Hänchen shift at the first boundary of a slab. The first
and third media are free-space and the slab is isotropic with parameters
specified in the sub-captions. The incidence is from the left, TE at 50◦
and f = 10 GHz. Units of the electric field are [V/m].
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where d is the thickness of medium #2, the subscript in parenthesis
corresponds to the case number, E+ and E− are the amplitude of
the forward and backward propagating waves, respectively, R and
T are the total reflection and transmission coefficients, respectively,
Rij are the reflection coefficients between media #i and #j, and
pij = µikzj/(µjkzi) [25]. From their definition, we immediately see
that p(1)

12 = −p(2)
12 and R(1)

12 = 1/R(2)
12 , which implies that Eqs. (20) and

Eqs. (21) are identical. From these considerations, two conclusions can
be drawn:

1. The ŷ component of the electric field inside the slab (medium #2)
can be written as

Ey2(z) =
2

1 + p
(2)
12

e−αz (22)

which corresponds to a growing evanescent wave in the (−ẑ)
direction (see Fig. 1). On the contrary, if medium #2 was made
semi-infinite, decaying evanescent waves would have to be chosen
to satisfy the radiation condition. Note that this conclusion still
holds if medium #2 is free-space (and medium #1 is denser),
which provides a mean of exciting growing evanescent waves in a
slab of free-space.

2. The sign of the Goos-Hänchen shift is reversed if medium #2 is
a slab or a half-space. This difference is induced by the fact that
waves are decaying if medium #2 is semi-infinite but growing if
medium #2 is a slab (under the matching condition). As shown
in Fig. 2, the Goos-Hänchen shift is negative for a half-space left-
handed medium. Therefore, we expect it to be positive if we make
the left-handed medium into a slab and matched it with a semi-
infinite right-handed medium.

These two phenomena are illustrated in Fig. 4(a) (showing the region
z > 0), where a positive shift is visible, and in Fig. 4(c) (showing the
region z < 0) where the amplitude of the field inside the slab is seen
to grow significantly (in fact exponentially) until the second interface
located at z = −60 mm. Fig. 4(b) and 4(d) are two-dimensional cuts
of Fig. 4(a) at z = 0 and of Figure 4(c) at z = −60 mm, respectively,
which, in the first case, clearly shows the positive Goos-Hänchen shift
and, in the second case, shows that the magnitude of the field at the
second interface is about 240 times larger than the incident field.
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(a) Region of z > 0 where a positive

Goos-Hänchen shift is visible.
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(b) Reflected field at z = 0 where a

positive Goos-Hänchen shift is visible.

(c) Region of z < 0 where a high am-

plitude of the field is concentrated at

the second boundary of the slab, at

z = −60 mm.
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(d) Total field at z = −50 mm where

the high amplitude of the field is clearly

visible.

Figure 4. Illustration of (a, b) a positive Goos-Hänchen shift and (c,
d) a growing evanescent wave inside the slab for a TE Gaussian beam
impinging from the left on an isotropic slab (boundaries at z = 0 and
z = −60 mm) with εr2 = µr2 = −0.5 backed by a half-space with
εr3 = µr3 = 0.5. Incidence is at 50◦ with f = 10 GHz and units of the
electric fields are [V/m].
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3.3. Reversed Critical Angle and Goos-Hänchen Shift for
Anisotropic Biaxial Media

3.3.1. Half-Space Case

Next, we consider a single interface between air (ε1 = ε0I3, µ1 = µ0I3,
where I3 is the 3× 3 unit tensor) and a biaxial medium of constitutive
tensors

ε2 =



ε2x 0 0
0 ε2y 0
0 0 ε2z


 , µ2 =



µ2x 0 0
0 µ2y 0
0 0 µ2z


 . (23)

The geometry follows the one shown in Fig. 1 with one boundary
only located at z = 0. For ky = 0 (i.e. φ = 0), the TE reflection and
transmission coefficients from a TE incidence (denoted by the subscript
hh, and hs for the half-space case) are given by

Rhh
hs =

kz1µ2x − kz2µ1

kz1µ2x + kz2µ1
, (24a)

T hh
hs =

2kz1µ2x

kz1µ2x + kz2µ1
, (24b)

where
k2

z2 =
µ2x

µ2z

(
ω2ε2yµ2z − k2

x

)
. (25)

The vv coefficients (TM reflection for TM incidence) can be directly
obtained by duality, and there is no cross-polarization coupling (Rhv

hs =
Rvh

hs = T hv
hs = T vh

hs = 0). Some special points are:
(a) Critical angle: for the hh polarization, the critical angle is

obtained when kz2 is imaginary which, from Eq. (25), is expressed
by

θhh
c = sin−1

(√
ε2yµ2z

ε1µ1

)
, (26)

and the critical angle for vv polarization can be obtained by
duality.

(b) Brewster angle: for the hh polarization (Rhh
hs = 0), it is obtained

when the numerator of Eq. (24a) vanishes. The condition can be
rewritten as:

θhh
b = sin−1

(√
µ2z(µ1ε2y − ε1µ2x)
ε1(µ2

1 − µ2xµ2z)

)
. (27)
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which is equivalent to the condition θhh
b = tan−1

√
µ2

µ0
for isotropic

media [26]. Again, the Brewster angle for the vv polarization can
be obtained by duality.

At this point, it is interesting to see the ordering relation between
θhh
c and θhh

b . For two isotropic positive half-spaces, we know that
θhh
b < θhh

c . We shall show that this relation holds for positive biaxial
half-spaces as well, but not if one of the half-space is allowed to have
negative real parts of some of its constitutive parameters. In order to
show this, we first remark that for angles between 0 and π/2 (which
spans our possible incident angles), the order between the two angles
is the same as the order between the sine of the two angles, which
is also the same as the order between the squares of the sines of the
two angles. We can therefore directly compare the expressions inside
the square roots of Eq. (26) and Eq. (27), and we do so by taking the
difference between the relative values:

εr2yµr2z −
µr2zεr2y − µr2zµr2x

1 − µr2xµr2z
=
µr2xµr2z(1 − εr2yµr2z)

1 − µr2xµr2z
, (28)

which, a priori, can be either positive or negative. To this condition,
we need to add the condition of existence of the critical and Brewster
angle. These can be expressed as:

∃ critical angle : 0 < εr2yµr2z < 1 , (29a)

∃ Brewster angle : 0 <
µr2zεr2y − µr2zµr2x

1 − µr2xµr2z
< 1 , . (29b)

The right-hand side inequality of Eq. (29b) can be rewritten as

1 − εr2yµr2z

1 − µr2xµr2y
> 0 . (29c)

Combined with the condition of Eq. (29a), Eq. (29c) implies that

1 − µr2xµr2z > 0 . (29d)

Therefore, Eqs. (29a) and (29c) imply that

sign

(
sin2 θhh

c − sin2 θhh
b

)
= sign

(
µr2xµr2z

)
. (30)

For positive materials, where all the constitutive parameters have a
positive real part and small losses, or for a metamaterial where µr2x

and µr2y are negative, this sign is positive and therefore, θhh
c > θhh

b ,
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like in right-handed isotropic cases. However, if µr2x or µr2z is real
and negative, the ordering is exchanged and θhh

c < θhh
b . This is

illustrated in Fig. 5 where the ordering between critical angle and
Brewster angle is shown to depend on the sign of µr2x. Fig. 6 gives a
better understanding of the phenomenon in terms of k-surfaces [26]:
(a) In Medium 1: the medium has a circular k curve which has a

smaller radius than that of free-space. The situation is similar
to the interface between two isotropic media where one is denser
than the other. Critical angle will therefore appear after Brewster
angle.

(b) In Medium 2: the medium has a hyperbolic k curve and it is
seen that phase matching cannot be satisfied for normal incidence
up to a certain angle, which we define as critical angle as well.
Note that this type of medium falls into the category of “always
cutoff” media studied in [27] when the absolute value of all the
constitutive parameters is equal to one. In our case, propagation
occurs beyond critical angle and if the parameters are well-chosen,
a Brewster angle can appear, as shown by the dashed curve in
Fig. 5(a).
Fig. 5(b) also gives a prediction of the Goos-Hänchen shift. The

solid curve correspond to an isotropic case (for the given polarization)
where the second medium is left-handed. The shift is negative, and
indeed the phase of the reflection coefficient exhibits a positive slope
with respect to the incident angle [28, 29]. The dashed curve, which
corresponds to the biaxial case, shows that the phase of the reflection
coefficient (below critical angle) has a negative slope, which therefore
corresponds to a positive shift. This conclusion is clearly illustrated in
Fig. 7.

3.3.2. Slab Case

We consider here a slab of constitutive parameters given in Eq. (23)
and thickness d in free-space, with the top boundary at z = 0. For the
same situation (ky = 0), the hh reflection and transmission coefficients
are given by:

Rhh
slab =

Rhh
hs (e2Φ − 1)

Rhh
hs

2
e2Φ − 1

, (31a)

T hh
slab = − T̃ hh

hs T hh
hs

Rhh
hs

2
e2Φ − 1

e−ikz1d+Φ , (31b)

where
Φ = ikz2d, (32)
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(b) Phase of the reflection coefficients.

Figure 5. Fresnel reflection coefficients for an interface between free-
space and Medium 1: (εr2y = −1, µr2x = µr2z = −0.5) and Medium 2:
(εr2y = −1, −µr2x = µr2z = −0.5). For both cases θhh

c = 45◦ while for
Medium 1: θhh

b � 35.2◦ and for Medium 2: θhh
b � 50.6◦.
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(a) Interface between free-space (denoted by ‘FS’) and Medium 1.
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(b) Interface between free-space (denoted by ‘FS’) and Medium 2.

Figure 6. k-surface (kx − vs− Real(kz)) for a free-space medium on
top and Medium 1 or Medium 2 at the bottom (see the definitions in
Fig. 5).



Progress In Electromagnetics Research, PIER 51, 2005 103

(a) |Ey| as function of x and z.
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(b) Reflected |Ey| as function of x at the interface (z = 0).

Figure 7. Positive Goos-Hänchen shift at the boundary between free-
space and a half-space medium with (εr2y = −1,−µr2x = µr2z = −0.5).
The incidence is from the left, TE at 40◦, which is below critical angle
(see Fig. 5). The frequency is 10 GHz and the units of the electric field
are [V/m].
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T̃ hh
hs =

2µ1kz2

kz1µ2x + kz2µ1
, (33)

and Rhh
hs and T hh

hs are given in Eq. (24).
Similarly to the half-space case, we can identify the angles for

which Rhh
slab = 0. We see that the Brewster angle for a half-space

case also yields a zero reflection coefficient for the slab case, so that
the condition of Eq. (27) still holds. In addition, the solutions of the
equation e2Φ − 1 = 0 should also be considered, and the corresponding
angles are given by:

θhh
b2 = sin−1

(√√√√ε2yµ2z

ε1µ1
− (mπ)2

ω2ε1µ1
µ2x

µ2z
d2

)
, m =1, 2, 3, . . . (34)

where d is the thickness of the slab and m is an integer. Note the
similarity between Eq. (34) and Eq. (26) which excludes the m=0
solution. From Eq. (34), we see that a slab with (ε2y, µ2x, µ2z) negative
will have the same Brewster angles as a slab where these parameters are
positive. If the parameters do not have the same sign, though, other
or no Brewster angles will be obtained, depending on the k-surface
characterizing the medium.

3.4. Reflection Coefficient for a Medium of Split-Ring
Resonators

Although left-handed metamaterials have so far essentially been
studied as isotropic media (at least for the incident polarization), it
is suspected that their constitutive tensors take more complicated
forms. A first attempt at the characterization of left-handed media as
anisotropic media has been proposed in [15], where it has been shown
that the original concentric split-ring resonator has in fact bianisotropic
properties. The relative constitutive tensors were found to be (adapted
to the axis of Fig. 1):

εr =


 εrxx 0 0

0 1 0
0 0 εrzz


 , µr =


 1 0 0

0 µryy 0
0 0 1


 , (35a)

ξr =


 0 0 0

0 0 0
0 −iξ 0


 , ζr =


 0 0 0

0 0 iξ
0 0 0


 . (35b)

The expression of the various parameters has been given as a function
of the geometry of the split-ring resonator and inductances and
capacitances induced in the equivalent circuit [15].
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Given the spatial orientation of the split-rings, we are here
interested in a TM incidence, for which the magnetic field is parallel
to the axis of the ring. Assuming the form of Eqs. (35), we can
compute the TM reflection coefficients for both a half-space (with the
top medium being isotropic) and a slab case (where the surrounding
media are identical and isotropic):

(a) Half-space:

Rvv
SRRhs =

kz1ε2x − k̃z2ε1

kz1ε2x + k̃z2ε1
, (36a)

(b) Slab:

Rvv
SRRslab =

Rvv
SRRhs

(
e2Φ̃ − 1

)
(Rvv

SRRhs)
2e2Φ̃ − 1

, (36b)

where

k̃2
z2 =

ε2x

ε2z

(
ω2ε2zµ2y − k2

x − ω2ξ2
)
, (37a)

Φ̃ = ik̃z2d . (37b)

Eqs. (36) are very similar to Eq. (24a) and Eq. (31a) and a similar
study on the critical angle and Brewster angles could be performed.
For the half-space case for example, one obtains the following Brewster
angle:

θvv
b = sin−1

(√
ε2z(ε1µ2y − µ1ε2x) − ε1ξ2

µ1(ε21 − ε2xε2z)

)
, (38)

which is obviously the dual of Eq. (27) when ξ = 0. Note that working
at Brewster angle, if it exists, could be interesting since left-handed
metamaterials often exhibit strong undesirable reflection which lower
the output power.

For the sake of illustration, the evolution of the Brewster angle
as function of the relative parameter ξr is depicted in Fig. 8 when
the permittivity and permeability are the duals of Medium 2 (see the
definition in Fig. 5). For ξ = 0, the Brewster angle is the same as the
one calculated in Fig. 5.

Finally, we adapt our study to a real metamaterial structure
by following [15]. In their work, the authors have shown that the
original split-ring resonator [15, Fig. 1] exhibit bianisotropic properties
and have given approximate analytical expressions for the various
constituents of Eqs. (35). Without further details, we show in Fig. 9
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Figure 8. Evolution of the Brewster angle with respect to the relative
parameter ξr when −εr2x = εr2z = −0.5 and µr2y = −1.

the numerical values obtained from [15] of the various constitutive
parameters used in [15, Eqs. (13)–(14)]

D̄(r̄) = ε0(1 + χe) · Ē(r̄) − i
√
ε0µ0 ξ · H̄(r̄) , (39a)

B̄(r̄) = i
√
ε0µ0 ξ

T
· Ē(r̄) + µ0(1 + χm) · H̄(r̄) . (39b)

Choosing an operating frequency of f = 4.89 GHz ensures that
the ŷŷ component of the permittivity and the permeability are
negative, but the x̂x̂ component of the permittivity remains positive.
If bianisotropy was not considered, this medium would fall into
the category of always cutoff media studied in [27], for which the
dispersion relation is shown in Fig. 10(a). Yet, bianisotropy has here
a fundamental effect since, for the specific value of ξr used here, it
rotates the k-surface of Fig. 10(a) into the one shown in Fig. 10(b), for
which phase matching is satisfied from one medium to the other. The
bianisotropic metamaterial can therefore support propagating waves
incident from free-space, and exhibits a negative index of refraction,
as shown in Fig. 11.
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Figure 9. Frequency evolution of various constitutive parameters as
defined in Eqs. (39). The analytical models and formulae are taken
from [15].

4. CONCLUSION

In this paper, new phenomena related to the reflection and
transmission of electromagnetic waves in isotropic, anisotropic
and bianisotropic right-handed and left-handed media have been
investigated. We have shown that the common concepts of critical
angle should be revisited, since metamaterials exhibiting a total
reflection for low incident angles and transmission for large incident
angles can be realized with the current technologies. In this specific
case, we have also shown that if the constitutive parameters are
properly chosen, a metamaterial where the critical angle appears before
the Brewster angle can be constructed. Finally, we have studied
a bianisotropic medium of split-ring resonators, whose constitutive
tensors have been provided in [15], and shown that bianisotropy is a
fundamental parameter for supporting propagating waves, in addition
to exhibiting a negative index of refraction.
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(a) ξr = 0: propagation does not occur from

free-space (‘FS’) to the metamaterial (‘Metamat’).
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(b) ξr = 3.16: propagation occurs

free-space (‘FS’) to the metamaterial (‘Metamat’).

Figure 10. k-surface at ky = 0 for the metamaterial defined by
Eqs. (39b) with the parameters from Fig. 9 at f = 4.89 GHz yielding
εr = diag(1.34, 1,−1.06), µr = diag(1,−3.22, 1), ξr = 3.16. It is clear
that the ξ parameter allows propagation in the metamaterial with a
negative refraction angle, as shown in Fig. 11.
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(a) Free-space above a half-space of Medium 3.

(b) Slab of Medium 3 of thickness 2λ (λ is the

wavelength in free-space) embedded in free-space.

Figure 11. TM incidence from the left at 40◦ upon (a) a half-
space and (b) a slab of Medium 3 defined by εr = diag(1.34, 1,−1.06),
µr = diag(1,−3.22, 1), ξr = 3.16 (from Fig. 9 at f = 4.89 GHz). The
units of the magnetic field is [A/m].
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