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Abstract—The post-processing of human exposure to a transient
electromagnetic fields is presented in the paper. The mathematical
model is based on the cylindrical representation of the human body
and the corresponding space-time Hallen integral equation. The
Hallen integral equation is solved via the Galerkin-Bubnov scheme of
the indirect boundary element method and the equivalent space-time
current distribution along the cylindrical body model is obtained. The
transient current flowing through the human body is postprocessed in
terms of certain measures of quantifying the transient response. These
measures arise from circuit theory and they are average and root-mean
square value of time-varying current, instantaneous power dissipated in
the body and total absorbed energy in the body. Illustrative numerical
results are presented.
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1. INTRODUCTION

Consequences of human exposure to transient electromagnetic fields
are induced transient currents and fields inside the body.

The analysis of the human body transient response plays the
key-role to understanding the interaction of humans with transient
electromagnetic radiation [1–4].

A direct time domain simulation of the human body exposed
to a transient electromagnetic field can be performed either using
realistic, anatomically based models [1–3] or using the simplified
human equivalent antenna model [4].

The finite-difference time-domain (FDTD) method has been
used to analyse the coupling of transient electromagnetic fields to
anatomically based body models [1].

The human equivalent antenna has been originally proposed for
experimental dosimetry, and is valid within the frequency range from
50 Hz to 110 MHz [5]. In addition, the dimensions of the human
equivalent antenna are within the thin wire approximation and the
effective frequency bandwidth of the pulsed electromagnetic waveforms
corresponds to the frequency range of the human equivalent antenna.

The human equivalent antenna model has been based on the
Hallen integral equation. A solution of this integral equation using
the time domain Galerkin-Bubnov scheme of the boundary element
method (GB-BEM) has been presented in [4]. More mathematical
details regarding the several applications of GB-BEM can be found in
[6–8].

This paper deals with an extension of the work reported in [4],
proposing some convenient measures for the analysis of the body
transient response.

Further to the specific absorption (SA) concept for quantifying
transient exposures, commonly used within the bioelectromagnetic
community [1], this paper suggests some additional measures of the
the body transient response in terms of: average and root-mean square
value a of time-varying current, instantaneous power dissipated in the
body and total absorbed energy by the body. It is worth noting that in
[1] and [3] the total energy absorbed by the corresponding body model
has been expressed in terms of fields, while the analysis presented in
this paper uses the circuit theory representations.

The space time dependent current along the cylinder representing
the human body is governed by the Hallen integral equation [4].

Once determining the transient response of the human body one
can readily calculate a distribution of the average and root mean square
values of the space-time varying current flowing through the body as
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a measure of the transient behaviour of the induced current.
Electromagnetic energy absorbed by the body can be quantified

using the additional circuit-theory quantities in terms of instantaneous
power and total absorbed energy.

It is worth noting that the main feature of the proposed
formulation, when compared to more complex realistic models, is its
simplicity and efficiency in getting the rapid estimation of the physical
phenomena.

A number of illustrative numerical results obtained for the case
of Gaussian pulse, step function, and electromagnetic pulse (EMP) is
presented in the paper.

2. TIME DOMAIN MODEL OF THE HUMAN BODY

The time domain analysis of the transient electromagnetic field that
illuminates the well-grounded human body standing vertically on
the perfectly conducting ground, as shown in Fig. 1, is based on
a cylindrical representation of the body, in accordance with the
human equivalent antenna concept [4]. Technical details of the human
equivalent antenna are available in [5].

The dimensions of the human equivalent antenna (L = 1.8 m,
a = 5 cm) are within the thin wire approximation and the effective
bandwidth of the EMP frequency spectrum is 5 MHz. This bandwidth

Figure 1. Cylindrical model of the human body exposed to a vertically
polarized transient field.
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is also within the frequency range of the human equivalent antenna.
The space-time dependent current along the equivalent cylinder

representing the human body is governed by the time domain
Hallen integral equation. This integral equation can be derived
enforcing the condition for the total tangential electric field component
at the wire surface, and taking into account the thin wire
approximation. Performing some straightforward mathematical
manipulation first yields the following space-time Pocklington integro-
differential equation [4]:
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where i(z′, t − R/c) is the unknown current to be determined, Einc
z is

the incident field, c is the velocity of light, R is the distance from the
source point in the cylinder axis to the observation point at the cylinder
surface, and RL is the resistance per unit length of the antenna length
derived in [4] and given by:
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The conductivity σ of the human body taken into account through
the resistive loading per unit length of the cylinder is assumed to be
0.5 S/m (conductivity at 60 Hz) since the predominant component of
the induced transient current are at ELF frequencies.

Finally, performing a time domain integration of Pocklington
Equation (1) results in the corresponding Hallen integral equation [4]:
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where Z0 is the wave impedance of a free space and the unknown
signals F0(t) and FL(t) are related with the multiple reflections of the
current wave from the wire ends.

Transient current induced in the human body due to any transient
field can be obtained by solving the time domain Hallen integral
Equation (3) via the space-time domain Galerkin-Bubnov scheme of
the boundary element method GB-BEM.
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3. MEASURE OF THE TRANSIENT RESPONSE

Once obtaining the transient current flowing through the human body
it is possible to calculate certain parameters providing a measure of
this body transient response.

The convenient parameters evaluating the human body transient
response, arising from the basic theory of electric circuits, suggested in
this work, are: the spatial distribution of average and rms values of a
space-time varying current induced in the body, instantaneous power
dissipated in the body and total absorbed energy in the body.

3.1. Average Value of the Transient Current

The average value of the transient current is associated with a DC
component in the spectrum of a particular transient waveform. The
average value of a time varying current i(t) is defined as follows:

Iav =
1
T0

T0∫
0

i(t)dt (4)

where T0 is the time interval of interest.
The distribution of average values of current is simply given by:

Iav(x) =
1
T0

T0∫
0

i(x, t)dt (5)

Obviously, for any waveform having approximately equal area
above and below abscissa the average value tends to be equal to zero.
Therefore, from this parameter one can obtain a quick estimation of
the character of the given transient waveform properties.

When the space-time varying current along the cylinder at each
space node zi and time instant tk is determined by solving the integral
Equation (3), the average value of this current can be computed from
the following relation:
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where {T} is the vector containing the time domain linear shape
functions, and {I} denotes the vector containing time-dependent values
of current.

3.2. Root-Mean-Square Value of the Transient Current

A time varying current delivers an average power to resistive load.
The amount of delivered power strongly depends on the particular
waveform.

A measure of comparing the power delivered by different
waveforms is the root-mean-square (rms) or effective value of a
transient current. The rms value of a time-varying current is a
constant that is equal to the direct current value that would deliver the
same average power to a given resistance RL and that would produce
the same heating effect on RL.

Instantaneous power delivered to a resistance RL by a transient
current i(t) is:

p(t) = RLi
2(t) (8)

while the corresponding average power Pav is determined by the
integral relation:

Pav =
1
T0

T0∫
0

p(t)dt =
1
T0

T0∫
0

RLi
2(t)dt = RLI

2
rms (9)

from which the rms current is then:
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Consequently, the spatial distribution of the rms values of the space
time current along the cylinder is given by:
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When the current along the wire at each node and time instant is
determined, the rms value of the wire current can be computed from
the following relation:

Irms =

√√√√√√ 1
T0

Nt∑
k=1

tk+1∫
tk

({T}T {I})2i dt (12)



Postprocessing of the human body response 225

and by performing a straight-forward integration it follows:
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Basically, the rms value of the transient current flowing through
the body appears to be a more interesting parameter from the
bioelectromagnetics point of view as it is, by its definition, directly
associated with the thermal effect of a time varying current flowing
through a lossy material.

3.3. Instantaneous Power

Instantaneous power delivered to a certain resistance RL, or to some
resistive medium having equivalent resistance RL by a transient current
is defined by a relation (8). On the other hand, the absorbed power in
the human body expressed by the field quantities is equivalent to the
concept of instantaneous power arising from the circuit theory and it
is usually defined as a volume integral over power density, i.e.:
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Assuming the transient current to be approximately constant over the
cylinder cross-section yields:

i(z, t) = J(z, t) · S (15)

where J(z, t) denotes the current density along the cylinder, and
S = a2π is the cylinder cross-section.

The instantaneous power can be obtained by spatially integrating
the squared space-time varying current:
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1
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Knowing the transient induced current the instantaneous power
can be represented by the following relation:
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where {f} denotes the vector containing linear interpolation functions
and {I} stands for the induced current coefficients.

Performing of straightforward integration yields:
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where M denotes the total number of spatial segments along the
cylinder.

3.4. Total Absorbed Energy

In accordance to the circuit theory, the total absorbed energy in
the resistance or resistive material can be obtained by temporally
integrating the instantaneous power:

Wtot(t) =
t∫

0

Prad(t)dt (19)

Using the numerical representation of the instantaneous power it
follows:

Wtot(t) =
Nt∑

k=1

tk+∆t∫
tk

{T}T
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and performing of straightforward integration gives:
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2

Nt∑
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where P k and P k+1 stands for a discrete value of instantaneous power
dissipated in the resistive medium at a time instant tk and tk+1,
respectively.

4. COMPUTATIONAL EXAMPLES

There are three types of transient incident fields considered in
this work: Gaussian pulse, temporal step function and standard
electromagnetic pulse (EMP) waveform.

All incident fields are assumed to be vertically polarized in order
to analyse the maximum coupling to the body. Figure 2 shows
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Figure 2. Transient current induced in the feet due to the Gaussian
pulse exposure.

the transient current induced in the feet due to the Gaussian pulse
exposure:

Einc
z (t) = E0e

−g2(t−t0)2 (22)

with following parameters: E0 = 1 V/m, g = 2 ∗ 109 s−1 and t0 = 2 ns.
As this pulse is a numerical equivalent of Dirac pulse the obtained

transient exposure can be regarded as an impulse response of the
human body. Transient response to any other incident waveform then
can be obtained by performing a simple convolution [7, 8].

The spatial distribution of the average values of the space-time
varying current flowing through the cylindrical body model is shown
in Fig 3. For the case of Gaussian pulse this measure seems to be
almost useless, as it tends to be zero.

On the contrary, more information regarding the heating effect
due to the Gaussian pulse exposure can be obtained from the spatial
distribution of the rms values of the transient current, shown in Fig 4.
What can be observed from Fig 4 is that Gaussian pulse that induces
the peak value of current around 1.5 mA in the feet corresponds to
the equivalent DC current that is equal to appx. 0.4 mA. In other
words, the transient current induced in the feet shown in Fig. 2. would
produce the same heating effect as the constant DC current of 0.4 mA.
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Figure 3. Spatial distribution of average values of the transient
current due to the Gaussian pulse exposure.

Figure 4. Spatial distribution of average values of the transient
current due to the Gaussian pulse exposure.
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Figure 5. Instantaneous power dissipated within the body due to the
Gaussian pulse exposure.

Furthermore, the transient behaviour of the instantaneous power
dissipated in the body is shown in Fig. 5. It can be noticed that the
power dissipation, with the peak value slightly above 2.5 mW occurs
in the early time within the first 50 ns.

The same conclusion can be drawn from the Fig. 6 representing
the total energy absorbed in the body versus time. It is clearly visible
that body does not absorb any significant amount of energy after first
50 ns.

Therefore, a very little energy is absorbed by the human body
exposed to pulsed field. This occurs due to a very limited time duration
(up to 100 ns) of the incident pulse for which significant values of
current can be induced in the body.

Figure 7 shows the transient current induced in the feet due to
the temporal step exposure:

Einc
z (t) = u(t) (23)

where u(t) denotes the unit step. The first current peak appears to be
around 7 mA.

Figures 8 and 9 show the related spatial distribution of the average
and rms values of current for the case of the unit temporal step
excitation, respectively.
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Figure 6. Total energy absorbed in the body due to the Gaussian
pulse exposure.

Figure 7. Transient current induced in the feet due to the step
function exposure.
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Figure 8. Spatial distribution of average values of the transient
current due to the step exposure.

Figure 9. Spatial distribution of rms values of the transient current
due to the step exposure.
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Figure 10. Instantaneous power dissipated within the body due to
the step exposure.

In this case the peak value of the current induced in the feet
corresponds to the average value of the current equals to approximately
0.34 mA, as it can be seen from Fig. 8.

In addition, the peak value of the current induced in the feet
corresponds to the rms value of the current equals to approximately
1.9 mA. It is obvious that the average and rms values of the transient
response to step excitation are significantly higher comparing to the
results obtained for the case of Gaussian exposure.

Figure 10 shows the transient behaviour of the transient waveform
of the instantaneous power. This transient behaviour is similar to the
case of Gaussian pulse, i.e., there is negligible power dissipation in the
second half of 100 ns time interval.

However, the peak value of the dissipated power is for the order
of magnitude higher, while the absorbed energy is about twice higher
than in previous case of the Gaussian pulse exposure.

Fig. 12 shows the transient current induced in the feet due to the
standard double-exponential electromagnetic pulse (EMP) waveform:

Einc
z (t) = E0(e−at − e−bt) (24)

where E0 = 1.05 Vm−1, a = 4 ∗ 106 s−1, b = 4.76 ∗ 108 s−1.
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Figure 11. Total energy absorbed in the body due to the step
exposure.

Figure 12. Transient current induced in the feet due to the EMP
exposure.
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Figure 13. Spatial distribution of average values of the transient
current due to the EMP exposure.

Figures 13 and 14 show the related spatial distribution of the
average and rms values of current for the case of EMP, respectively.

This time the peak value of the current induced in the feet
corresponds to the averaged value below 0.25 mA, as it is visible from
Fig. 13.

In addition, the peak value of the current induced in the feet
corresponds to the rms value equals to approximately 1.8 mA. The
average and rms values of the transient response to EMP exposure
are comparable to the step exposure results and they are appreciably
higher comparing to the results obtained for the case of the Gaussian
pulse exposure.

Figure 15 shows the transient behaviour of the instantaneous
power. The transient behaviour is similar to the case of the step
exposure though the peak values are slightly lower and the dissipation
in the body occurs up to almost 60 ns.

The same conclusion can be drawn for the energy graph shown in
Fig. 16.

It is worth noting that very little energy is absorbed by the human
body due to an exposure to transient fields of rather limited time
duration.
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Figure 14. Spatial distribution of rms values of the transient current
due to the EMP exposure.

Figure 15. Instantaneous power dissipated within the body due to
the EMP exposure.
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Figure 16. Total energy absorbed in the body due to the EMP
exposure.

5. CONCLUSION REMARKS

Various measures for the transient response of the human body are
presented in this work. The time domain formulation is based on the
human equivalent antenna representation of the human body and the
related space-time Hallen integral equation approach. The transient
current induced in the human body is obtained by solving the Hallen
integral equation via the time domain variant of the Galerkin Bubnov
boundary element method (GB-BEM).

Once obtaining the transient induced current it is possible to
calculate the measures of the transient response in terms of the
average and root-mean-square value of space-time varying current,
instantaneous power and absorbed total energy in the body.

It should be pointed out that the principle feature of the proposed
model, when compared to some realistic and more accurate body
models, is its simplicity and efficiency.
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