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Abstract—The variational principle is employed to study chirped
solitons that propagate through optical fibers and is governed by the
dispersion-managed nonlinear Schrödinger’s equation. Here, in this
paper, the polarization-preserving fibers, birefringent fibers as well as
multiple channels have been considered. The study is extended to
obtain the adiabatic evolution of soliton parameters in presence of
perturbation terms for such fibers. Both Gaussian and super-Gaussian
solitons have been considered.
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1. INTRODUCTION

The propagation of solitons through optical fibers has been a
major area of research given its potential applicability in all optical
communication systems. The field of telecommunications has
undergone a substantial evolution in the last couple of decades due
to the impressive progress in the development of optical fibers, optical
amplifiers as well as transmitters and receivers. In a modern optical
communication system, the transmission link is composed of optical
fibers and amplifiers that replace the electrical regenerators. But the
amplifiers introduce some noise and signal distortion that limit the
system capacity. Presently the optical systems that show the best
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characteristics in terms of simplicity, cost and robustness against the
degrading effects of a link are those based on intensity modulation with
direct detection (IM-DD). Conventional IM-DD systems are based on
non-return-to-zero (NRZ) format, but for transmission at higher data
rate the return-to-zero (RZ) format is preferred. When the data rate is
quite high, soliton transmission can be used. It allows the exploitation
of the fiber capacity much more, but the NRZ signals offer very high
potential especially in terms of simplicity.

There are limitations, however, on the performance of optical
system due to several effects that are present in optical fibers and
amplifiers. Signal propagation through optical fibers can be affected by
group velocity dispersion (GVD), polarization mode dispersion (PMD)
and the nonlinear effects. The chromatic dispersion that is essentially
the GVD when waveguide dispersion is negligible, is a linear effect that
introduces pulse broadening generates intersymbol interference. The
PMD arises due the fact that optical fibers for telecommunications have
have two polarization modes, in spite of the fact that they are called
monomode fibers. These modes have two different group velocities
that induce pulse broadening depending on the input signal state of
polarization. The transmission impairment due to PMD looks similar
to that of the GVD. However, PMD is a random process as compared to
the GVD that is a deterministic process. So PMD cannot be controlled
at the receiver. Newly installed optical fibers have quite low values of
PMD that is about 0.1 ps/

√
km.

The main nonlinear effects that arises in monomode fibers are the
Brillouin scattering, Raman scattering and the Kerr effect. Brillouin is
a backward scattering that arises from acoustic waves and can generate
forward noise at the receiver. Raman scattering is a forward scattering
from silica molecules. The Raman gain response is characterized by low
gain and wide bandwidth namely about 5 THz. The Raman threshold
in conventional fibers is of the order of 500 mW for copolarized pump
and Stokes’ wave (that is about 1 W for random polarization), thus
making Raman effect negligible for a single channel signal. However, it
becomes important for multichannel wavelength-division-multiplexed
(WDM) signal due to an extremely wide band of wide gain curve.

The Kerr effect of nonlinearity is due to the dependence of the fiber
refractive index on the field intensity. This effect mainly manifests as
a new frequency when an optical signal propagates through a fiber. In
a single channel the Kerr effect induces a spectral broadening and the
phase of the signal is modulated according to its power profile. This
effect is called self-phase modulation (SPM). The SPM-induced chirp
combines with the linear chirp generated by the chromatic dispersion.
If the fiber dispersion coefficient is positive namely in the normal
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dispersion regime, linear and nonlinear chirps have the same sign
while in the anomalous dispersion regime they are of opposite signs.
In the former case, pulse broadening is enhanced by SPM while in
the later case it is reduced. In the anomalous dispersion case the
Kerr nonlinearity induces a chirp that can compensate the degradation
induced by GVD. Such a compensation is total if soliton signals are
used.

If multichannel WDM signals are considered, the Kerr effect
can be more degrading since it induces nonlinear cross-talk among
the channels that is known as the cross-phase modulation (XPM).
In addition WDM generates new frequencies called the Four-Wave
mixing (FWM). The other issue in the WDM system is the collision-
induced timing jitter that is introduced due to the collision of solitons
in different channels. The XPM causes further nonlinear chirp that
interacts with the fiber GVD as in the case of SPM. The FWM is a
parametric interaction among waves satisfying a particular relationship
called phase-matching that lead to power transfer among different
channels.

To limit the FWM effect in a WDM it is preferable to operate
with a local high GVD that is periodically compensated by devices
having an opposite sign of GVD. One such device is a simple optical
fiber with opportune GVD and the method is commonly known as
the dispersion-management. With this approach the accumulated
GVD can be very low and at the same time FWM effect is strongly
limited. Through dispersion-management it is possible to achieve
highest capacity for both RZ as well as NRZ signals. In that case
the overall link dispersion has to be kept very close to zero, while
a small amount of chromatic anomalous dispersion is useful for the
efficient propagation of a soliton signal. It has been demonstrated
that with soliton signals, the dispersion-management is very useful
since it reduces collision induced timing jitter [3] and also the pulse
interactions. It thus permits the achievement of higher capacities as
compared to the link having constant chromatic dispersion.

In this paper, the dynamics of dispersion-managed (DM) solitons
propagating through an optical fiber will be studied in presence of
perturbation terms. Both Gaussian and super-Gaussian type solitons
will be considered for completeness.
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2. GOVERNING EQUATIONS

The relevant equation is the nonlinear Schrödinger’s equation (NLSE)
with damping and periodic amplification [2, 3, 8, 9]

iuz +
D(z)

2
utt + |u|2u = −iΓu+ i

[
eΓza − 1

] N∑
n=1

δ(z − nza)u (1)

Here, Γ is the normalized loss coefficient, za is the normalized
characteristic amplifier spacing and z and t represent the normalized
propagation distance and the normalized time, respectively, while u
represents the wave profile expressed in the nondimensional units.

Also, D(z) is used to model strong dispersion management. The
fiber dispersion D(z) is decomposed into two components namely a
path-averaged constant value δa and a term representing the large rapid
variation due to large local values of the dispersion [1–3]. Thus,

D(z) = δa +
1
za

∆(ζ) (2)

where ζ = z/za. The function ∆(ζ) is taken to have average zero over
an amplification period namely

〈∆〉 =
1
za

∫ za

0
∆

(
z

za

)
dz = 0 (3)

so that the path-averaged dispersion D will have an average δa namely

〈D〉 =
1
za

∫ za

0
D(z)dz = δa (4)

The proportionality factor in front of ∆(ζ), in (2), is chosen so that
both δa and ∆(ζ) are quantities of order one. In practical situations,
dispersion management is often performed by concatenating together
two or more sections of given length with different values of fiber
dispersion. In the special case of a two-step map it is convenient to
write the dispersion map as a periodic extension of [2]

∆(ζ) =

{
∆1 : 0 ≤ |ζ| < θ

2

∆2 : θ
2 ≤ |ζ| < 1

2

(5)

where ∆1 and ∆2 are given by

∆1 =
2s
θ

(6)
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and

∆2 = − 2s
1 − θ (7)

with the map strength, s, being defined as

s =
θ∆1 − (1 − θ)∆2

4
(8)

Conversely,

s =
∆1∆2

4(∆2 − ∆1)
(9)

and

θ =
∆2

∆2 − ∆1
(10)

A typical two-step dispersion map is shown in the following figure

Figure 1. Schematic diagram of a two-step map.

Taking into account the loss and amplification cycles by looking
for a solution of (1) of the form u(z, t) = P (z)q(z, t) for real P and
letting P satisfy

Pz + ΓP −
[
eΓza − 1

] N∑
n=1

δ(z − nza)P = 0 (11)

equation (1) transforms to

iqz +
D(z)

2
qtt + g(z)|q|2q = 0 (12)
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where

g(z) = P 2(z) = a2
0e

−2Γ(z−nza) (13)

for z ∈ [nza, (n+ 1)za) and n > 0 and also

a0 =
[

2Γza
1 − e−2Γza

] 1
2

(14)

so that over each amplification period

〈g(z)〉 =
1
za

∫ za

0
g(z)dz = 1 (15)

Equation (12) is commonly known as the Dispersion-Managed
Nonlinear Schrödinger’s equation (DMNLSE) and it governs the
propagation of a dispersion-managed soliton through a polarization
preserved optical fiber with damping and periodic amplification [1, 13].

The following figures show a direct numerical simulations of (12).
Figure 2 illustrates the profile of the pulse as the map strength, s,
varies from 0 to 16. However, Figures 3(a) and (b) are profiles of DM
solitons in the linear and logarithmic scales respectively.

Figure 2. Pulse profile.

Equation (12) will now be studied approximately by variational
method based on the observation that it supports well-defined chirped
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Figure 3. DM soliton profile (a) linear scale (b) logarithmic scale.

soliton solution whose shape is close to that of a Gaussian [3, 5, 10, 11].
These pulses deviate from a conventional soliton. However, Gaussian
pulses have relatively broad leading and trailing edges. In general,
a soliton with leading and trailing edges broadens more rapidly as
it propagates since such a pulse has a wider spectrum to start with.
Pulses emitted by directly modulated semiconductor lasers fall in this
category and cannot generally be approximated by a Gaussian soliton.

A hyper-Gaussian, also known as a super-Gaussian (SG) soliton
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can be used to model the effects of steep leading and trailing edges on
dispersion-induced pulse broadening [3]. It is to be noted here that
these pulses are solitary waves and are not strictly solitons as it is
not yet established whether they regain their form after interaction.
Henceforth, these solitary waves will be simply referred to as pulses.

3. VARIATIONAL PRINCIPLE

For a finite dimensional problem of a single particle, the temporal
development of its position is given by the Hamilton’s principle of least
action [8]. It states that the action given by the time integral of the
Lagrangian is an extremum, namely

δ

∫ t2

t1
L(x, ẋ)dt = 0 (16)

where x is the position of the particle and ẋ = dx/dt. The variational
problem (12) then leads to the familiar Euler-Lagrange’s (EL) equation
[5, 6, 8–10]

∂L

∂x
− d

dt

(
∂L

∂ẋ

)
= 0 (17)

In this procedure, an intelligent guess is made for the evolution of q(z, t)
in the sense that the form of q is modeled in terms of certain parameter
functions, r that characterize the crucial features of the solutions
namely the amplitude, spatial width, phase variations and others. The
parameters of this trial function are allowed to be functions of z namely
r = r(z). Inserting the trial function into the variational integral, the
spatial integration can be performed and a reduced variational problem
for the parameter functions r(z) is obtained.

An advantage of this method is that it is applicable to a
perturbation problem where the unperturbed system may not be
integrable. This method only requires that the unperturbed system
admits a well defined solution such as a soliton or a solitary wave. The
nontrivial applications of this method may be found elsewhere [20].

By the principle of least action, namely (16), the EL equation is
[8]

∂L

∂r
− d

dz

(
∂L

∂rz

)
= 0 (18)

where r is one of the six soliton parameters. Using the variational
principle, a set of evolution equations for the pulse parameters is
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derived. This approach is only approximate and does not account
for characteristics such as energy loss due to continuum radiation,
damping of the amplitude oscillations and changing of the pulse shape.

4. POLARIZATION PRESERVING FIBERS

In a polarization preserved optical fiber, it is shown in the last
section that the propagation of solitons is governed by the scalar
DMNLSE given by (12). In (12), if D(z) = g(z) = 1, the NLSE is
recovered. It is possible to integrate NLSE by the method of Inverse
Scattering Transform (IST). Thus, this case falls into the category of
S-integrable partial differential equations [8, 9, 19]. The IST is the
nonlinear analogue of the Fourier Transform that is used to solve
the linear partial differential equations and thus the two methods are
schematically similar [8, 19].

4.1. Integrals of Motion

Equation, (12) does not contain an infinite number of integrals of
motion. In fact, there are as few as two of them. They are energy
(E), also known as the L2 norm, and linear momentum (M) that are
respectively given by

E =
∫ ∞

−∞
|q|2dt (19)

M =
i

2
D(z)

∫ ∞

−∞
(q∗qt − qq∗t )dt (20)

The Hamiltonian (H) which is given by

H =
1
2

∫ ∞

−∞

(
D(z)|qt|2 − g(z)|q|4

)
dt (21)

is however not a constant of motion, in general. The case D(z) and
g(z) a constant makes the Hamiltonian a conserved quantity.

Now, it is assumed that the solution of (12) is given by a chirped
pulse of the form [6, 10]

q(z, t) = A(z)f [B(z) {t− t̄(z)}]
exp

[
iC(z) {t− t̄(z)}2 − iκ(z) {t− t̄(z)} + iθ(z)

]
(22)

where f represents the shape of the pulse. It could be a Gaussian type
or a SG type pulse. Also, here the parameters A(z), B(z), C(z), κ(z),
t̄(z) and θ(z) respectively represent the soliton amplitude, the inverse
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width of the pulse, chirp, frequency, the center of the pulse and the
phase of the pulse. For convenience, the following integral is defined

Ia,b,c =
∫ ∞

−∞
τaf b(τ)

(
df

dτ

)c

dτ (23)

where a, b and c are positive integers and

τ = B(z) {t− t̄(z)} (24)

For such a pulse form given by (22), the integrals of motion are

E =
∫ ∞

−∞
|q|2dt =

A2

B
I0,2,0 (25)

M =
i

2
D(z)

∫ ∞

−∞
(q∗qt − qq∗t )dt = −κD(z)

A2

B
I0,2,0 (26)

while the Hamiltonian is given by

H =
1
2

∫ ∞

−∞

(
D(z)|qt|2 − g(z)|q|4

)
dt

=
D(z)
2B3

(
A2B3I0,0,2 + 4A2C2I2,2,0 + κ2A2B2I0,2,0

)
− g(z)

2
A4

B
I0,4,0

(27)

4.2. Variational Formulation

Equation (12) will now be studied by means of variational method
based on the observation that it cannot be integrated by IST. This
equation supports well-defined chirped soliton solution whose shape is
close to that of a Gaussian or a SG. [4]. The Lagrangian, for (12), is

L =
1
2

∫ ∞

−∞

[
i (q∗qz − qq∗z) −D(z)|qt|2 + g(z)|q|4

]
dt (28)

Now, using (23), the Lagrangian given by (28), reduces to

L = −D(z)
A2

2B3

(
B4I0,0,2 + 4C2I2,2,0 + κ2B2I0,2,0

)

+g(z)
A4

2B
I0,4,0 −

A2

B3
I2,2,0

dC

dz
+
A2

B
I0,2,0

(
t̄
dκ

dz
− dθ

dz

)
(29)

In the EL equation, namely (18), substituting A,B,C, κ, t̄ and θ for r
yields the following parameter dynamics for the solitons.

dA

dz
= −ACD(z) (30)
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dB

dz
= −2BCD(z) (31)

dC

dz
=

(
B4

2
I0,0,2

I2,2,0
− 2C2

)
D(z) − g(z)A2B2

4
I0,4,0

I2,2,0
(32)

dκ

dz
= 0 (33)

dt̄

dz
= −κD(z) (34)

dθ

dz
=

(
κ2

2
− I0,0,2

I0,2,0
B2

)
D(z) +

5g(z)A2

4
I0,4,0

I0,2,0
(35)

Now, from (30) and (31), A = K
√
B where the constant K is

proportional to the square root of the energy as seen from (25). So, the
number of parameters reduces by one. Thus, (30)-(35), respectively,
modify to

dB

dz
= −2BCD(z) (36)

dC

dz
=

(
B4

2
I0,0,2

I2,2,0
− 2C2

)
D(z) − K2g(z)B3

4
I0,4,0

I2,2,0
(37)

dκ

dz
= 0 (38)

dt̄

dz
= −κD(z) (39)

dθ

dz
=

(
κ2

2
− I0,0,2

I0,2,0
B2

)
D(z) +

5Kg(z)B
4

I0,4,0

I0,2,0
(40)

4.2.1. Gaussian Pulses

For a pulse of Gaussian type, f(τ) = e−
1
2
τ2

. In this case, the conserved
quantities respectively reduce to

E =
∫ ∞

−∞
|q|2dt =

A2

B

√
π

2
= K2

√
π

2
(41)

M =
i

2
D(z)

∫ ∞

−∞
(q∗qt − qq∗t )dt

= −κD(z)
A2

B

√
π

2
= −κD(z)K2

√
π

2
(42)
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while the Hamiltonian is

H =
1
2

∫ ∞

−∞

(
D(z)|qt|2 − g(z)|q|4

)
dt

=
D(z)K2

2

(
B2 +

C2

B2
+ κ2

) √
π

2
−

√
π

4
g(z)BK4 (43)

Also, the parameter dynamics given by (36)–(40) respectively are

dB

dz
= −2BCD(z) (44)

dC

dz
= 2D(z)

(
B4 − C2

)
−

√
2

2
g(z)B3K2 (45)

dκ

dz
= 0 (46)

dt̄

dz
= −κD(z) (47)

dθ

dz
=
D(z)

2

(
κ2 −B2

)
+

5
√

2
8
g(z)BK (48)

4.2.2. Super-Gaussian Pulses

For SG pulse, f(τ) = e−
1
2
τ2p

with p ≥ 1 where the parameter p controls
the degree of edge sharpness. With p = 1, the case of chirped Gaussian
pulse is recovered, while for larger values of p the pulse gradually
becomes square shaped with sharper leading and trailing edges [4].
Figure 4 below, represent the shape of the pulses as the parameter p
varies.

For a SG pulse, the integrals of motion respectively are

E =
∫ ∞

−∞
|q|2dt =

A2

B

1

p2
1
2p

Γ
(

1
2p

)
=
K2

p2
1
2p

Γ
(

1
2p

)
(49)

M =
i

2
D(z)

∫ ∞

−∞
(q∗qt − qq∗t )dt

= −κD(z)
A2

B

1

p2
1
2p

Γ
(

1
2p

)
= −κD(z)K2

p2
1
2p

Γ
(

1
2p

)
(50)

while the Hamiltonian is

H =
1
2

∫ ∞

−∞

(
D(z)|qt|2 − g(z)|q|4

)
dt
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Figure 4. SG pulse with the variation of the parameter m.

= D(z)K2

{
B2 p

2
2p−1
2p

Γ
(

4p− 1
2p

)
+
C2

B2

2
2m−3
2m

m
Γ

(
3
2p

)

+κ2 1

p2
2p+1

p

Γ
(

1
2p

)}
− g(z) BK

4

p2
2p+1

p

Γ
(

1
p

)
(51)

Also, the evolution equations for the pulse parameters (36)-(40)
respectively reduce to

dB

dz
= −2BCD(z) (52)

dC

dz
=


B4 p2

2
p−2

p

Γ
(
4p−1
2p

)
Γ

(
3
2p

) − 2C2


D(z) − 1

2
4p+1
2p

Γ
(

1
2p

)
Γ

(
3
2p

)g(z)B3K2 (53)

dκ

dz
= 0 (54)

dt̄

dz
= −κD(z) (55)

dθ

dz
=


κ

2

2
− p22

1
p

Γ
(

4p−1
2p

)
Γ

(
1
2p

) B2


D(z) +

5

2
4p+1
2p

g(z)BK (56)
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Here, for p = 1, (49)–(56) reduce to (41)–(48) respectively for Gaussian
pulses.

5. BIREFRINGENT FIBERS

A single mode fiber supports two degenerate modes that are polarized
in two orthogonal directions. Under ideal conditions of perfect
cylindrical geometry and isotropic material, a mode excited with its
polarization in one direction would not couple with the mode in the
orthogonal direction. However, small deviations from the cylindrical
geometry or small fluctuations in material anisotropy result in a mixing
of the two polarization states and the mode degeneracy is broken.
Thus the mode propagation constant becomes slightly different for the
modes polarized in orthogonal directions. This property is referred to
as modal birefringence [8, 15, 16]. Birefringence can also be introduced
artificially in optical fibers.

The propagation of solitons in birefringent nonlinear fibers has
attracted much attention in recent years. It has potential applications
in optical communications and optical logic devices. The equations
that describe the pulse propagation through these fibers was originally
derived by Menyuk [16]. They can be solved approximately in certain
special cases only. The localized pulse evolution in a birefringent fiber
has been studied analytically, numerically and experimentally [16] on
the basis of a simplified chirp-free model without oscillating terms
under the assumptions that the two polarizations exhibit different
group velocities. The dimensionless equations that describe the pulse
propagation in birefringent fibers are

i(uz + δut) + βu+
D(z)

2
utt + g(z)

(
|u|2 + α|v|2

)
u+ γv2u∗ = 0 (57)

i(vz − δvt) + βv +
D(z)

2
vtt + g(z)

(
|v|2 + α|u|2

)
v + γu2v∗ = 0 (58)

Equations (57) and (58) are known as the Dispersion Managed Vector
Nonlinear Schrodinger’s Equation (DM-VNLSE). Here, u and v are
slowly varying envelopes of the two linearly polarized components
of the field along the x and y axis. Also, δ is the group velocity
mismatch between the two polarization components and is called the
birefringence parameter, β corresponds to the difference between the
propagation constants, α is the cross-phase modulation coefficient
and γ is the coefficient of the coherent energy coupling term. These
equations are, in general, not integrable. However, they can be solved
analytically only for certain specific cases [31].
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In this paper, the terms with δ will be neglected as δ ≤ 10−3

[6]. Also, neglecting β and the coherent energy coupling given by the
coefficient of the γ terms, the reduced DM-VNLSE is

iuz +
D(z)

2
utt + g(z)

(
|u|2 + α|v|2

)
u = 0 (59)

ivz +
D(z)

2
vtt + g(z)

(
|v|2 + α|u|2

)
v = 0 (60)

Equations (59) and (60) will now be studied in this paper by means of
the variational principle as this is not integrable by the IST.

5.1. Integrals of Motion

The two integrals of motion of (57) and (58) are the energy (E) and
the linear momentum (M) of the pulse that are respectively given by

E =
∫ ∞

−∞

(
|u|2 + |v|2

)
dt (61)

M =
i

2
D(z)

∫ ∞

−∞
(u∗ut − uu∗t + v∗vt − vv∗t ) dt (62)

By Noether’s theorem, each of these two conserved quantities
corresponds to a symmetry of the system. The conservation of energy
is a result of the translational invariance of (57) and (58) relative to
phase shifts, while the conservation of the momentum is a consequence
of the translational invariance in t [8]. The Hamiltonian (H) of (57)
and (58) is given by

H =
1
2

∫ ∞

−∞

[
D(z)

(
|ut|2 + |vt|2

)
− 2β

(
|u|2 − |v|2

)
− g(z)

(
|u|4 + |v|4

)
−iδ (u∗ut−uu∗t +v∗vt−vv∗t )−2α|u|2|v|2−(1−α)

(
u2v∗2+v2u∗2

)]
dt

(63)

while that of the reduced DM-VNLSE, given by (59) and (60), the
Hamiltonian is

H =
1
2

∫ ∞

−∞

[
D(z)

(
|ut|2 + |vt|2

)
−g(z)

(
|u|4+|v|4

)
−2α|u|2|v|2−(1−α)

(
u2v∗2+v2u∗2

)]
dt (64)

which is, however, not a constant of motion, unless D(z) and g(z)
are constants in which case it is a consequence of the translational
invariance in z.
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Now, the solutions of (59) and (60) are assumed to be given by
chirped pulses of the form

u(z, t) = A1(z)f [B1(z) {t− t1(z)}]
exp

[
iC1(z) {t− t1(z)}2 − iκ1(z) {t− t1(z)} + iθ1(z)

]
(65)

and

v(z, t) = A2(z)f [B2(z) {t− t2(z)}]
exp

[
iC2(z) {t− t2(z)}2 − iκ2(z) {t− t2(z)} + iθ2(z)

]
(66)

where f represents the shape of the pulse. Also, here the parameters
Aj(z), Bj(z), Cj(z), κj(z), tj(z) and θj(z) (for j = 1, 2) respectively
represent the pulse amplitudes, the inverse width of the pulses,
chirps, frequencies, the centers of the pulses and the phases of the
pulses respectively. Using the variational principle, a set of evolution
equations for these pulse parameters will be derived. Also, for such
pulse forms, the integrals of motion are

E =
∫ ∞

−∞

(
|u|2 + |v|2

)
dt =

A2
1

B1
I

(1)
0,2,0 +

A2
2

B2
I

(2)
0,2,0 (67)

M =
i

2
D(z)

∫ ∞

−∞
(u∗ut − uu∗t + v∗vt − vv∗t )dt

= −D(z)

{
κ1
A2

1

B1
I

(1)
0,2,0 + κ2

A2
2

B2
I

(2)
0,2,0

}
(68)

The Hamiltonian is now given by

H =
1
2

∫ ∞

−∞

[
D(z)

(
|ut|2 + |vt|2

)
− 2β

(
|u|2 − |v|2

)
− g(z)

(
|u|4 + |v|4

)
−iδ (u∗ut−uu∗t +v∗vt−vv∗t )−2α|u|2|v|2−(1−α)

(
u2v∗2+v2u∗2

)]
dt

=
D(z)

2

{
A2

1B1I
(1)
0,0,2 + 4

A2
1C

2
1

B3
1

I
(1)
2,2,0 +

κ2
1A

2
1

B1
I

(1)
0,2,0

}
− g(z)

2
A4

1

B1
I

(1)
0,4,0

+
D(z)

2

{
A2

2B2I
(2)
0,0,2 + 4

A2
2C

2
2

B3
2

I
(2)
2,2,0 +

κ2
2A

2
2

B2
I

(2)
0,2,0

}
− g(z)

2
A4

2

B2
I

(2)
0,4,0

−β
{
A2

1

B1
I

(1)
0,2,0 −

A2
2

B2
I

(2)
0,2,0

}
− δ

{
κ1
A2

1

B1
I

(1)
0,2,0 + κ2

A2
2

B2
I

(2)
0,2,0

}

−αA2
1A

2
2J

0,0
2,2,0,0 + (1 − α)A1A2J

1,0
1,1,0,0 (69)
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while that of the reduced DM-VNLSE the Hamiltonian simplifies to

H =
1
2

∫ ∞

−∞

[
D(z)

(
|ut|2 + |vt|2

)
− g(z)

(
|u|4 + |v|4

)
−2α|u|2|v|2 − (1 − α)

(
u2v∗2 + v2u∗2

)]
dt

=
D(z)

2

{
A2

1B1I
(1)
0,0,2 + 4

A2
1C

2
1

B3
1

I
(1)
2,2,0 +

κ2
1A

2
1

B1
I

(1)
0,2,0

}

+
D(z)

2

{
A2

2B2I
(2)
0,0,2 + 4

A2
2C

2
2

B3
2

I
(2)
2,2,0 +

κ2
2A

2
2

B2
I

(2)
0,2,0

}

−g(z)
2

{
A4

1

B1
I

(1)
0,4,0+

A4
2

B2
I

(2)
0,4,0

}
−αA2

1A
2
2J

0,0
2,2,0,0+(1 − α)A1A2J

1,0
1,1,0,0

(70)

where

I
(l)
a,b,c =

∫ ∞

−∞
τa
l f

b(τl)
(
df

dτl

)c

dτl (71)

and

Jα,β
a,b,m,n =

∫ ∞

−∞
fa (τ1) f b (τ2)

(
df

dτ1

)m (
df

dτ2

)n

· cos [α (φ1 − φ2)] sinβ (φ1 − φ2) dt (72)

along with

τl = Bl(z) {t− tl(z)} (73)

and

φl = Cl (t− tl)2 − κl (t− tl) + θl (74)

for positive integers a, b, c, m, n, α and β while l = 1, 2.

5.2. Variational Formulation

Since, there is no inverse scattering solution to (59) and (60) these
equations will be studied approximately by means of variational
method based on the observation that it supports well-defined chirped
soliton solution whose shape is that of a Gaussian or a SG. For the EL
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equation that is given by (18), the Lagrangian is given by

L =
1
2

∫ ∞

−∞
[i (u∗uz − uu∗z) + i (v∗vz − vv∗z)

+iδ (v∗ut − uv∗t ) + iδ (u∗vt − vu∗t )
−D(z)

(
|ut|2 + |vt|2

)
+ g(z)

(
|u|4 + |v|4

)
+2αg(z)|u|2|v|2+2β (u∗v+uv∗)+γ

(
u2v∗2+v2u∗2

)]
dt (75)

and this simplifies to

L = −D(z)
A2

1

2B3
1

{
B4

1I
(1)
0,0,2 + 4C2

1I
(1)
2,2,0 + κ2

1B
2
1I

(1)
0,2,0

}

+
g(z)A4

1

2B1
I

(1)
0,4,0 −

A2
1

B3
1

I
(1)
2,2,0

dC1

dz
+
A2

1

B1
I

(1)
0,2,0

(
t1
dκ1

dz
− dθ1
dz

)

−D(z)
A2

2

2B3
2

{
B4

2I
(2)
0,0,2 + 4C2

2I
(2)
2,2,0 + κ2

2B
2
2I

(2)
0,2,0

}

+
g(z)A4

2

2B2
I

(2)
0,4,0 −

A2
2

B3
2

I
(2)
2,2,0

dC2

dz
+
A2

2

B2
I

(2)
0,2,0

(
t2
dκ2

dz
− dθ2
dz

)

+2δA1A2

{
(κ1 + κ2)J

1,0
1,1,0,0 +B2J

0,1
1,0,0,1 +B1J

0,1
0,1,1,0

}
+4βA1A2J

1,0
1,1,0,0 + 2γA2

1A
2
2J

1,0
2,2,0,0 + αg(z)A2

1A
2
2J

0,0
2,2,0,0 (76)

For the reduced DM-VNLSE, the Lagrangian is given by

L =
1
2

∫ ∞

−∞
[i (u∗uz − uu∗z) + i (v∗vz − vv∗z)

−D(z)
(
|ut|2+|vt|2

)
+g(z)

(
|u|4+|v|4

)
+2αg(z)|u|2|v|2

]
dt (77)

which simplifies to

L = −D(z)
A2

1

2B3
1

{
B4

1I
(1)
0,0,2 + 4C2

1I
(1)
2,2,0 + κ2

1B
2
1I

(1)
0,2,0

}

+
g(z)A4

1

2B1
I

(1)
0,4,0 −

A2
1

B3
1

I
(1)
2,2,0

dC1

dz
+
A2

1

B1
I

(1)
0,2,0

(
t1
dκ1

dz
− dθ1
dz

)

−D(z)
A2

2

2B3
2

{
B4

2I
(2)
0,0,2 + 4C2

2I
(2)
2,2,0 + κ2

2B
2
2I

(2)
0,2,0

}

+
g(z)A4

2

2B2
I

(2)
0,4,0 −

A2
2

B3
2

I
(2)
2,2,0

dC2

dz
+
A2

2

B2
I

(2)
0,2,0

(
t2
dκ2

dz
− dθ2
dz

)

+αg(z)A2
1A

2
2J

0,0
2,2,0,0 (78)
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The EL equation given by (18) shall now be utilized to obtain
the dynamics of pulse parameters for birefringent fibers. In the
EL equation, p represents one of the twelve soliton parameters.
Substituting Aj , Bj , Cj , κj , tj and θj (j = 1, 2) for r in (18) the
following set of equations are obtained

dA1

dz
= −D(z)A1C1 (79)

dB1

dz
= −2D(z)B1C1 (80)

dC1

dz
= D(z)


B

4
1

2
I

(1)
0,0,2

I
(1)
2,2,0

−2C2
1


− g(z)A

2
1B

2
1

4
I

(1)
0,4,0

I
(1)
2,2,0

−αg(z)
2

A2
2B

3
1

J0,0
2,2,0,0

I
(1)
2,2,0

(81)

dκ1

dz
= 0 (82)

dt1
dz

= −D(z)κ1 (83)

dθ1
dz

= D(z)


κ

2
1

2
−B2

1

I
(1)
0,0,2

I
(1)
0,2,0


 +

5g(z)A2
1

4
I

(1)
0,4,0

I
(1)
0,2,0

+
3
2
αg(z)A2

2B1

J0,0
2,2,0,0

I
(1)
0,2,0

(84)

dA2

dz
= −D(z)A2C2 (85)

dB2

dz
= −2D(z)B2C2 (86)

dC2

dz
= D(z)


B

4
2

2
I

(2)
0,0,2

I
(2)
2,2,0

−2C2
2


− g(z)A

2
2B

2
2

4
I

(2)
0,4,0

I
(2)
2,2,0

−αg(z)
2

A2
1B

3
2

J0,0
2,2,0,0

I
(2)
2,2,0

(87)

dκ2

dz
= 0 (88)

dt2
dz

= −D(z)κ2 (89)
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dθ2
dz

= D(z)


κ

2
2

2
−B2

2

I
(2)
0,0,2

I
(2)
0,2,0


 +

5g(z)A2
2

4
I

(2)
0,4,0

I
(2)
0,2,0

+
3
2
αg(z)A2

1B2

J0,0
2,2,0,0

I
(2)
0,2,0

(90)

Now, from (79) and (80) it is easy to see that A1 = K1

√
B1 for some

constant K1 and again from (85) and (86), A2 = K2

√
B2 for some

constant K2. So, the number of parameters reduces by two. Therefore,
(79)–(90) respectively modify to

dB1

dz
= −2D(z)B1C1 (91)

dC1

dz
= D(z)


B

4
1

2
I

(1)
0,0,2

I
(1)
2,2,0

− 2C2
1


 − K2

1g(z)B
3
1

4
I

(1)
0,4,0

I
(1)
2,2,0

−αg(z)
2

K2
2B

3
1B2

J0,0
2,2,0,0

I
(1)
2,2,0

(92)

dκ1

dz
= 0 (93)

dt1
dz

= −D(z)κ1 (94)

dθ1
dz

= D(z)


κ

2
1

2
−
I

(1)
0,0,2

I
(1)
0,2,0

B2
1


 +

5g(z)K2
1B1

4
I

(1)
0,4,0

I
(1)
0,2,0

+
3
2
αg(z)K2

2B1B2

J0,0
2,2,0,0

I
(1)
0,2,0

(95)

dB2

dz
= −2D(z)B2C2 (96)

dC2

dz
= D(z)


B

4
2

2
I

(2)
0,0,2

I
(2)
2,2,0

− 2C2
2


 − K2

2g(z)B
3
2

4
I

(2)
0,4,0

I
(2)
2,2,0

−αg(z)
2

K2
1B

3
2B1

J0,0
2,2,0,0

I
(2)
2,2,0

(97)

dκ2

dz
= 0 (98)

dt2
dz

= −D(z)κ2 (99)
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dθ2
dz

= D(z)


κ

2
2

2
−
I

(2)
0,0,2

I
(2)
0,2,0

B2
2


 +

5g(z)K2
2B2

4
I

(2)
0,4,0

I
(2)
0,2,0

+
3
2
αg(z)K2

1B1B2

J0,0
2,2,0,0

I
(2)
0,2,0

(100)

In the following two subsections, the explicit parameter dynamics of
Gaussian and SG solitons will be obtained.

5.2.1. Gaussian Pulses

For a Gaussian pulse, f(τ) = e−τ2/2 so that the conserved quantities
are

E =
∫ ∞

−∞

(
|u|2 + |v|2

)
dt =

(
A2

1

B1
+
A2

2

B2

) √
π

2

=
(
K2

1 +K2
2

) √
π

2
(101)

M =
i

2
D(z)

∫ ∞

−∞
(u∗ut − uu∗t + v∗vt − vv∗t )dt

= −D(z)

(
κ1
A2

1

B1
+ κ2

A2
2

B2

) √
π

2

= −D(z)
(
κ1K

2
1 + κ2K

2
2

) √
π

2
(102)

while the Hamiltonian is given by

H =
1
2

∫ ∞

−∞

[
D(z)

(
|ut|2 + |vt|2

)
− 2β

(
|u|2 − |v|2

)
− g(z)

(
|u|4 + |v|4

)
−iδ (u∗ut−uu∗t +v∗vt−vv∗t )−2α|u|2|v|2−(1−α)

(
u2v∗2+v2u∗2

)]
dt

=
D(z)K2

1

2

(
B2

1 +
C2

1

B2
1

+ κ2
1

) √
π

2
− g(z)B1K

4
1

√
π

4

+
D(z)K2

2

2

(
B2

2 +
C2

2

B2
2

+ κ2
2

) √
π

2
− g(z)B2K

4
2

√
π

4

−β
√
π

{
A2

1

B1
− A2

2

B2

}
− δ

√
π

{
κ1
A2

1

B1
+ κ2

A2
2

B2

}

−αA2
1A

2
2

√
π

B2
1 +B2

2

e
− B2

1B2
2

B2
1
+B2

2

(t1−t2)2
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+(1 − α)A1A2

∫ ∞

−∞
exp

[
−2

{
B2

1 (t− t1)2 +B2
2 (t− t2)2

}]
cos

[
C1 (t−t1)2−C2 (t−t2)2+κ2(t−t2)−κ1(t−t1)+(θ1 − θ2)

]
dt

(103)

while for the reduced DM-VNLSE the Hamiltonian is

H =
1
2

∫ ∞

−∞

[
D(z)

(
|ut|2 + |vt|2

)
− g(z)

(
|u|4 + |v|4

)
−2α|u|2|v|2 − (1 − α)

(
u2v∗2 + v2u∗2

)]
dt

=
D(z)

2

√
π

2

{
K2

1

(
B2

1 +
C2

1

B2
1

+ κ2
1

)
+K2

2

(
B2

2 +
C2

2

B2
2

+ κ2
2

)}

−g(z)
√
π

4

(
B1K

4
1 +B2K

4
2

)
− αA2

1A
2
2

√
π

B2
1 +B2

2

e
− B2

1B2
2

B2
1
+B2

2

(t1−t2)2

+(1 − α)A1A2

∫ ∞

−∞
exp

[
−2

{
B2

1 (t− t1)2 +B2
2 (t− t2)2

}]
cos

[
C1 (t−t1)2−C2 (t−t2)2+κ2(t−t2)−κ1(t−t1)+(θ1−θ2)

]
dt

(104)

The parameter evolution equations (91)-(100) respectively reduce to

dB1

dz
= −2D(z)B1C1 (105)

dC1

dz
= 2D(z)

(
B4

1 − C2
1

)
−

√
2

2
g(z)K2

1B
3
1

−2αg(z)K2
2B

3
1B2

√
2

B2
1 +B2

2

e
− B2

1B2
2

B2
1
+B2

2

(t1−t2)2

(106)

dκ1

dz
= 0 (107)

dt1
dz

= −D(z)κ1 (108)

dθ1
dz

=
D(z)

2

(
κ2

1 −B2
1

)
+

5
4
√

2
g(z)K2

1B1

+
3
2
αg(z)K2

2B1B2

√
2

B2
1 +B2

2

e
− B2

1B2
2

B2
1
+B2

2

(t1−t2)2

(109)

dB2

dz
= −2D(z)B2C2 (110)
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dC2

dz
= 2D(z)

(
B4

2 − C2
2

)
−

√
2

2
g(z)K2

2B
3
2

−2αg(z)K2
1B

3
2B1

√
2

B2
1 +B2

2

e
− B2

1B2
2

B2
1
+B2

2

(t1−t2)2

(111)

dκ2

dz
= 0 (112)

dt2
dz

= −D(z)κ2 (113)

dθ2
dz

=
D(z)

2

(
κ2

2 −B2
2

)
+

5
4
√

2
g(z)K2

2B2

+
3
2
αg(z)K2

1B1B2

√
2

B2
1 +B2

2

e
− B2

1B2
2

B2
1
+B2

2

(t1−t2)2

(114)

These equations are useful in studying the various physical aspects of
the solitons in birefringent optical fibers namely the timing, amplitude
or the frequency jitter, the evolution of the coherent energy [14] and
much more.

5.2.2. Super-Gaussian Pulses

For SG pulse, f(τ) = e−
1
2
τ2p

as in the case of a polarization preserving
fiber. The conserved quantities for SG pulses are

E =
∫ ∞

−∞

(
|u|2 + |v|2

)
dt

= D(z)

(
A2

1

B1
+
A2

2

B2

) √
π

2
=
D(z)

p2
1
2p

(
K2

1 +K2
2

)
Γ

(
1
2p

)
(115)

M =
i

2
D(z)

∫ ∞

−∞
(u∗ut − uu∗t + v∗vt − vv∗t )dt

= −D(z)

(
κ1
A2

1

B1
+ κ2

A2
2

B2

) √
π

2
= −D(z)

p2
1
2p

(
κ1K

2
1 + κ2K

2
2

)
Γ

(
1
2p

)

(116)

while the Hamiltonian here is

H =
1
2

∫ ∞

−∞

[
D(z)

(
|ut|2 + |vt|2

)
− 2β

(
|u|2 − |v|2

)
− g(z)

(
|u|4 + |v|4

)
−iδ (u∗ut−uu∗t +v∗vt−vv∗t )−2α|u|2|v|2−(1−α)

(
u2v∗2+v2u∗2

)]
dt
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= D(z)K2
1


B2

1

p

2
2p−1
2p

Γ
(
4p−1

2p

)
+
C2

1

B2
1

2
2p−3
2p

p
Γ

(
3
2p

)
+κ2

1

1

p2
2p+1

p

Γ
(

1
2p

)


+D(z)K2
2


B2

2

p

2
2p−1
2p

Γ
(
4p−1

2p

)
+
C2

2

B2
2

2
2p−3
2p

p
Γ

(
3
2p

)
+κ2

2

1

p2
2p+1

p

Γ
(

1
2p

)


−g(z)
(
B1K

4
1 +B2K

4
2

) 1

p2
2p+1

p

Γ
(

1
p

)

−β
p

{
A2

1

B1
− A2

2

B2

}
Γ

(
1
p

)
− δ

p

{
κ1
A2

1

B1
− κ2

A2
2

B2

}
Γ

(
1
p

)

−αA2
1A

2
2

∫ ∞

−∞
exp

[
−2

{
B2p

1 (t− t1)2p +B2p
2 (t− t2)2p

}]
dt

−(1 − α)A1A2

∫ ∞

−∞
exp

[
−2

{
B2p

1 (t− t1)2p +B2p
2 (t− t2)2p

}]
cos

[
C1 (t−t1)2−C2 (t−t2)2+κ2(t−t2)−κ1(t−t1)+(θ1−θ2)

]
dt

(117)

and for the reduced DM-VNLSE the Hamiltonian simplifies to

H =
1
2

∫ ∞

−∞

[
D(z)

(
|ut|2 + |vt|2

)
− g(z)

(
|u|4 + |v|4

)
−2α|u|2|v|2 − (1 − α)

(
u2v∗2 + v2u∗2

)]
dt

=D(z)K2
1


B2

1

p

2
2p−1
2p

Γ
(
4p− 1

2p

)
+
C2

1

B2
1

2
2p−3
2p

p
Γ

(
3
2p

)
+κ2

1

1

p2
2p+1

p

Γ
(

1
2p

)


+D(z)K2
2


B2

2

p

2
2p−1
2p

Γ
(
4p− 1

2p

)
+
C2

2

B2
2

2
2p−3
2p

p
Γ

(
3
2p

)
+κ2

2

1

p2
2p+1

p

Γ
(

1
2p

)


−g(z)
(
B1K

4
1 +B2K

4
2

) 1

p2
2p+1

p

Γ
(

1
p

)

−αA2
1A

2
2

∫ ∞

−∞
exp

[
−2

{
B2p

1 (t− t1)2p +B2p
2 (t− t2)2p

}]
dt

−(1 − α)A1A2

∫ ∞

−∞
exp

[
−2

{
B2p

1 (t− t1)2p +B2p
2 (t− t2)2p

}]
cos

[
C1 (t−t1)2−C2 (t−t2)2+κ2(t−t2)−κ1(t−t1)+(θ1−θ2)

]
dt

(118)
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Also, the parameter dynamics given by (91)–(100) respectively reduce
to

dB1

dz
= −2D(z)B1C1 (119)

dC1

dz
= D(z)


 p2

2
p−2

p

Γ
(

4p−1
2p

)
Γ

(
3
2p

) B4
1 − 2C2

1




−g(z)K2
1B

3
1

1

2
4p+1
2p

Γ
(

1
2p

)
Γ

(
3
2p

) − p

2
2p−3

p

αg(z)
K2

2B
3
1B2

Γ
(

3
2p

)
∫ ∞

−∞
exp

[
−2

{
B2p

1 (t− t1)2p +B2p
2 (t− t2)2p

}]
dt (120)

dκ1

dz
= 0 (121)

dt1
dz

= −D(z)κ1 (122)

dθ1
dz

= D(z)


κ

2
1

2
− p22

1
p

Γ
(

4p−1
2p

)
Γ

(
1
2p

) B2
1




+
5

2
4p+1
2p

g(z)K1B1 +
3p

2
2p−1
2p

αg(z)
K2

2B1B2

Γ
(

1
2p

)
∫ ∞

−∞
exp

[
−2

{
B2p

1 (t− t1)2p +B2p
2 (t− t2)2p

}]
dt (123)

dB2

dz
= −2D(z)B2C2 (124)

dC2

dz
= D(z)


 p2

2
p−2

p

Γ
(

4p−1
2p

)
Γ

(
3
2p

) B4
2 − 2C2

2




−g(z)K2
2B

3
2

1

2
4p+1
2p

Γ
(

1
2p

)
Γ

(
3
2p

) − p

2
2p−3

p

αg(z)
K2

1B
3
2B1

Γ
(

3
2p

)
∫ ∞

−∞
exp

[
−2

{
B2p

1 (t− t1)2p +B2p
2 (t− t2)2p

}]
dt (125)

dκ2

dz
= 0 (126)

dt2
dz

= −D(z)κ2 (127)
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dθ2
dz

= D(z)


κ

2
2

2
− p22

1
p

Γ
(

4p−1
2p

)
Γ

(
1
2p

) B2
2




+
5

2
4p+1
2p

g(z)K2B2 +
3p

2
2p−1
2p

αg(z)
K2

1B1B2

Γ
(

1
2p

)
∫ ∞

−∞
exp

[
−2

{
B2p

1 (t− t1)2p +B2p
2 (t− t2)2p

}]
dt (128)

6. MULTIPLE CHANNELS

The successful design of low-loss dispersion-shifted and dispersion-
flattened optical fibers with low dispersion over relatively large
wavelength range can be used to reduce or completely eliminate the
group velocity mismatch for the multi-channel WDM systems resulting
in the desirable simultaneous arrival of time aligned bit pulses, thus
creating a new class of bit-parallel wavelength links that is used in
high speed single fiber computer buses. In spite of the intrinsically
small value of the nonlinearity-induced change in the refractive index
of fused silica, nonlinear effects in optical fibers cannot be ignored
even at relatively low powers. In particular, in WDM systems with
simultaneous transmission of pulses of different wavelengths, the cross-
phase modulation (XPM) effects needs to be taken into account.
Although the XPM will not cause the energy to be exchanged among
the different wavelengths, it will lead to the interaction of pulses and
thus the pulse positions and shapes gets altered significantly.

The multi-channel WDM transmission of co-propagating wave
envelopes in a nonlinear optical fiber, including the XPM effect, can be
modeled [7, 18] by the following N -coupled NLSE in the dimensionless
form

iq(l)z +
D(z)

2
q
(l)
tt + g(z)




∣∣∣q(l)∣∣∣2 +
N∑

m�=l

αlm

∣∣∣q(m)
∣∣∣2


 q(l) = 0 (129)

where 1 ≤ l ≤ N . Equation (129) is the model for bit-parallel WDM
soliton transmission. Here αlm are known as the XPM coefficients.
It is well known [7, 17] that the straightforward use of this system
for description of WDM transmission could potentially give incorrect
results. However, this model can be applied to describe WDM
transmission for dispersion flattened fibers, the dispersion of which
weakly depends on the operating wavelength.

Another important medium in which the model given by (129)
arises is the photorefractive medium [12]. In the case of incoherent
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beam propagation in a biased photorefractive crystal, which is a
noninstaneous nonlinear media, the diffraction behaviour of that
incoherent beam is to be treated somewhat differently. The diffraction
behaviour of an incoherent beam can be effectively described by the
sum of the intensity contributions from all its coherent components.
Then the governing equation of N self-trapped mutually incoherent
wave packets in such a media is given by (129).

Equation (129) is, in general, not integrable. However, it can
be solved analytically for certain very specific cases, namely when
D(z) = g(z) = 1 alongwith αlm = 1, ∀m,n with N = 2. [15, 16].

6.1. Integrals of Motion

Equation (129) does not have infinitely many conservation laws either.
In fact, it has at least two integrals of motion and they are the energy
(E) and the linear momentum (M) that are respectively given by

E =
N∑

l=1

∫ ∞

−∞

∣∣∣q(l)∣∣∣2 dt (130)

and

M =
i

2
D(z)

N∑
l=1

∫ ∞

−∞

(
q(l)∗q(l)t − q(l)q(l)∗t

)
dt (131)

The Hamiltonian (H) given by

H =
1
2

N∑
l=1

∫ ∞

−∞


D(z)

∣∣∣q(l)t

∣∣∣2 − g(z) N∑
m�=l

αlm

∣∣∣q(l)∣∣∣2 ∣∣∣q(m)
∣∣∣2


 dt (132)

is, however, not a conserved quantity unless, in addition to D(z) and
g(z) being constants, the matrix of XPM coefficients Λ = (αij)N×N is
a symmetric matrix namely αij = αji for 1 ≤ i, j ≤ N . Thus, for a
birefringent fiber, the matrix should be of the form

Λ =
[

0 α12

α12 0

]
(133)

while for a triple channeled fiber,

Λ =


 0 α12 α13

α12 0 α23

α13 α23 0


 (134)
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and so on. Now, the solution of (129) is assumed to be given by a
chirped pulse, in the lth core, of the form [6, 10, 11]

q(l)(z, t) = Al(z)f [Bl(z) {t− tl(z)}]
exp

[
iCl(z) {t− tl(z)}2 − iκl(z) {t− tl(z)} + iθl(z)

]
(135)

where f represents the shape of the pulse. It could be a Gaussian type
or a SG type pulse. Also, here the parameters Al(z), Bl(z), Cl(z),
κl(z), tl(z) and θl(z) respectively represent the soliton amplitude, the
inverse width of the pulse, chirp, frequency, the center of the pulse
and the phase of the pulse in the lth channel. Using the variational
principle, a set of evolution equations for the pulse parameters will be
derived. For convenience, the following integral is defined

Jl,m =
∏

j=l,m

∫ ∞

−∞
f2 [Bj(z) (t− tj(z))] dt (136)

where 1 ≤ l,m ≤ N while equation (66) is now valid for 1 ≤ l ≤ N .
For such a pulse form given by (129), the integrals of motion are

E =
N∑

l=1

∫ ∞

−∞

∣∣∣q(l)∣∣∣2 dt =
N∑

l=1

A2
l

Bl
I

(l)
0,2,0 (137)

M =
i

2
D(z)

N∑
l=1

∫ ∞

−∞

(
q(l)q

(l)∗
t − q(l)∗q(l)t

)
dt =

N∑
l=1

κl
A2

l

Bl
I

(l)
0,2,0 (138)

while the Hamiltonian is

H =
1
2

N∑
l=1

∫ ∞

−∞


D(z)

∣∣∣q(l)t

∣∣∣2 − g(z) N∑
m�=l

αlm

∣∣∣q(l)∣∣∣2 ∣∣∣q(m)
∣∣∣2


 dt

=
D(z)

2

N∑
l=1

A2
l

B3
l

{
B4

l I
(l)
0,0,2 + 4C2

l I
(l)
2,2,0 + κ2

lB
2
l I

(l)
0,2,0

}

−g(z)
2

N∑
l=1

N∑
m�=l

αlmA
2
lA

2
mJl,m (139)

6.2. Variational Formulation

For solitons in multiple channels, governed by (129), the Lagrangian is
given by

L =
1
2

N∑
l=1

∫ ∞

−∞

[
i
(
q(l)∗q(l)z − q(l)q(l)∗z

)
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−D(z)
∣∣∣q(l)t

∣∣∣2+g(z)
∣∣∣q(l)∣∣∣4+2g(z)

N∑
m�=l

αlm

∣∣∣q(l)∣∣∣2 ∣∣∣q(m)
∣∣∣2


dt (140)

Now, using (71) and (129), the Lagrangian reduces to

L =
N∑

l=1

[
−D(z)

A2
l

2B3
l

{
B4

l I
(l)
0,0,2 + 4C2

l I
(l)
2,2,0+κ2

lB
2
l I

(l)
0,2,0

}
− g(z)

2
A4

l

Bl
I

(l)
0,4,0

−A
2
l

B3
l

dCl

dz
I

(l)
2,2,0+

A2
l

Bl

(
tl
dκl

dz
− dθl
dz

)
I

(l)
0,2,0+g(z)A2

l

N∑
m�=l

αlmA
2
mJl,m




(141)

Substituting Al, Bl, Cl, κl, tl and θl for r in (18) yields the following
set of equations

dAl

dz
= −D(z)AlCl (142)

dBl

dz
= −2D(z)BlCl (143)

dCl

dz
=
D(z)

2


B4

l

I
(l)
0,0,2

I
(l)
2,2,0

− 4C2
l


 − g(z)

4
A2

lB
2
l

I
(l)
0,4,0

I
(l)
2,2,0

− g(z)

2I(l)
2,2,0

B3
l

N∑
m�=l

αlmA
2
mJl,m (144)

dκl

dz
= 0 (145)

dtl
dz

= −D(z)κl (146)

dθl
dz

=
D(z)

2


κ2

l − 2B2
l

I
(l)
0,0,2

I
(l)
0,2,0


 +

5
4
g(z)A2

l

I
(l)
0,4,0

I
(l)
0,2,0

+
3
2
g(z)

I
(l)
0,2,0

Bl

N∑
m�=l

αlmA
2
mJl,m (147)

Now, from (142) and (143) it can be concluded that Al = Kl

√
Bl

where the constant Kl is proportional to the square root of the energy
of the pulse in the lth channel as seen from (137). So, the number of
parameters reduce by N . Thus, (142)–(147), respectively, modify to

dBl

dz
= −2D(z)BlCl (148)
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dCl

dz
=
D(z)

2


B4

l

I
(l)
0,0,2

I
(l)
2,2,0

− 4C2
l


 − g(z)

4
K2

l B
3
l

I
(l)
0,4,0

I
(l)
2,2,0

−g(z)
2

B3
l

I
(l)
2,2,0

N∑
m�=l

αlmK
2
mBmJl,m (149)

dκl

dz
= 0 (150)

dtl
dz

= −D(z)κl (151)

dθl
dz

=
D(z)

2


κ2

l − 2B2
l

I
(l)
0,0,2

I
(l)
0,2,0


 +

5
4
g(z)K2

l Bl

I
(l)
0,4,0

I
(l)
0,2,0

+
3
2
g(z)

Bl

I
(l)
0,2,0

N∑
m�=l

αlmK
2
mBmJl,m (152)

6.2.1. Gaussian Pulses

For a pulse of Gaussian type, f(τ) = e−
1
2
τ2

. Thus, the conserved
quantities respectively reduce to

E =
N∑

l=1

∫ ∞

−∞

∣∣∣q(l)∣∣∣2 dt =
√
π

2

N∑
l=1

A2
l

Bl
=

√
π

2

N∑
l=1

K2
l (153)

M =
i

2
D(z)

N∑
l=1

∫ ∞

−∞

(
q(l)q

(l)∗
t − q(l)∗q(l)t

)
dt

= D(z)
√
π

2

N∑
l=1

κl
A2

l

Bl
= D(z)

√
π

2

N∑
l=1

κlK
2
l (154)

while the Hamiltonian is

H =
1
2

N∑
l=1

∫ ∞

−∞


D(z)

∣∣∣q(l)t

∣∣∣2 − g(z) N∑
m�=l

αlm

∣∣∣q(l)∣∣∣2 ∣∣∣q(m)
∣∣∣2


 dt

=
D(z)

2

√
π

2

N∑
l=1

K2
l

(
B2

l +
C2

l

B2
l

+ κ2
l

)

−g(z)
2

N∑
l=1

N∑
m�=l

αlmK
2
l K

2
mBlBm

√
2π

B2
l +B2

m
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· exp

{
− B2

l B
2
m

2
(
B2

l +B2
m

) (tl − tm)2
}

(155)

Also, the parameter dynamics given by (148)–(152) respectively are

dBl

dz
= −2D(z)BlCl (156)

dCl

dz
= 2D(z)

(
B4

l − C2
l

)
−

√
2

2
g(z)K2

l B
3
l

−
√

2g(z)B3
l

N∑
m�=l

αlmK
2
mBm√

B2
l +B2

m

· exp

{
− B2

l B
2
m

2
(
B2

l +B2
m

) (tl − tm)2
}

(157)

dκl

dz
= 0 (158)

dtl
dz

= −D(z)κl (159)

dθl
dz

=
D(z)

2

(
κ2

l −B2
l

)
+

5
√

2
8
g(z)K2

l Bl

+
3
√

2
2
g(z)Bl

N∑
m�=l

αlmK
2
mBm√

B2
l +B2

m

· exp

{
− B2

l B
2
m

2
(
B2

l +B2
m

) (tl − tm)2
}

(160)

6.2.2. Super-Gaussian Pulses

For a SG pulse, as before, f(τ) = e−τ2p/2 for p ≥ 1. The integrals of
motion, in this case, respectively are

E =
N∑

l=1

∫ ∞

−∞

∣∣∣q(l)∣∣∣2 dt =
1

p2
1
2p

Γ
(

1
2p

) N∑
l=1

A2
l

Bl

=
1

p2
1
2p

Γ
(

1
2p

) N∑
l=1

K2
l (161)

M =
i

2
D(z)

N∑
l=1

∫ ∞

−∞

(
q(l)q

(l)∗
t − q(l)∗q(l)t

)
dt
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=
D(z)

p2
1
2p

Γ
(

1
2p

) N∑
l=1

κl
A2

l

Bl
=
D(z)

p2
1
2p

Γ
(

1
2p

) N∑
l=1

κlK
2
l (162)

while the Hamiltonian is

H =
1
2

N∑
l=1

∫ ∞

−∞


D(z)

∣∣∣q(l)t

∣∣∣2 − g(z) N∑
m�=l

αlm

∣∣∣q(l)∣∣∣2 ∣∣∣q(m)
∣∣∣2


 dt

=
N∑

l=1

[
D(z)

Kl

4pB3
l

{
pB5

l Γ
(

2p− 1
2p

)
+ 8BlC

2
l Γ

(
3
2p

)

+2κ2
lA

2
lB

3
l Γ

(
1
2p

)}
− g(z)

2
KlBl

N∑
m�=l

αlmKmBm

∫ ∞

−∞
exp

[
−1

2

{
B2p

l (t− tl)2p +B2p
m (t− tm)2p

}]
dt

]
(163)

Also, the evolution equations for the pulse parameters (148)–(152)
respectively reduce to
dBl

dz
= −2D(z)BlCl (164)

dCl

dz
=
D(z)

8


B4

l p(2p− 1)
Γ

(
2p−1
2p

)
Γ

(
3
2p

) − 8C2
l


 − g(z)

2
4p+1
2p

K2
l B

3
l

Γ
(

1
2p

)
Γ

(
3
2p

)

− pg(z)

Γ
(

3
2p

)B3
l

N∑
m�=l

αlmK
2
mBm

∫ ∞

−∞
exp

[
−1

2

{
B2p

l (t− tl)2p +B2p
m (t− tm)2p

}]
dt (165)

dκl

dz
= 0 (166)

dtl
dz

= −D(z)κl (167)

dθl
dz

=
D(z)

2


κ2

l −B2
l p(2p− 1)

Γ
(

2p−1
2p

)
Γ

(
1
2p

)

 +

5

2
4p+1
2p

g(z)K2
l Bl

+
3
2

p

Γ
(

1
2p

)g(z)Bl

N∑
m�=l

αlmK
2
mBm

∫ ∞

−∞
exp

[
−1

2

{
B2p

l (t− tl)2p +B2p
m (t− tm)2p

}]
dt (168)
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7. PERTURBATION TERMS

In this section, the DMNLSE in presence of the perturbation terms
will be considered. In optical solitons perturbation terms do arise
and cannot be avoided. The typical perturbation terms that are
studied in optics are the higher order dispersion terms, nonlinear
damping, Raman scattering, nonlinear dispersion, saturable amplifiers,
self-steepening and many more. In this section, the adiabatic dynamics
of the parameters of the perturbed pulses will be obtained. The study
will be split into three sections namely polarization preserving fibers,
birefringent fibers and multiple channels.

7.1. Polarization Preserving Fibers

The perturbed DMNLSE is given by

iqz +
D(z)

2
qtt + g(z)|q|2q = iεR[q, q∗] (169)

where the perturbation parameter ε, called the relative width of
the spectrum, arises due to quasi-monochromaticity [8, 16] so that
0 < ε
 1. Moreover, in (165), R represents the perturbation terms of
the DMNLSE. In presence of the perturbation terms, the EL equation
modify to [10, 11]

∂L

∂r
− d

dz

(
∂L

∂rz

)
= iε

∫ ∞

−∞

(
R
∂q∗

∂r
−R∗∂q

∂r

)
dt (170)

where r represents the six soliton parameters. Once again, substituting
A, B, C, κ, t̄ and θ for r in (170) yields the following adiabatic evolution
equations.

dA

dz
= −ACD(z) − ε

2

∫ ∞

−∞
�[Re−iφ]

(
τ2

I2,2,0
− 3
I0,2,0

)
f(τ)dτ (171)

dB

dz
= −2BCD(z) − εB

A

∫ ∞

−∞
�[Re−iφ]

(
τ2

I2,2,0
− 1
I0,2,0

)
f(τ)dτ (172)

dC

dz
=

(
B4

2
I0,0,2

I2,2,0
− 2C2

)
D(z) − g(z)A2B2

4
I0,4,0

I2,2,0

− εB2

2AI2,2,0

∫ ∞

−∞
�[Re−iφ]

(
f(τ) + 2τ

df

dτ

)
dτ (173)

dκ

dz
=

2ε
ABI0,2,0

∫ ∞

−∞

{
B2�[Re−iφ]

df

dτ
− 2C�[Re−iφ]τf(τ)

}
dτ (174)
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dt̄

dz
= −κD(z) +

2ε
ABI0,2,0

∫ ∞

−∞
�[Re−iφ]τf(τ)dτ (175)

dθ

dz
=

(
κ2

2
− I0,0,2

I0,2,0
B2

)
D(z) +

5g(z)A2

4
I0,4,0

I0,2,0

+
ε

2ABI0,2,0

∫ ∞

−∞

{
B�[Re−iφ]

(
3f(τ) + 2τ

df

dτ

)

+ 4κ�[Re−iφ]τf(τ)
}
dτ (176)

where τ is given by (24) while

φ = C(z) {t− t̄(z)}2 − κ(z) {t− t̄(z)} + θ(z) (177)

Also, � and � represent the real and imaginary parts respectively.
Equations (30)–(35) are, now, special cases of (171)–(176) respectively
for ε = 0.

7.1.1. Gaussian Pulses

Now, substituting the integrals Ia,b,c for the indicated values of a, b
and c in (171)–(176) and the Gaussian pulse the following equations
are obtained

dA

dz
= −ACD(z) − ε√

2π

∫ ∞

−∞
�[Re−iφ]

(
4τ2 − 3

)
e−τ2

dτ (178)

dB

dz
= −2BCD(z) − ε

√
2
π

B

A

∫ ∞

−∞
�[Re−iφ]

(
4τ2 − 1

)
e−τ2

dτ (179)

dC

dz
= 2D(z)

(
B4 − C2

)

−g(z)A
2B2

√
2

− 2ε
√

2
π

B2

A

∫ ∞

−∞
�[Re−iφ]

(
1 − 4τ2

)
e−τ2

dτ (180)

dκ

dz
= −ε

√
2
π

4
AB

∫ ∞

−∞

{
τB2�[Re−iφ] + τC�[Re−iφ]

}
e−τ2

dτ (181)

dt̄

dz
= −κD(z) + ε

√
2π
AB

∫ ∞

−∞
�[Re−iφ]τe−τ2

dτ (182)

dθ

dz
=
D(z)

2

(
κ2 −B2

)
+

5
√

2
8
g(z)A2

+
ε√
2π

1
AB

∫ ∞

−∞

{
B�[Re−iφ]

(
3−4τ2

)
+4τκ�[Re−iφ]τ

}
e−τ2

dτ

(183)
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These equations now represent the evolution equations for the
parameters of a Gaussian pulse propagating through an optical fiber
in presence of the perturbation terms.

7.1.2. Super-Gaussian Pulses

For the perturbation terms of a SG pulse substituting the integrals
I

(j)
a,b,c for j = 1, 2 and the form of f(τ) in (171)–(176) leads to

dA

dz
=−ACD(z)

−ε p22
p+2

p

Γ
(

1
2p

)
Γ

(
3
2p

)∫ ∞

−∞
�[Re−iφ]

{
τ2

p2
1
p

Γ
(

1
2p

)
− 3

p2
3
2p

Γ
(

3
2p

)}
e−τ2p

dτ

(184)
dB

dz
=−2BCD(z)

−εB
A

p22
2
p

Γ
(

1
2p

)
Γ
(

3
2p

)∫ ∞

−∞
�[Re−iφ]

{
τ2

p2
1
2p

Γ
(

1
2p

)
− 1

p2
3
2p

Γ
(

3
2p

)}
e−τ2p

dτ

(185)

dC

dz
=


B4 p2

2
p−2

p

Γ
(

4p−1
2p

)
Γ

(
3
2p

) − 2C2


D(z) − g(z)A2B2 1

2
4p+1
2p

Γ
(

1
2p

)
Γ

(
3
2p

)

−εB
2

A

p2
2p+3
2p

Γ
(

3
2p

) ∫ ∞

−∞
�[Re−iφ]

(
1 − 4pτ2p

)
e−τ2p

dτ (186)

dκ

dz
=−ε 1

AB

p2
2p−1
2p

Γ
(

1
2p

)∫ ∞

−∞

{
2pτ2p−1B2�[Re−iφ] + 2τC�[Re−iφ]

}
e−τ2p

dτ

(187)

dt̄

dz
=−κD(z) + ε

1
AB

p2
2p+1
2p

Γ
(

1
2p

) ∫ ∞

−∞
�[Re−iφ]τe−τ2p

dτ (188)

dθ

dz
=


κ

2

2
− p22

1
p

Γ
(

4p−1
2p

)
Γ

(
1
2p

) B2


D(z) + 5g(z)A2 1

2
4p+1
2p
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+ε
1
AB

p2
2p+1
2p

Γ
(

1
2p

) ∫ ∞

−∞

{
B�[Re−iφ]

(
3−4pτ2p

)
+4κ�[Re−iφ]τ

}
e−τ2p

dτ

(189)

7.2. Birefringent Fibers

The perturbed DM-VNLSE is given by

iuz +
D(z)

2
utt + g(z)

(
|u|2 + α|v|2

)
u = iεR1[u, u∗; v, v∗] (190)

ivz +
D(z)

2
vtt + g(z)

(
|v|2 + α|u|2

)
v = iεR2[v, v∗;u, u∗] (191)

Here, R1 and R2 represent the perturbation terms and ε is the
perturbation parameter as before. In presence of the perturbation
terms, the EL equations modify to

∂L

∂r
− d

dz

(
∂L

∂rz

)
= iε

∫ ∞

−∞

(
R1
∂u∗

∂r
−R∗

1

∂u

∂r

)
dt (192)

and

∂L

∂r
− d

dz

(
∂L

∂rz

)
= iε

∫ ∞

−∞

(
R2
∂v∗

∂r
−R∗

2

∂v

∂r

)
dt (193)

where r represents twelve soliton parameters. Once again, substituting
Aj , Bj , Cj , κj , tj and θj where j = 1, 2 for r in (192) and (193), the
following adiabatic evolution equations are obtained

dA1

dz
=−D(z)A1C1

− ε
2

∫ ∞

−∞
�[R1e

−iφ1 ]


 τ2

1

I
(1)
2,2,0

− 3

I
(1)
0,2,0


 f(τ1)dτ1 (194)

dB1

dz
=−2D(z)B1C1 − ε

B1

A1

∫ ∞

−∞
�[R1e

−iφ1 ]


 τ2

1

I
(1)
2,2,0

− 1

I
(1)
0,2,0


 f(τ1)dτ1

(195)

dC1

dz
=D(z)


B

4
1

2
I

(1)
0,0,2

I
(1)
2,2,0

− 2C2
1


− g(z)A

2
1B

2
1

4
I

(1)
0,4,0

I
(1)
2,2,0

−αg(z)
2

A2
2B

3
1

J0,0
2,2,0,0

I
(1)
2,2,0

− εB2
1

2A1I
(1)
2,2,0

∫ ∞

−∞
�[R1e

−iφ1 ]
{
f(τ1) + 2τ1

df

dτ1

}
dτ1 (196)
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dκ1

dz
=

2ε

A1B1I
(1)
0,2,0

∫ ∞

−∞

{
B2

1�[R1e
−iφ1 ]

df

dτ1
−2C1�[R1e

−iφ1 ]τ1f(τ1)
}
dτ1

(197)
dt1
dz

=−κ1D(z) +
2ε

A1B1I
(1)
0,2,0

∫ ∞

−∞
�[R1e

−iφ1 ]τ1f(τ1)dτ1 (198)

dθ1
dz

=D(z)


κ

2
1

2
−
I

(1)
0,0,2

I
(1)
0,2,0

B2
1


+

5g(z)A2
1

4
I

(1)
0,4,0

I
(1)
0,2,0

+
3
2
αg(z)A2

2B1

J0,0
2,2,0,0

I
(1)
0,2,0

+
ε

2A1B1I
(1)
0,2,0

∫ ∞

−∞

{
B1�[R1e

−iφ1 ]
(

3f(τ1) + 2τ1
df

dτ1

)

+4κ1�[R1e
−iφ1 ]τ1f(τ1)

}
dτ1 (199)

dA2

dz
=−D(z)A2C2 −

ε

2

∫ ∞

−∞
�[R2e

−iφ2 ]


 τ2

2

I
(2)
2,2,0

− 3

I
(2)
0,2,0


 f(τ2)dτ2

(200)

dB2

dz
=−2D(z)B2C2−ε

B2

A2

∫ ∞

−∞
�[R2e

−iφ2 ]


 τ2

2

I
(2)
2,2,0

− 1

I
(2)
0,2,0


f(τ2)dτ2

(201)

dC2

dz
=D(z)


B

4
2

2
I

(2)
0,0,2

I
(2)
2,2,0

− 2C2
2


 − g(z)A2

2B
2
2

4
I

(2)
0,4,0

I
(2)
2,2,0

− αg

2
A2

1B
3
2

J0,0
2,2,0,0

I
(2)
2,2,0

− εB2
2

2A2I
(2)
2,2,0

∫ ∞

−∞
�[R2e

−iφ2 ]
{
f(τ2)+ 2τ2

df

dτ2

}
dτ2 (202)

dκ2

dz
=

2ε

A2B2I
(2)
0,2,0

∫ ∞

−∞

{
B2

2�[R2e
−iφ2 ]

df

dτ2
− 2C2�[R2e

−iφ2 ]τ2f(τ2)
}
dτ2

(203)
dt2
dz

=−κ2D(z) +
2ε

A2B2I
(2)
0,2,0

∫ ∞

−∞
�[R2e

−iφ2 ]τ2f(τ2)dτ2 (204)

dθ2
dz

=D(z)


κ

2
2

2
−
I

(2)
0,0,2

I
(2)
0,2,0

B2
2


 +

5g(z)A2
2

4
I

(2)
0,4,0

I
(2)
0,2,0

+
3
2
αg(z)A2

1B2

J0,0
2,2,0,0

I
(2)
0,2,0

+
ε

2A2B2I
(2)
0,2,0

∫ ∞

−∞

{
B2�[R2e

−iφ2 ]
(

3f(τ2) + 2τ2
df

dτ2

)
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+4κ2�[R2e
−iφ2 ]τ2f(τ2)

}
dτ2 (205)

where τl and φl are given by (73) and (74) respectively. These relations
will now be simplified to obtain the dynamics for the Gaussian and SG
solitons in the following subsections.

7.2.1. Gaussian Pulses

Here, again f(τj) = e−
1
2
τ2
j where j = 1, 2. Also using the integrals

I
(j)
a,b,c for j = 1, 2 in (194)-(205) the adiabatic parameter dynamics of

perturbed Gaussian pulses are

dA1

dz
=−D(z)A1C1 −

ε√
2π

∫ ∞

−∞
�[R1e

−iφ1 ]
(
4τ2

1 − 3
)
e−τ2

1 dτ1 (206)

dB1

dz
=−2D(z)B1C1 − ε

√
2
π

B1

A1

∫ ∞

−∞
�[R1e

−iφ1 ]
(
4τ2

1 − 1
)
e−τ2

1 dτ1

(207)
dC1

dz
= 2D(z)

(
B4

1 − C2
1

)
− 1√

2
g(z)A2

1B
2
1

−2αg(z)A2
2B

3
1

√
2

B2
1 +B2

2

e
− B2

1B2
2

B2
1
+B2

2

(t1−t2)2

−2ε
√

2
π

B2
1

A1

∫ ∞

−∞
�[R1e

−iφ1 ]
(
1 − 4τ2

1

)
e−τ2

1 dτ1 (208)

dκ1

dz
=− 2ε

A1B1

√
2
π

∫ ∞

−∞

{
B2

1�[R1e
−iφ1 ]2τ1+2C1�[R1e

−iφ1 ]τ1
}
e−τ2

1 dτ1

(209)
dt1
dz

=−D(z)κ1 +
2ε
A1B1

√
2
π

∫ ∞

−∞
�[R1e

−iφ1 ]τ1e−τ2
1 dτ1 (210)

dθ1
dz

=
D(z)

2

(
κ2

1 −B2
1

)
+

5
4
√

2
g(z)A2

1

+
3
2
αg(z)A2

2B1

√
2

B2
1 +B2

2

e
− B2

1B2
2

B2
1
+B2

2

(t1−t2)2

+
ε√
2π

1
A1B1

∫ ∞

−∞

{
B1�[R1e

−iφ1 ]
(
3 − 4τ2

1

)
+ 4κ1�[R1e

−iφ1 ]τ1
}
e−τ2

1 dτ1 (211)
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dA2

dz
=−D(z)A2C2 −

ε√
2π

∫ ∞

−∞
�[R2e

−iφ2 ]
(
4τ2

2 − 3
)
e−τ2

2 dτ2 (212)

dB2

dz
=−2D(z)B2C2 − ε

√
2
π

B2

A2

∫ ∞

−∞
�[R2e

−iφ2 ]
(
4τ2

2 −1
)
e−τ2

2 dτ2 (213)

dC2

dz
= 2D(z)

(
B4

2 − C2
2

)
− 1√

2
g(z)A2

2B
2
2

−2αg(z)A2
1B

3
2

√
2

B2
1 +B2

2

e
− B2

1B2
2

B2
1
+B2

2

(t1−t2)2

−2ε
√

2
π

B2
2

A2

∫ ∞

−∞
�[R2e

−iφ2 ]
(
1 − 4τ2

2

)
e−τ2

2 dτ2 (214)

dκ2

dz
=− 2ε

A2B2

√
2
π

∫ ∞

−∞

{
B2

2�[R2e
−iφ2 ]2τ2+2C2�[R2e

−iφ2 ]τ2
}
e−τ2

2 dτ2

(215)
dt2
dz

= −D(z)κ2 +
2ε
A2B2

√
2
π

∫ ∞

−∞
�[R2e

−iφ2 ]τ2e−τ2
2 dτ2 (216)

dθ2
dz

=
D(z)

2

(
κ2

2 −B2
2

)
+

5
4
√

2
g(z)A2

2

+
3
2
αg(z)A2

1B2

√
2

B2
1 +B2

2

e
− B2

1B2
2

B2
1
+B2

2

(t1−t2)2

+
ε√
2π

1
A2B2

∫ ∞

−∞

{
B2�[R2e

−iφ2 ]
(
3 − 4τ2

2

)
+ 4κ2�[R2e

−iφ2 ]τ2
}
e−τ2

2 dτ2 (217)

7.2.2. Super-Gaussian Pulses

For the SG pulses, the integrals I(j)
a,b,c are used in (194)–(205) and the

form of the SG soliton for f(τj) is considered, to finally obtain

dA1

dz
= −D(z)A1C1 − ε

p2
2p+1
2p

Γ
(

1
2p

)
Γ

(
3
2p

)
∫ ∞

−∞
�[R1e

−iφ1 ]
{
τ2
1 2

1
2p Γ

(
1
2p

)
− 3Γ

(
3
2p

)}
e−τ2p

1 dτ1 (218)

dB1

dz
= −2D(z)B1C1 − ε

B1

A1

p2
1
2p

Γ
(

1
2p

)
Γ

(
3
2p

)
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−∞
�[R1e

−iφ1 ]
{
τ2
1 2

1
p Γ

(
1
2p

)
− Γ

(
3
2p

)}
e−τ2p

1 dτ1 (219)

dC1

dz
= D(z)


B4

1

p2

2
p−2

p

Γ
(

4p−1
2p

)
Γ

(
3
2p

) − 2C2
1


 − g(z)A2

1B
2
1

1

2
4p+1
2p

Γ
(

1
2p

)
Γ

(
3
2p

)

− p

2
2p−3
2p

A3
2B

2
1

Γ
(

3
2p

)∫ ∞

−∞
exp

[
−2

{
B2p

1 (t−t1)2p+B2p
2 (t−t2)2p

}]
dt

−εB
2
1

A1

p2
2p+3
2p

Γ
(

3
2p

) ∫ ∞

−∞
�[R1e

−iφ1 ]
(
1 − 4pτ2p

1

)
e−τ2p

1 dτ1 (220)

dκ1

dz
= −ε 1

A1B1

p2
2p−1
2p

Γ
(

1
2p

) ∫ ∞

−∞

{
2pτ2p−1

1 B2
1�[R1e

−iφ1 ]

+2τC1�[R1e
−iφ1 ]

}
e−τ2p

1 dτ1 (221)

dt1
dz

= −D(z)κ1 + ε
1

A1B1

p2
2p+1
2p

Γ
(

1
2p

) ∫ ∞

−∞
�[R1e

−iφ1 ]τ1e−τ2p
1 dτ1 (222)

dθ1
dz

= D(z)


κ

2
1

2
− p22

1
p

Γ
(

4p−1
2p

)
Γ

(
1
2p

) B2
1


 + 5g(z)A2

1

1

2
4p+1
2p

− 3p

2
2p−1
2p

αg(z)
A2

2B1

Γ
(

1
2p

) ∫ ∞

−∞
exp

[
−2

{
B2p

1 (t− t1)2p

+ B2p
2 (t− t2)2p

}]
dt+ ε

1
A1B1

p2
2p+1
2p

Γ
(

1
2p

)
∫ ∞

−∞

{
B1�[R1e

−iφ1 ]
(
3 − 4pτ2p

1

)
+4κ1�[R1e

−iφ1 ]τ1
}
e−τ2p

1 dτ1

(223)

dA2

dz
= −D(z)A2C2 − ε

p2
2p+1
2p

Γ
(

1
2p

)
Γ

(
3
2p

)
∫ ∞

−∞
�[R2e

−iφ2 ]
{
τ2
2 2

1
2p Γ

(
1
2p

)
−3Γ

(
3
2p

)}
e−τ2p

2 dτ2 (224)
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dt2
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(229)

These are the parameter dynamics of chirped Gaussian and SG solitons
can be very useful to study the vector solitons in a birefringent media.
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7.3. Multiple Channels

The perturbed WDM system is given by

iq(l)z +
D(z)

2
q
(l)
tt + g(z)




∣∣∣q(l)∣∣∣2 +
N∑

m�=l

αlm

∣∣∣q(m)
∣∣∣2


 q(l)

= iεR
[
q(l), q(l)∗; q(m), q(m)∗

]
(230)

where, 1 ≤ l ≤ N while m �= l. In (230), R represents the perturbation
terms for a WDM system with N channels. In presence of perturbation
terms, the EL equation modify to [6, 10]

∂L

∂r
− d

dz

(
∂L

∂rz

)
= iε

∫ ∞

−∞

(
R
∂q(l)∗

∂r
−R∗∂q

(l)

∂r

)
dt (231)

where r represents the 6N soliton parameters. Once again, substituting
Al, Bl, Cl, κl, tl and θl for r in (231), the following adiabatic evolution
equations are obtained

dAl
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=−D(z)AlCl −

ε

2

∫ ∞

−∞
�[Re−iφl ]
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(233)
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AlBlI
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dθl
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where τl and φl are defined in (73) and (74) respectively for 1 ≤ l ≤ N .

7.3.1. Gaussian Pulses

Now, substituting the integrals I(l)
a,b,c for the indicated values of a, b

and c in (232)–(237) and the Gaussian pulse the following equations
are obtained

dAl
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2π
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2π

1
AlBl
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)
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}
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These equations now represent the evolution equations for the
parameters of a Gaussian pulse, for 1 ≤ l ≤ N , propagating through a
DWDM in presence of the perturbation terms.

7.3.2. Super-Gaussian Pulses

For the perturbation terms of a SG pulse substituting the integrals
I

(l)
a,b,c for 1 ≤ l ≤ N and the form of f(τl) in (232)–(237) that leads to
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dtl
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So, now, these are the adiabatic evolution of the soliton parameters for
a SG pulse, for 1 ≤ l ≤ N , in presence of the perturbation terms.

8. NUMERICAL SIMULATIONS

In this section, the numerical simulations are carried out for (12). The
details of the plots that describe the parameter evolution of the DM
solitons are discussed here.

Figure 5 is the variation of the width (B) of the pulse while Figure
6 is the variation of the chirp (C) of the pulse. In both figures 5 and
6, the solid lines shows the analytical results while the dotted lines
represent direct numerical simulation of (12) with the same initial
condition. Figure 7, now, represents the periodic orbit of Figures 4
and 5 in the B-C plane.

Figures 8 and 9 shows the Poincare section in the B − C plane,
namely a trajectory of the parameters at every period of the dispersion
map for several different values of the initial condition. Fig. 8 shows
the plots for different values of B(0) and C(0) with a fixed energy
namely E = E0 = 3.629 while Fig. 9 is obtained for different values of
E0 with fixed values, B(0) = 1/

√
2 and C(0) = 0. As shown in these

figures, evolution of the parameters starting from the vicinity of the
stationary state is a closed loop around the fixed point corresponding to
the stationary state, namely B(0) = 1/

√
2, C(0) = 0 and E0 = 3.629,

and exhibits a long term quasi-periodicity. This is in contrast to the
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B
(Z

)

Z

Figure 5. Evolution of the width of the pulse.

C
(Z

)

Z

Figure 6. Evolution of the chirp of the pulse.

behaviour of classical or conventional solitons where the pulses having
parameters deviate from the stationary state and generate radiation
and approaches asymptotically to the stationary solution. Too much
deviation from the stationary state, however, results in a collapse of
the pulse, as shown in Fig. 8 for E0 = 1.0 [50].
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B
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Z

Figure 7. Periodic orbit of width versus chirp.

B
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)

C(Z)

Figure 8. Periodic map for width versus chirp.

B
(Z

)

C(Z)

Figure 9. Periodic map for several value of E0.
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9. CONCLUSIONS

In this paper, the governing equations for the characteristic parameters
for DM pulses were derived. The fundamental dynamics of DM pulses
are characterized by their pulse width and their frequency chirp.
Moreover, the adiabatic evolution of these parameters for the DM
pulses under perturbations was obtained. Both the Gaussian and the
super-Gaussian type pulses are considered in this paper. This study
is then further extended to the case of multiple channels. Although
only Gaussian and SG pulses were considered in this paper, one can
use these results to obtain the parameter dynamics for other kinds of
beams that are being lately considered in the field of Optics namely
sinh-Gaussian, cosh-Gaussian, Hermite-Gaussian, super-sech just to
name a few.

These Dynamical System of the pulse parameters can be used to
study various aspects of soliton communications through long distance
optical fibers. For example, in trans-oceanic distances there are many
unwanted features that arise like the four-wave mixing, frequency and
timing jitter, the amplitude jitter, the formation of ghost pulses [3] and
many more. The parameter dynamics of the solitons obtained in this
paper will serve as a basic necessity to study these aspects that serve
as a hindrance in the optical soliton communication.

Moreover, in optical soliton communication the presence of
perturbation term is eminent. As for example, terms like higher
order dispersion (that arise in tran-oceanic soliton propagation,
when the group velocity dispersion is small), Raman scattering,
attenuation, nonlinear damping, two-photon absorption and other
nonlocal perturbations do arise in practical situations. It is necessary
to study the modified behaviour of the solitons in presence of these
terms. The adiabatic parameter dynamics of solitons in presence of
perturbation terms has been obtained in this paper to facilitate the
study of the modified behaviour of solitons due to these particular
type of perturbations.

Besides these deterministic perturbations, there also arises the
issue of stochastic perturbations. Stochasticity arises with the chaotic
nature of the initial pulse due to the partial coherence of the laser
generated radiation. It also arises due to random nonuniformities in the
optical fibers like the fluctuations in the dielectric constant the random
variations of the fiber diameter and more. The chaotic field caused
by a dynamic stochasticity might arise from a periodic modulation of
the system parameters or when a periodic array of pulses propagate
in a fiber optic resonator. Thus stochasticity is inevitable in optical
soliton communications. The adiabatic parameter dynamics that are
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obtained in this paper for optical fibers can also be used to study
optical solitons in presence of the stochastic perturbations by analysing
the corresponding Langevin equations.

Moreover, there is also the factor of soliton radiation. These are
the small amplitude dispersive waves that arises in the theory of soliton
propagation. These radiation can be studied by using the variational
principle and formulating the corresponding parameter dynamics of
the solitons. These radiation do arise in polarization preserving fibers,
birefringent fibers as well as multiple channels and thus the results of
this paper can be used to study them.
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