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Abstract—The propagation characteristics of an elliptical step-index
fiber with a conducting helical winding on the core-cladding boundary
are investigated analytically and compared with those of a circular
step index fiber with a conducting radial winding. Our optical
waveguides are unconventional: in view of the existence of helical
conducting windings on the core-cladding boundaries. Appropriate
coordinate systems, circular cylindrical and elliptic cylindrical, are
chosen for the circular and elliptical fibers. Applying the boundary
conditions as modified by the presence of conducting helical windings,
the characteristic equations are obtained for both the fibers. Dispersion
curves are also obtained for two special values of the helical pitch angle
ψ, namely, for ψ = 0◦ and ψ = π

2 for each fiber and the results have
been compared. It is found that the introduction of the helical winding
has two main effects on the characteristics of both types of fibers.
These are: (1) The helix introduces band gaps and (2) has the effect
of splitting a mode into a pair of adjacent modes In the case of the
elliptical helically clad waveguide we find two band gaps for V < 30
whereas for circular guide we have only one band gap in the same range
of V -values, V being the normalized frequency parameter.
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1. INTRODUCTION

Optical waveguides have been investigated extensively during the past
four decades [1–4]. Considerable research has been done on optical
fibers with more general geometries than that of the standard step
index circular fiber and various refractive-index profiles have also been
studied [5–7]. As is well known, researchers have concentrated on
circular and rectangular waveguides, and Chu [8] directed his attention
to elliptic waveguides. Chu was followed by Dyott and Stern [9] who
analyzed elliptic fibers. Later the propagation characteristics of optical
fibers with elliptical cross sections and circular cross sections were
investigated by numerous researchers. Singh et al. [10] proposed an
analytical study of the dispersion characteristics of a circular step-
index optical fiber with a helical conducting winding on the core-
cladding boundary. The case of an elliptical step-index fiber with
a helical conducting winding on the core-cladding interface was first
studied by Deepak Kumar and O. N. Singh II [11]. Here we propose
to compare an elliptic core optical fiber and circular core optical fiber
with a conducting sheath helix [12] between the core and the cladding
regions Fig. 1(a). Although we present the analysis for the general case
when there is no restriction on ψ, but for simplicity we have considered
only two particular helical pitch angles, ψ = 0◦ and ψ = π

2 .
The sheath helix is a cylindrical surface with high conductivity in

a preferential direction which winds helically at constant angle (pitch
angle ψ) around the core-cladding boundary surface. In our waveguides
the core and the cladding regions are assumed to have constant real
refractive indices n1 and n2 (n1 > n2) and the fibers are referred to as
the elliptical helically cladded fiber (EHCF), and the circular helically
cladded fiber (CHCF). The pitch angle ψ can be used for controlling
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Figure 1a.

the modal behaviour of such fibers. This additional control parameter
may prove important for technology in the near future.

The description of a sheath helix is given in Watkins [14]. A
sheath helix can be approximated in practice by winding a very thin
conducting wires around the cylindrical surface so that the spacing
between the adjacent windings is very small and yet they are insulate
from one another. Thus in Fig. 1(e), d > w and both are very small,
and in the limit both tend to zero Fig. 1(b). An alternative way of
realizing the sheath is to have a thin planar sheet made of alternate
conducting thin strips and non conducting gaps-obliquely and then
wrapping it along the cylindrical core without overlap Fig. 1(c). The
cladding material (n2) is next to be deposited cylindrically around the
core with the winding. It is to be admitted that on the microscopic
scale the manufacture of such structure will present difficulties; but
these may not be insurmountable in the present age of nanotechnology.

Due to the complexities of a helical geometry the mathematical
steps become very difficult and some suitable approximations [2] are
made in case of the elliptical fiber. In case of the circular fiber, however
no approximations are needed. The use of Mathieu functions, modified
Mathieu functions [15], Bessel functions, modified Bessel functions [16]
have been made. Due to mathematical difficulties we take up two
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Figure 1b. Sheath helix (magnified). Figure 1c.

simple special cases: namely ψ = 0◦ and ψ = π
2 .

We choose n1 > n2 and assume that

n1 − n2

n1
� 1

This means that we are using the scalar wave weak guidance
approximation. However, in applying the boundary conditions we
preserve the vector nature of the fields.

We introduce coordinates (r, φ, z) and (ξ, η, z) for the circular [17]
and the elliptical [17] fibers respectively.

The fibers of circular and elliptical cross-sections are shown in
Fig. 1(a).

2. THEORETICAL ANALYSIS

We give the expressions for field components of circular step-index fiber
[11–13] and the elliptical step index fiber [2] in Table 1.

In Table 1 we have

k2n2
1 − β2 = k2

1 = u2

β2 − k2n2
2 = k2

2 = w2
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Table 1.

Field Components Field Components
(Circular step-index fiber) (Elliptical step-index fiber)

Ez1 = AJv(k1r)ei(ωt−βz+vφ) (1) Ez1 = B′Sev γ2
1) sin vη (1A)

Hz1 = BJv(k1r)ei(ωt−βz+vφ) (2) Ez2 = PGekv −γ2
2) sin vη (2A)

Ez2 = CKv(k2r)ei(ωt−βz+vφ) (3) Hz1 = A′Cev(ξ, γ2
1) cos vη (3A)

Hz2 = DKv(k2r)ei(ωt−βz+vφ) (4) Hz2 = LFekv(ξ,−γ2
2) cos vη (4A)

Eφ1 = − i

k2
1

ivβ

r
AJv(k1r) Eη1 =

i

k2n2
1 − β2 q#

[βB′Sev(ξ, γ2
1)

−ωµ0k1BJ
′
v(k1r) ei(ωt−βz+vφ) (5) · cos vηv − ωµ0A

′Ce′v(ξ, γ
2
1) cos vη] (5A)

Hφ1 = − i

k2
1

ivβ

r
BJv(k1r) Eη2=

i

k2n2
2 − β2 q#

[βPGekv(ξ,−γ2
2)

+ωε1k1AJ
′
v(k1r) ei(ωt−βz+vφ) (6) · cos vηv−ωµ0LFek

′
v(ξ,−γ2

2) cos vη] (6A)

Eφ2 = − i

k2
2

ivβ

r
CKv(k2r) Hη1 =

i

k2n2
1−β2 q#

[βA′Cev(ξ, γ2
1)(− sin vη)v

−ωµ0k2DK
′
v(k2r) ei(ωt−βz+vφ) (7) +ωn2

1ε0B
′Se′v(ξ, γ

2
1) sin vη] (7A)

Hφ2 = − i

k2
2

ivβ

r
DKv(k2r) Hη2 =

i

k2n2
1−β2 q#

[βLFekv(ξ,−γ2
2)(− sin vη)v

+ωε2k2CK
′
v(k2r) ei(ωt−βz+vφ) (8) +ωn2

2ε0PGek
′
v(ξ,−γ2

2) sin vη] (8A)

]

]

]

]

]

]

]
]

(ξ,

(ξ,
√
µ0

ε2

√
µ0

ε1

( )

( )

( )

( )

and # = (cosh2 ξ − cos2 η)1/2. Here k = 2π
λ , λ being the operating

wavelength and β is the propagation constant for the guided waves.
Here

γ2
1 =

(
n2

1k
2 − β2

)
q2

4

⇒ γ2
1 =

u2q2

4
⇒ γ1 =

uq

2

γ2
2 =

(
β2 − n2

2k
2
)
q2

4

⇒ γ2
2 =

w2q2

4
⇒ γ2 =

wq

2

Also, Sev(ξ, γ2
1) and Cev(ξ, γ2

1) are the modified Mathieu functions
of the first kind, and Gekv(ξ,−γ2

2) and Fekv(ξ,−γ2
2) are the modified
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Mathieu functions of the second kind.
Se′v(ξ, γ

2
1) and Ce′v(ξ, γ

2
1) are the first derivatives of the modified

Mathieu functions of the first kind, andGek′v(ξ,−γ2
2) and Fek′v(ξ,−γ2

2)
are the first derivatives of the modified Mathieu functions of the second
kind.

3. BOUNDARY CONDITIONS

We are concerned with only φ, z and ξ, z in writing the boundary
conditions [11] for a conducting helix wound around the circular
core-cladding boundary and the elliptic core-cladding boundary
respectively. Remembering that the tangential component of the
electric field in the direction of the conducting helix should be zero,
and in the direction perpendicular to the helical winding, the tangential
component of both the electric and magnetic field must be continuous,
we have the following eight boundary conditions:

Table 2.

Boundary conditions Boundary conditions
(Circular step-index fiber) (Elliptical step-index fiber)

Ez1 sinψ + Eφ1 cosψ = 0 (9) Ez1 sinψ + Eη1 cosψ = 0 (9A)

Ez2 sinψ + Eφ2 cosψ = 0 (10) Ez2 sinψ + Eη2 cosψ = 0 (10A)

(Ez1−Ez2) cosψ−(Eφ1−Eφ2)sinψ=0 (11) (Ez1−Ez2)cosψ−(Eη1−Eη2)sinψ=0 (11A)

(Hz1−Hz2) sinψ+(Hφ1−Hφ2)cosψ=0 (12) (Hz1−Hz2)sinψ+(Hη1−Hη2)cosψ=0 (12A)

One may ask why we use the boundary conditions as described by
equations (9)–(12) and equations (9A)–(12A) on the entire boundary
surface when the conducting regions alternate with insulating
regions. Indeed, if we did not make this plausible approximation,
the mathematical steps would be formidably complicated. As a
justification for this simplifying approximation we may say that, in the
first place, we may choose w > d, so that the gaps are of infinitesimal
width, and secondly under the weak guidance approximation n1−n2

n1
�

1, so that n1 ≈ n2. In the gaps, therefore the boundary between the
core and the cladding becomes less and less pronounced as n1−n2 → 0.
However, if n1 − n2 is substantially large, for a strict analysis one has
to use Table 2 for the conducting region and Table 3 for the insulating
dielectric region. In the absence of the conducting helical windings the
boundary conditions would have been made as in Table 3.
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Table 3.

Ordinary boundary conditions Ordinary boundary conditions

(Circular step-index fiber) (Elliptical step-index fiber)

without helix without helix

Ez1 = Ez2 Ez1 = Ez2

Hz1 = Hz2 Hz1 = Hz2

Eφ1 = Eφ2 Eη1 = Eη2

Hφ1 = Hφ2 Hη1 = Hη2

4. CHARACTERISTIC EQUATION

4.1. Circular Step-Index Fiber

Substituting the expressions for Ez1, Hz1, Ez2, Hz2, Eφ1, Hφ1, Eφ2

and Hφ2 from equations (1)–(8) in equations (9)–(12), we get

(
sinψ +

vβ

au2
cosψ

)
AJv(k1a) +

iωµ0

u
BJ ′

v(k1a) cosψ = 0 (13)(
sinψ +

vβ

aw2
cosψ

)
CKv(k2a) +

iωµ0

w
D cosψK ′

v(k2a) = 0 (14)(
cosψ − vβ

au2
sinψ

)
AJv(k1a) −

iωµ0

u
sinψBJ ′

v(k1a)

−
(

cosψ − vβ

aw2
sinψ

)
CKv(k2a) +

iωµ0

w
sinψDK ′

v(k2a) = 0 (15)

− iωε1
u

AJ ′
v(k1a) cosψ +

(
sinψ +

vβ

au2
cosψ

)
BJv(k1a)

+
iωε2
w

CK ′
v(k2a) cosψ −

(
sinψ +

vβ

aw2
cosψ

)
DKv(k2a) = 0 (16)

Eliminating A, B, C and D from equations (13)–(16), we get
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(sin
ψ

+
v
β

a
u

2
cos

ψ
)J

v (k
1 a)

iω
µ

0

u
J
′v (k

1 a)cos
ψ

0
0

0
0

(sin
ψ

+
v
β

a
w

2
cos

ψ
)K

v (k
2 a)

iω
µ

0

w
K

′v (k
2 a)cos

ψ

(cos
ψ
−

sin
ψ

)J
v (k

1 a)
−

sin
ψ
J
′v (k

1 a)
−

(cos
ψ
−

v
β

a
w

2
sin

ψ
)K

v (k
2 a)

iω
µ

0

w
sin

ψ
K

′v (k
2 a)

−
iω
ε
1

u
J
′v (k

1 a)cos
ψ

(sin
ψ

+
cos

ψ
)J

v (k
1 a)

K
′v (k

2 a)cos
ψ

−
(sin

ψ
+

cos
ψ

)K
v (k

2 a)

(17)

v
β

a
w

2

v
β

a
u

2

v
β

a
u

2

iω
µ

0

u
iω
ε
2

w

=
 0
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Figure 1d. Periodicity of spatial structure persists.

Now we are going to take two special cases for the circular step-
index fiber, namely ψ = 0◦, (Case I) and ψ = π

2 (Case II). We
can visualize the geometrical situations by looking at Fig. 1(d) and
Fig. 1(e). The periodicity in the propagation direction (axial direction)
remains because even when ψ = 0◦, the structural feature repeats after
a spatial interval of d+ w.

When ψ = π
2 , the periodicity remains in the circumferential

direction, but as the propagation takes place in the axial direction,
the circumferential periodicity is not expected to introduce band gaps.
We can now consider the analysis of Case I and Case II.

Case I: We set ψ = 0◦ and v = 1 in the determinantal eq. (17) and
expand it, we get

β2

a2u3
J2

1K1

(
−K1

w
−K0

)
− β2

a2w3

(
−J

2
1K

2
1

u
+ J0J1K

2
1

)

−
4π2

λ2
n2

2

w

(
−J

2
1

u
+ J0J1

) (
K2

1

w2
+K2

0 + 2K0
K1

w

)

−
4π2

λ2
n2

1

u

(
J2

1

u2
+ J2

0 − 2J1

u
J0

) (
−K

2
1

w
−K0K1

)
= 0 (18)

Case II: We set ψ = π
2 and v = 1 in the determinantal eq. (17) and
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Figure 1e. d > w, w → 0, d → 0, ψ = π/2. Nonaxial periodicity
only circumferential periodicity. Total number of conducting strips
N = 2πa

w+d .

expand it. Then we have

−J1K1 + uJ0K1

u2
+
J1K1 + wJ1K0

w2
= 0 (19)

The dispersion curves corresponding to eq. (18) are shown in the Fig. 2.
The dispersion curves corresponding to eq. (19) are shown in the Fig. 3.

4.2. Elliptical Step-Index Fiber

Substituting the expressions for Ez1, Hz1, Ez2, Hz2, Eη1, Hη1, Eη2

and Hη2 from equations (1A)–(8A) in equations (9A)–(12A), we get

A′ i

u2q#
ωµ0Ce

′
v(ξ, γ

2
1) cos vη cosψ

−B′
[√

µ0

ε1
Sev(ξ, γ2

1) sin vη sinψ +
i

u2q#
βSev(ξ, γ2

1) cos vηv
]

= 0 (20)
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Figure 2. Dispersion curves (normalized frequency versus normalized
propagation constant) for ψ = 0◦ in the case of the circular step-index
fiber.

Figure 3. Dispersion curves (normalized frequency versus normalized
propagation constant) for ψ = π/2 in the case of the circular step-index
fiber.
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P

[√
µ0

ε2
Gekv(ξ,−γ2

2) sin vη sinψ− iβ

w2q#
Gekv(ξ,−γ2

2) cos vηv cosψ
]

+L
iωµ0

w2q#
Fek′v(ξ,−γ2

2) cos vη cosψ = 0 (21)

A′ iωµ0

u2q#
Ce′v(ξ, γ

2
1) cos vη sinψ

+B′
[√

µ0

ε1
Sev(ξ, γ2

1) sin vη cosψ − i

u2q#
βSev(ξ, γ2

1) cos vηv sinψ
]

−P
[√

µ0

ε2
Gekv(ξ,−γ2

2) sin vη cosψ − iβ

w2q#
Gekv(ξ,−γ2

2) cos vηv sinψ
]

−Liωµ0

w2q#
Fek′v(ξ,−γ2

2) cos vη sinψ = 0 (22)

A′
[
Cev(ξ, γ2

1) cos vη sinψ − iβ

u2q#
Cev(ξ, γ2

1) sin vηv cosψ
]

+B′ iωn
2
1ε0

u2q#
Se′v(ξ, γ

2
1) sin vη cosψ

+P
i

w2q#
ωn2

2ε0Gek
′
v(ξ,−γ2

2) sin vη cosψ

−L
[
Fekv(ξ,−γ2

2) cos vη sinψ +
iβ

w2q#
Fekv(ξ,−γ2

2) sin vηv cosψ
]

= 0 (23)

where

k2n2
1 − β2 = k2

1 = u2

β2 − k2n2
2 = k2

2 = w2

and

# = (cosh2 ξ − cos2 η)1/2.

Eliminating A′, B′, P and L from equations (20)–(23) at ξ = ξ0 we get



Progress In Electromagnetics Research, PIER 52, 2005 13

i

u
2
q#
ω
µ

0
C
e′ v

(ξ
0
,γ

2 1
)

−
[√ µ

0

ε 1
S
e v

(ξ
0
,γ

2 1
)s

in
v
η

si
n
ψ

0
0

·c
os
v
η

co
sψ

+
i

u
2
q#
β
S
e v

(ξ
0
,γ

2 1
)c

os
v
η
v

co
sψ

]

0
0

[√ µ
0

ε 2
G
ek

v
(ξ

0
,−
γ

2 2
)s

in
v
η

si
n
ψ

iω
µ

0

w
2
q#
F
ek

′ v
(ξ

0
−
γ

2 2
)c

os
v
η

co
sψ

+
iβ

w
2
q#
G
ek

v
(ξ

0
,−
γ

2 2
)c

os
v
η
v

co
sψ

]

iω
µ

0

u
2
q#
C
e′ v

(ξ
,γ

2 1
)c

os
v
η

si
n
ψ

[√ µ
0

ε 1
S
e v

(ξ
0
,γ

2 1
)s

in
v
η

co
sψ

−
[√ µ

0

ε 2
G
ek

v
(ξ

0
,−
γ

2 2
)s

in
v
η

co
sψ

−
iω
µ

0

w
2
q#
F
ek

′ v
(ξ

0
,−
γ

2 2
)c

os
v
η

si
n
ψ

−
i

u
2
q#
β
S
e v

(ξ
0
,γ

2 1
)c

os
v
η
v

si
n
ψ

]
−

iβ

w
2
q#
G
ek

v
(ξ

0
,−
γ

2 2
)c

os
v
η
v

si
n
ψ

]

[C
e v

(ξ
0
,γ

2 1
)c

os
v
η

si
n
ψ

iω
n

2 1
ε 0

u
2
q#

S
e′ v

(ξ
0
,γ

2 1
)s

in
v
η

co
sψ

i

w
2
q#
ω
n

2 2
ε 0
G
ek

′ v
(ξ

0
,−
γ

2 2
)s

in
v
η

co
sψ

−
[F
ek

v
(ξ

0
,−
γ

2 2
)c

os
v
η

si
n
ψ

−
iβ u
2
q#
C
e

v
(ξ

0
,γ

2 1
)s

in
v
η
v

co
sψ

]
+

iβ

w
2
q#
F
ek

v
(ξ

0
,−
γ

2 2
)s

in
v
η
v

co
sψ

]

(2
4)

=
 0
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Again we are going to take two special cases for elliptical step-
index fiber also.

Case I: When ψ = 0◦ and v = 1 in determinantal (24) and expand it,
we get

U2k2n2
2

Ce′1(ξ0, γ
2
1)

Ce1(ξ0, γ2
1)
Fek′1(ξ0,−γ2

2)
Fek1(ξ0,−γ2

2)
Gek′1(ξ0,−γ2

2)
Gek1(ξ0,−γ2

2)

−W 2k2n2
1

Ce′1(ξ0, γ
2
1)

Ce1(ξ0, γ2
1)
Se′1(ξ0, γ

2
1)

Se1(ξ0, γ2
1)
Fek′1(ξ0,−γ2

2)
Fek1(ξ0,−γ2

2)

−U2β2Ce
′
1(ξ0, γ

2
1)

Ce1(ξ0, γ2
1)

+W 2β2Fek
′
1(ξ0,−γ2

2)
Fek1(ξ0,−γ2

2)
= 0 (25)

where U = ua and W = wa.
We apply the approximations [2] as given below.
The approximations are

Ce′1(ξ0, γ
2
1)

Ce1(ξ0, γ2
1)

≈ u(1 − e2)1/2



J ′

1(ue) +

(
u2e2

32

)
J ′

3(ue)

J1(ue) +

(
u2e2

32

)
J3(ue)


 (26a)

Se′1(ξ0, γ
2
1)

Se1(ξ0, γ2
1)

≈ e2

(1−e2)1/2
+u(1−e2)1/2



J ′

1(ue)+

(
3u2e2

32

)
J ′

3(ue)

J1(ue)+

(
3u2e2

32

)
J3(ue)




(26b)

Fek′1(ξ0,−γ2
2)

Fek1(ξ0,−γ2
2)

≈ w(1 − e2)1/2



K ′

1(we) +

(
w2e2

32

)
K ′

3(we)

K1(we) +

(
w2e2

32

)
K3(we)


 (26c)

Gek′1(ξ0,−γ2
2)

Gek1(ξ0,−γ2
2)

≈ e2

(1−e2)1/2
+w(1−e2)1/2



K ′

1(we)+

(
3w2e2

32

)
K ′

3(we)

K1(we)+

(
3w2e2

32

)
K3(we)




(26d)
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In equations (26a)–(26d) e is the eccentricity of the ellipse

e = 1 −
(
b

a

)2

= sech2ξ0.

ue and we are arguments of Bessel functions

ue = 2Y1 cosh ξ0
we = 2Y2 cosh ξ0

where Y1 and Y2 are given in page 5.
Applying the above approximations from eqs. (26a)–(26d) in

eq. (25), we get

uwa2(1−e2)




J ′
1(U)+

u2a2e2

32
J ′

3(U)

J1(U)+

(
u2a2e2

32

)
J3(U)






K ′

1(W )+
w2a2e2

32
K ′

3(W )

K1(W )+
w2a2e2

32
K3(W )




·
(

2π
λ

)2







e2

(1−e2)1/2
+ wa(1 − e2)1/2



K ′

1(W )+
3w2a2e2

32
K ′

3(W )

K1(W )+
3w2a2e2

32
K3(W )







·u2a2n2
2 +




e2

(1−e2)1/2
+ ua(1 − e2)1/2



J ′

1(U)+
3u2a2e2

32
J ′

3(U)

J1(U)+
3u2a2e2

32
J3(U)







·w2a2n2
1

]
− ua(1 − e2)1/2



J ′

1(U)+
u2a2e2

32
J ′

3(U)

J1(U)+
u2a2e2

32
J3(U)


u2a2β2

+wa(1 − e2)1/2



K ′

1(W )+
w2a2e2

32
K ′

3(W )

K1(W )+
w2a2e2

32
K3(W )


w2a2β2 = 0 (27)

Case II: When ψ = π
2 and v = 1 in determinantal eq. (24) and expand

it, we get
1
u2

Ce′1(ξ0, γ
2
1)

Ce1(ξ0, γ2
1)

+
1
w2

Fek′1(ξ0,−γ2
2)

Fek1(ξ0,−γ2
2)

= 0 (28)

Again applying the approximations from eqs. (26a)–(26d) in eq. (28),
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Figure 4. Dispersion curves (normalized frequency versus normalized
propagation constant) for ψ = 0◦ in the case of the elliptical step-index
fiber.

we get

W



J ′

1(U) +
U2e2

32
J ′

3(U)

J1(U) +
U2e2

32
J3(U)


 + U



K ′

1(W ) +
W 2e2

32
K ′

3(W )

K1(W ) +
W 2e2

32
K3(W )


 = 0 (29)

where U = ua and W = wa.
The dispersion curves corresponding to eq. (27) are shown in the

Fig. 4. The dispersion curves corresponding to eq. (29) are shown in
the Fig. 5.

5. RESULTS AND DISCUSSION

We now fix the values of ψ at 0◦ and π
2 for the circular step-index fiber

and the elliptical step-index fiber and study dispersion curves for the
sustained modes. Our core parameter is ‘ua’ where u = (k2n2

1 −β2)1/2

and ‘a’ is the length of the semi-major axis in the case of elliptical step-
index fiber. In the case of circular step-index fiber, the size parameter
‘a’ is the radius of the core. The cladding parameter is ‘wa’ where
w = (β2 − k2n2

2)
1/2. The normalized frequency V is calculated by the

common formula V = 2πa
λ (n1 − n2

2)
1/2, however ‘a’ has two different

interpretations for the different fibers. The normalized propagation
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Figure 5. Dispersion curves (normalized frequency versus normalized
propagation constant) for ψ = π/2 in the case of the elliptical step-
index fiber.

parameter bnor is obtained from the formula

bnor =

{
β2 − k2n2

2

k2(n2
1 − n2

2)

}1/2

we have chosen n1 = 1.50, n2 = 1.46 and operating wavelength
λ = 1.55µm for both the cases.

We first consider ψ = 0◦. For this helical pitch angle, the
sheath helix degenerates into a sheath with parallel circular windings
perpendicular to the axis of the fiber. This helical structure Fig. 1(d)
is a periodic structure, and in this case also there is a periodicity
along the axis of the fiber. We may thus expect a band gap (In the
normalized frequency parameter V ) for this case for both the circular
and the elliptic fibers. This expectation is confirmed in both the cases,
when we look at the dispersion curves for v = 1 as shown in Fig. 2 and
Fig. 4. Comparing Fig. 2 and Fig. 4, we see that there is one band
gap (from V = 27 to V = 29) in the case of the circular step index
fiber and two band gaps (from V = 1.3 to V = 4 and V = 14.2 to
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V = 17) in the elliptical step-index fiber. The band gap also occurs
for much lower values of V in the case of the elliptical fiber. The
effect of ellipticity is, therefore, to shift the position of the band gap
to lower V -values. Other points of difference between the curves in
Fig. 2 and Fig. 4 may be noted. For example, the first modal cutoff
for the circular fiber is at V = 4, whereas the first modal cutoff for
the elliptic fiber is at V = 0.4. This indicates that the elliptical fiber
will sustain more modes for a given value of V than the circular fiber,
a result which is already known for fibers without helical windings.
A common feature of the curves in Fig. 2 and those in Fig. 4 is that
modes occur in pairs in close proximity. It thus seems, that apart from
the introduction of band gaps, the helical winding also has the effect
of splitting each modes into two adjacent modes, removing degeneracy.
We need not consider other obvious differences which can be readily
seen by comparing Fig. 2 and Fig. 4.

We may attempt now to have a qualitative insight in to the
characteristics described in the preceding paragraph. It may be pointed
out here that in computing the dispersion curves, b is considered as the
dependent variable and V as the independent variable. Thus for a fixed
given value of V , we find a number of possible b values and we can put
them in an increasing order. However, if we examine the curves in
the direction of increasing V , we can identify individual dispersion
curves for different modes as long as we do not come across a band
gap. Beyond the band gap, the curves are again distinct. A confusing
question arises: which curves on the right side (larger V ) of the band
gap should be considered as the extensions of the curves on the left
side? On the one hand a visual survey prompts the conclusion that
the dispersion curves continue unaffected as if the band gap did not
exist.

Hence, it seems strange that the band gap is unable to bring about
any effect on the part of the dispersion curve beyond it. In situations
similar to this in other similar problems the slopes and other features of
the curves on the two sides of the band gap are different. On the other
hand, if we survey the diagrams Fig. 2 and Fig. 4 from the bottom to
the top, numbering the curves accordingly, the correspondence between
the portions of the curves on the two sides of the band gap can be
made in a different way, and the band gap influences the dispersion by
a discontinuous drop of the b value as one crosses the gap. This seems
to be physically more possible. What we can say with some degree of
confidence, however, is this. In the first allowed band there is only one
mode in the elliptic fiber Fig. 4, in the second allowed band as many as
six in the region immediately preceding the second band gap (V ≈ 14)
and in the third allowed band, immediately beyond the second band
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gap, as many as eight modes Fig. 4. The band gaps, therefore, abruptly
change the number of sustained modes as one crosses them; this is a
physically acceptable result.

We now come to the case ψ = π/2. In this case the sheath helix
degenerates in to a sheath made of conducting lines parallel to the axis
along the core-cladding boundary surface. Thus there is no periodicity
in the direction of propagation and we can not expect any band gap.
This is confirmed when we look at Fig. 3 and Fig. 5 which are both for
the case v = 1. We find that the effect of ellpticity here is to shift the
curves towards lower V -values. Thus for V = 9, (say) there is only one
mode for the circular fiber and as many as three modes for the elliptic
fiber. Here again, the effect of ellipticity is to increase the number of
sustained modes for a given value of V .

We may thus conclude:

1. The effect of ellipticity is to increase the number of modes for a
given values of V , which is also true for fibers without winding.

2. The effect of helical conducting winding is to introduce band gaps
in V -values, and as one crosses a band gap there is an abrupt
change in the number of sustained modes.

3. Another effect of the conducting helical winding is to split a mode
into a pair of adjacent modes. This is equivalent to removing a
degeneracy of the modes.

All these results are not only theoretically interesting but also may
prove to be of technical use.
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