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Abstract—The surface integral equation method is applied for the
electromagnetic analysis of general metallic and dielectric structures of
arbitrary shape. The method is based on the EFIE-CFIE-PMCHWT
integral equation formulation with Galerkins type discretization. The
numerical implementation is divided into three independent steps:
First, the electric and magnetic field integral equations are presented
and discretized individually in each non-metallic subdomain with the
RWG basis and testing functions. Next the linearly dependent and zero
unknowns are removed from the discretized system by enforcing the
electromagnetic boundary conditions on interfaces and at junctions.
Finally, the extra equations are removed by applying the wanted
integral equation formulation, and the reduced system is solved. The
division into these three steps has two advantages. Firstly, it greatly
simplifies the treatment of composite objects with multiple metallic
and dielectric regions and junctions since the boundary conditions are
separated from the discretization and integral equation formulation.
In particular, no special junction basis functions or special testing
procedures at junctions are needed. Secondly, the separation of the
integral equation formulation from the two previous steps makes it
easy to modify the procedure for other formulations. The method is
validated by numerical examples.
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1. INTRODUCTION

Composite structures of metallic and homogeneous dielectric materials
have many important applications e.g., in the radar technology,
antenna design and microwave engineering. Surface integral equation
with the method of moments (MoM) [1] is a popular and powerful
numerical method for the analysis of such objects. The method is
well documented for single and isolated metallic and dielectric objects.
However, the treatment of the field problem of a general composite
structure with multiple material junctions remains challenging. Many
earlier papers on this topic only consider rotationally or axially
symmetric objects, e.g., [2–7], or if general 3D objects are considered,
[8–14], either the metallic surfaces and interfaces of dielectric objects
are not allowed to touch each other, or the question of the modeling
the surface currents and testing procedure at junctions is more or less
omitted. There are, however, several papers which discuss the general
junction problem in detail, e.g., [5, 15, 16], [17] pp. 443–447, and [18].

In treating the field problem of a composite structure with
the surface integral equation method, the main steps are the
choice of the integral equation formulation, discretizing the surface
integral equations by the basis and testing functions and enforcing
electromagnetic boundary conditions at interfaces and junctions. In
this procedure, usually, the junction problem, i.e., treatment of the
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basis functions and testing procedure at the junctions, is the main
difficulty, and it has been treated in several ways.

Some papers like [5, 10] and [18] use triangular half-basis functions
at the junctions to expand the surface currents and to test the
equations. The continuity of the surface currents is enforced
by equating appropriate unknowns associated with the half-basis
functions. However, in this approach the testing at junctions, without
producing unnecessary line integrals, easily becomes complicated and
often the topic is not discussed in detail or it is omitted. In addition,
using different basis and testing functions on different parts of the
surfaces complicates the practical implementation. In [15] surface
currents at the junctions are expanded with so called multiplets, i.e.,
combinations of the original basis functions associated to a junction.
But the testing at the junctions is again problematic because it cannot
be done directly with the multiplets.

A straightforward way to avoid complications with the surface
current expansion and testing is the use of the (full) Rao-Wilton-
Glisson (RWG) [19] basis functions in both operations. In [16]
the surface currents are expanded by the RWG functions, but the
testing, enforcing the boundary conditions and the integral equation
formulation are implemented by certain generalized testing currents
expanded in the RWG functions. Combining the testing, the boundary
conditions and the formulation this way makes the treatment of
the junctions somewhat complicated and, in particular, the testing
becomes fully dependent on the used integral equation formulation.
In [17], pp. 443–447, the RWG basis functions are used both in the
expansion and in the testing while the boundary conditions and the
enforcing of the integral equation formulation are handled with the
Number of Unknowns Reduction (NOUR) scheme. In NOUR first the
homogeneous parts of the composite body are considered as isolated
bodies and then they are merged together and the extra unknowns are
removed. This approach, however, becomes complicated with multiple
metallic and dielectric junctions and in [17] they are not considered.

EFIE-PMCHWT is the usual formulation for general composite
structures [9, 11–17] and [18]. In this formulation Electric Field Integral
Equation (EFIE) is applied on metallic surfaces and the Poggio-Miller-
Chang-Harrington-Wu-Tsai (PMCHWT) formulation [20] is applied
on the dielectric interfaces, but it is not sufficient for removing the
interior resonances if the structure includes closed metallic surfaces. In
that case, in addition, on those surfaces the Combined Field Integral
Equation (CFIE) [21] must be applied.

In this paper we treat general composite structures consisting
of open and closed metallic surfaces and homogeneous dielectric
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subdomains. All types of interface and surface junctions are allowed.
The method is based on EFIE-CFIE-PMCHWT formulation to
remove internal resonances (EFIE on open metallic surfaces, CFIE on
closed metallic surfaces and PMCHWT formulation on the dielectric
interfaces), and the numerical implementation is organized into three
independent steps. Though the composite structures with junction
problems are largely discussed in the literature, we believe that our
approach in the presented generality is novel. The task division into
three steps is the following:

Step 1: Present and discretize the electric and magnetic field
integral equations in each homogeneous dielectric subdomain
separately. Perform the discretization by the Galerkin
method with the oriented RWG basis and testing functions.

Step 2: Enforce the boundary conditions on the metallic surfaces,
the dielectric interfaces and at the junctions.

Step 3: Enforce the wanted integral equation formulation.

The first step leads to a system matrix of a diagonal block structure.
The second step amounts to removing and combining unknowns leaving
more equations than unknowns. In the third step we reduce the number
of equations to that of the unknowns by combining, or removing, the
extra equations according to the applied integral equation formulation.

In practice, we condense the last two steps into a few simple
bookkeeping rules by which the final system matrix is directly
assembled in an efficient way and without ever forming the matrices of
the intermediate stages. In particular, the removed columns and rows
of the system matrix are never computed in practice. However, we
find it instructive to describe the treatment of the above three steps in
terms of the discretized system matrix, because from that description
the simple rules for the efficient system matrix assembly can easily
been derived.

A similar division of the task into three steps was presented
in [10] for penetrable structures without junctions; apparently this
task division was not suggested for the general case, because the
paper treats the junctions with half-RWG basis functions; anyway,
a discussion on the testing and other details at general metal-dielectric
junctions is omitted in the paper.

The procedure of this paper, i.e., why the discretization can be
performed in subdomains before applying the boundary conditions
and the integral equation formulation, can be shortly justified as
follows: The discretization of the EFIEs and MFIEs separately in
each subdomain by the Galerkin method only means replacing the
original equations in subdomains by the approximative equations
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obtained by restricting the surface currents to the function subspace
spanned by the basis functions and by orthogonally projecting the
original equations into the same subspace, see e.g., [22], Chapter 13.
Therefore, the boundary conditions and the formulation, without
changing their physical meaning, can be applied to the approximative
equations equally well as to the original ones. On the other hand, the
approximated equations are presented equivalently by the discretized
system equations, and accordingly, the boundary conditions and the
formulation can be directly applied to the system equations.

2. STEP ONE: PRESENTATION AND
DISCRETIZATION OF SURFACE INTEGRAL
EQUATIONS IN DIELECTRIC SUBDOMAINS

We consider the time harmonic electromagnetic waves in a piecewise
homogeneous medium with the time factor e−iωt. Let the computa-
tional domain be divided into homogeneous dielectric, or penetrable,
and perfectly conducting (PEC) domains D1, . . . , DK as in Figure 1.
The constant electromagnetic parameters of the domains are denoted
by εj , µj and σj , where εj = εrjε0 + iσj/ω denotes complex
permittivity. A PEC object is defined by setting σj = ∞. In addition,
let D0 denote the (unbounded) background, let Sj denote the surface
of Dj , j = 0, . . . ,K, and let Sjl denote the interface of domains
Dj and Dl. The PEC domains are further classified as closed and
open domains. The latter ones represent thin metallic plates with zero
volumes.

Dn

Dm

Figure 1. Piecewise homogeneous medium with open (Dp) and closed
metallic objects (Dm, Dn). Metallic objects are denoted by shading.
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2.1. Presentation of EFIEs and MFIEs

Let Ep
j , Hp

j denote the primary or incident field of the sources in a
domain Dj . The total field in Dj can be expressed as a sum of the
incident field and the induced secondary field Es

j , Hs
j as

Ej = Ep
j + Es

j , Hj = Hp
j + Hs

j . (1)

We define the equivalent electric and magnetic surface current densities
on the surface Sj as

J j = nj × Hj and M j = −nj × Ej , (2)

where nj is the inner unit normal of Sj pointing into the interior of Dj .
If σj < ∞, the induced electromagnetic fields, Es

j , Hs
j , generated by

the currents J j and M j , can be expressed at point r ∈ Dj as [10, 15]

Es
j(J j ,M j)(r) = − 1

iωεj
(DjJ j)(r) − (KjM j)(r) (3)

Hs
j(J j ,M j)(r) = − 1

iωµj
(DjM j)(r) + (KjJ j)(r). (4)

The integral operators Dj and Kj are defined as [10, 15]

(DjF )(r) = ∇
∫
Sj

Gj(r, r′)∇′
s · F (r′)dS′ + k2

j

∫
Sj

Gj(r, r′)F (r′)dS′, (5)

(KjF )(r) =
∫
Sj

∇Gj(r, r′) × F (r′)dS′, (6)

where ∇′
s· denotes surface divergence of a tangential vector field in the

primed coordinates, and

Gj(r, r′) =
eikj |r−r′|

4π|r − r′| , (7)

is the homogeneous space Green’s function and kj is the wave number
of domain Dj .

Next we write the needed integral equations on the boundary
surfaces Sj of the domains Dj , j = 0, . . . ,K. Let r be a point in
Dj . Letting r → Sj and using the definition of the surface currents,
we get for the tangential components,(

Ep
j + Es

j

)
tan

= nj × M j , (8)(
Hp

j + Hs
j

)
tan

= −nj × J j , (9)
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for all j, j = 0, . . . ,K. By expressing the secondary fields in terms of
the surface currents with the integral representations (3) and (4) in (8)
and (9), and by using the tangential boundary values of the operators
K and D, [23], we get the following equations on the surface Sj(

− 1
iωεj

(DjJ j) − (KjM j) −
1
2
nj × M j

)
tan

= −(Ep
j )tan (10)

(
− 1
iωµj

(DjM j) + (KjJ j) +
1
2
nj × J j

)
tan

= −(Hp
j )tan, (11)

for all j, j = 0, . . . ,K. Equation (10) is called the Electric Field
Integral Equation (EFIE) and (11) is called the Magnetic Field Integral
Equation (MFIE). The PMCHWT formulation can be handled with
EFIEs and MFIEs. For the CFIE formulation we, in addition, need to
form the cross product of nj and MFIE and get the equation

− 1
iωµj

nj × (DjM j) + nj × (KjJ j) −
1
2
J j = −nj × Hp

j , (12)

which is called as nMFIE in this paper.

2.2. Basis Functions

For the discretization of the equations (10)–(12) we use the Galerkin
method and the Rao-Wilton-Glisson (RWG) basis functions [19]. In
order to define the basis functions suppose that the surfaces are divided
into planar triangular elements so that the elements on Sjl and Slj on
the opposite sides of the interface are equal and the meshes of the
surfaces match.

An RWG basis function fn assigned to an edge en of the triangular
mesh is defined as

fn(r′) =




Ln

2A+
n

(r′ − p+
n ), r′ ∈ T+

n ,

− Ln

2A−
n

(r′ − p−
n ), r′ ∈ T−

n ,

0 otherwise.

(13)

Here A+
n is the area of the triangle T±

n , Ln is the length of the common
edge en and p±

n is the “free” vertex of T±
n . An RWG function is

displayed in Figure 2.
Though the RWG function fn is not continuous on the surface Sj ,

it still has the following partial continuity property: the component of
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Figure 2. An RWG function fn assigned to the edge en.

fn normal to the edge en is continuous across the edge, and on the
outer boundary of the triangle-pair T+

n ∪ T−
n the component of fn

normal to that boundary vanishes and therefore is continuous across
that boundary. This partial continuity property of RWG functions
makes it possible to expand surface currents in the RWG functions
and preserve the surface current continuity across edges and junctions.

We finish this section by orienting the RWG functions which will
be used in the discretization. Let en be an edge on the interface Sjl

where only two domains Dj and Dl meet. Then two RWG functions
fn1 and fn2 are assigned to that edge and they are on the opposite
sides of Sjl. We now orientate them so that they flow into opposite
directions, i.e., fn1 = −fn2 see Figure 3. By this orientation the
boundary conditions of the surface currents can be easily satisfied,
as we will see later. If en is a junction edge, where more than two
subdomains Dj meet, then all the RWG functions assigned to en are
oriented so that on the opposite sides of the interfaces meeting en they
again flow into opposite directions, i.e, they all flow past the edge either
clockwise or counterclockwise, as illustrated in Figure 3.

2.3. Discretization by the Galerkin Method and RWG Basis
Functions

In our approach the integral equations (10)–(12) of the previous section
are discretized and converted into matrix equations by the Galerkin
method with the oriented RWG basis functions separately in each
domain. Let fn, n = 1, . . . , N (j) be the RWG basis functions defined
on the triangular mesh on the boundary surface Sj of the subdomain
Dj , where N (j) is the number of basis functions on the surface Sj . The
unknown electric and magnetic surface current densities on the surface
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Figure 3. Orientation of the basis functions at an edge on the interface
of two domains (a junction of two surfaces) and on the junction of four
surfaces. Arrows indicate positive direction of the basis functions.

Sj are expanded in terms of the oriented basis functions fn

J j =
N(j)∑
n=1

α(j)
n fn, M j =

N(j)∑
n=1

β(j)
n fn. (14)

The basis functions fn in the above expansions of J j and M j are called
electric and magnetic, respectively. Next the equations (10)–(12) are
converted into a matrix equation via a testing procedure. The EFIEs
and nMFIEs are tested with the electric testing functions, and the
MFIEs are tested with the magnetic testing functions. Since we apply
the Galerkin method, these two testing functions are the same, i.e., the
oriented RWG functions. By substituting the current approximations
(14) into (10)–(12) and by testing with the oriented RWG functions
fm, m = 1, 2, . . . , N (j), we get the following matrix equation in domain
Dj 


ZEJ(j) ZEM(j)

ZHJ(j) ZHM(j)

ZnHJ(j) ZnHM(j)




[
IJ(j)

IM(j)

]
=




V E(j)

V H(j)

V nH(j)


 . (15)

To decrease the singularity of the operator D, the gradient is
transformed into the testing function. By using the properties of the
RWG basis functions, integrating by parts and the Gauss divergence
theorem in the operator D, the elements of the impedance matrix are
given by [10]

ZEJ(j)
mn =

1
iωεj

∫
Tm

∇s · fm(r)
∫
Tn

Gj(r, r′)∇′
s · fn(r′)dS′dS
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+iωµj

∫
Tm

fm(r) ·
∫
Tn

Gj(r, r′)fn(r′)dS′dS, (16)

ZHJ(j)
mn =

∫
Tm

fm(r) ·
∫
Tn

∇Gj(r, r′) × fn(r′)dS′dS

+
1
2

∫
Tm

fm(r) · (nj × fn(r))dS, (17)

ZEM(j)
mn =−ZHJ(j)

mn and ZHM(j)
mn =

εj

µj
ZEJ(j)

mn , (18)

ZnHJ(j)
mn =

∫
Tm

(nj × fm(r)) ·
∫
Tn

∇Gj(r, r′) × fn(r′)dS′dS

−1
2

∫
Tm

fm(r) · fn(r)dS, (19)

ZnHM(j)
mn =

1
iωµj


 ∫

∂T+
m

+
∫

∂T−
m


mm ·(nj×fm(r))

∫
Tn

Gj(r, r′)∇′
s ·fn(r′)dS′dl

(20)

where in the line integrals in (20) over the boundary curves ∂T+
m and

∂T−
m of the triangles T+

m and T−
m the vector mn is the unit outer normal

of these boundary curves. In addition, Tn = T+
n ∪ T−

n is the support
of fn and Tm = T+

m ∪ T−
m is the support of fm. For the numerical

evaluation of these matrix elements with the singularity extraction
technique we refer to [24].

The vectors IJ(j) and IM(j) in (15) are the coefficient vectors of J j

and M j , including the coefficients α
(j)
1 , . . . , α

(j)
N(j) and β

(j)
1 , . . . , β

(j)
N(j),

and V E(j), V H(j) and V nH(j) are the excitation vectors

V E(j)
m = −

∫
Tm

fm(r) · Ep
j (r)dS, (21)

V H(j)
m = −

∫
Tm

fm(r) · Hp
j (r)dS, (22)

V nH(j)
m =

∫
Tm

(nj × fm(r)) · Hp
j (r)dS. (23)

Above m, n = 1, . . . , N (j), runs through all basis and testing functions
on the surface Sj and all matrix blocks in (15) are square.
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By repeating above testing procedure for all boundary surfaces
Sj of the domains Dj , j = 0, . . . ,K, we obtain the following block
diagonal matrix equation


Z(0) 0 0

0
. . . 0

0 0 Z(K)







I(0)

...
I(K)


 =




V (0)

...
V (K)


 , (24)

where

Z(j) =




ZEJ(j) ZEM(j)

ZHJ(j) ZHM(j)

ZnHJ(j) ZnHM(j)


 , (25)

I(j) =

[
IJ(j)

IM(j)

]
(26)

V (j) =




V E(j)

V H(j)

V nH(j)


 . (27)

This is the initial discretized system matrix equation, which
presents only the (approximative) integral equations (10)–(12) in
each subdomain and not the entire scattering and transmission field
problem, because the interactions between the dielectric domains have
not yet been taken into account via the boundary conditions. Also
extra equations must be removed by applying the the integral equation
formulation. We start now carrying out those two tasks.

3. STEP 2: ENFORCING THE BOUNDARY
CONDITIONS

The solutions of the integral equations (10)–(12) of Section 2.1 must
satisfy electromagnetic boundary conditions on the domain interfaces
and at the junctions. In the previous sections these solutions, namely
the equivalent surface current densities, were defined domain-wise
without taking into account the boundary conditions. Due to the these
conditions, the discretization of the equations leads to system equations
which include linearly dependent unknowns, related to J and M on
the interfaces of dielectric domains, and zero unknowns related to M
on the surfaces of metallic objects. In this section we find definite rules
how the extra unknowns and basis functions are removed by enforcing
the boundary conditions.
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3.1. Boundary Conditions

The formulation of Section 2.1 includes two kind of surfaces, metallic
and dielectric ones. A surface of a PEC object is called a metallic
surface and an interface of two homogeneous penetrable domains with
σ < ∞ is called a dielectric surface, or interface. Note that the
interfaces of homogeneous non-metallic domains are called dielectric
surfaces although the domains may be magnetic, too, i.e., µr > 1.
The metallic surfaces are further classified as closed and open surfaces,
depending whether the surface circumvents a 3D body or not.

The boundary conditions of the electromagnetic fields directly
determine how the surface currents behave on the metallic and
dielectric surfaces. The boundary conditions are

1. n × E and n · H vanish on metallic surfaces,
2. n × E and n × H are continuous across dielectric surfaces.

The first boundary condition immediately yields the important result:
the magnetic current M = −n × E vanishes on metallic surfaces. In
the following subsections we study what other properties the boundary
conditions imply for the surface currents, in particular, at junctions of
various types.

3.2. Classification of Edges and Junctions

For treating the boundary conditions and the integral equation
formulation, we classify the edges and junctions into the following three
cases. Let en be an edge on the triangular mesh. It is called a junction,
if more than two domains or surfaces meet at en. Otherwise, we call
en a single edge, or just an edge. We classify edges and junctions en

as follows:

1. Dielectric edge or junction: en lies on an intersection of two or
more dielectric surfaces but does not meet any metallic surfaces.

2. Metallic edge or junction: en lies on intersection of open or closed
metallic surfaces but does not meet any dielectric surfaces.

3. Composite metal-dielectric junction: en lies on an intersection of at
least one open or closed metallic surface and at least one dielectric
surface.

Next we consider the boundary conditions in these three cases of edges
and junctions.
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3.3. Dielectric Edge or Junction

Let us next consider the surface currents and their expansions in the
basis functions on a dielectric interface Sjl between two dielectric
domains Dj and Dl. The boundary conditions directly imply that

J j = −J l, and M j = −M l. (28)

This follows from the obvious fact that the surface currents are related
to the fields by J = n × H and M = −n × E and the tangential
components of the fields are continuous across a dielectric interface
and the normal vectors n point into opposite directions. Because the
two basis functions assigned to an edge on Sjl and on the opposite sides
of Sjl, flow into opposite directions (orientation of the basis functions),
in the surface current representations they must have equal coefficients.
This is illustrated in Figure 4.

1

2

1 2

34

Figure 4. Combination of the unknowns associated to the electric
and magnetic basis functions assigned at an edge on the interface of
two dielectric domains and on the junction of four dielectric domains.
Dashed lines denote dielectric surfaces and curved arrows indicate the
basis functions with the same unknown coefficient. Numbers indicate
dielectric domains.

This analysis generalizes to the dielectric junctions as follows.
Let en be a dielectric edge or junction where two or more dielectric
domains meet. Because the components of E and H, parallel to en,
are also tangential components on the surfaces which meet at en, those
components are continuous across the edge en into all directions. This
implies that the components of the surface currents J j = nj ×H and
M j = −nj ×E, normal to the edge en, are continuous across the edge
on an interface Sj which meets en. This is the (partial) continuity
property of the surface currents on the dielectric edges and junctions,
i.e., Kirchoff’s laws for the surface currents. Furthermore, because of
this continuity and (28), the normal components of all currents J j and
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M j , on surfaces Sj which meet en, must have the same absolute value
at en, respectively. In order to make the current expansions in the
oriented RWG functions to behave similarly at en, all basic functions
of the same type, electric or magnetic, which are assigned to en, must
have the same coefficient. Note that only those basis functions which
are assigned to en contribute to the normal component on en. We get
now our first rule for reducing the number of unknowns:

Rule 1: The unknown coefficients of the oriented basis functions
of the same type assigned to the same dielectric edge or junction
must have the same value and, hence, these unknowns must be
combined into a single unknown.

Thus, at an edge or a junction of M dielectric surfaces, there are only
two independent unknowns, one for J and another for M . For the
system equations this rule implies that the columns of the system
matrix associated with the basic functions of the same type and
assigned to the same dielectric edge or junction are combined. This is
illustrated in Figure 4.

3.4. Metallic Edge or Junction

Next we consider the surface currents and their expansions in the
oriented RWG functions at a junction of M metallic surfaces. The
surfaces may be open or closed. Since the boundary conditions imply
that M vanishes on metallic surfaces, the magnetic basis functions
associated to en will be removed. In addition, since the magnetic
field is not necessarily continuous across metallic surfaces, J must
have independent values on the opposite sides of the metallic surfaces.
This, in turn, implies that the unknown coefficients associated to the
electric basis functions assigned on a metallic junction or edge can
not be combined. Naturally the electric basis functions inside closed
metallic objects are removed and such basis functions should not ever
be created.

There is one exception to the above rule, namely if all metallic
surfaces associated to en are open and en is completely in the interior
of one homogeneous dielectric domain. Consider first an open metallic
surface S inside a homogeneous dielectric subdomain Dj . As already
is mentioned, J must have independent values on the opposite sides
of S. Let us denote these currents by J1 and J2. Let en be an edge
on S so that en is completely in the interior of Dj , and let f1 and
f2 be the basis functions assigned to en with unknown coefficients α1

and α2. In a homogeneous medium, however, these two basis functions
produce the same fields with opposite signs due to the orientation of
the basis functions. Therefore, in order to avoid linear dependence of
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the columns of the system matrix, the fields of the basis functions must
be presented by only one of them, say that of f1, and α1 − α2 can be
considered as a new single unknown.

The above analysis generalizes for junctions of an arbitrary
number of open metallic surfaces inside a homogeneous medium. Note
also that we do not need the basis functions which are assigned to a
boundary edge of an open metallic surface and lying completely inside
a homogeneous dielectric domain, because J has no component normal
to such a boundary edge. Therefore, those electric basic functions and
unknowns associated with them can be removed. In summary, we get
our second rule:

Rule 2: At a metallic edge or junction meeting no dielectric
surfaces, all the magnetic basis functions in the expansion of M ,
with their unknowns, must be removed. In addition, if all surfaces
assigned to en are open metallic surfaces and en lies completely in
the interior of a homogeneous dielectric domain, one of the electric
basis functions in the expansion of J must be removed.

For the system equations this rule means that those columns of the
system matrix, which are associated with the removed unknowns, will
be removed. Rule 2 is illustrated in Figure 5.

3.5. General Metal-Dielectric Junction

Next let en a general metal-dielectric junction. Because M vanishes on
metallic surfaces, then at en the component of M , normal to en, also
vanishes, and so the magnetic basis functions assigned at en and the
unknowns associated with them are removed. Again due to the fact
that the magnetic field is not continuous across open metallic surfaces,
J must have two independent values on the opposite sides of an open
metallic surface. This implies that in the expansion of J the unknown
coefficients of the basis functions assigned to en on the opposite sides
of metallic surfaces should be considered as independent unknowns,
too. By combining this with the previous Rule 2, we obtain our third
rule:

Rule 3: In the expansions of J the unknown coefficients of
the electric basis functions assigned to a general metal-dielectric
junction between two metallic surfaces must have the same
value and the corresponding unknowns must be combined to a
single unknown. In the expansions of M the magnetic basis
functions, with their unknowns, assigned to a general metal-
dielectric junction must be removed.
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Figure 5. Basis functions and their unknowns at metallic junctions.
Solid lines denote open metallic surfaces, closed metallic domains are
denoted by black and the unknowns associated to the electric basis
functions denoted with dashed lines are removed. Numbers indicate
domains. Note that the unknowns can not be combined in the three
cases at the top.

For the system equations this rule means that those columns, which are
associated with the unknowns to be combined, will added together, and
those columns are removed, which are associated with the magnetic
basis functions to be removed. Figure 6 illustrates treatment of the
electric unknowns at composite metal-dielectric junctions.

4. STEP 3: EFIE-CFIE-PMCHWT FORMULATION

After having removed the extra unknowns from the system equations
by enforcing the boundary conditions, the remaining system has more
equations than unknowns. In order to get a well-defined system,
the number of equations has to be reduced to that of the remaining
unknowns. The way how this reduction is done depends on the
integral equation formulation. In this paper we apply the EFIE-CFIE-
PMCHWT formulation, where EFIE and CFIE are applied on the
metallic surfaces depending whether the surface is open or closed, and
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Figure 6. Basis functions and unknowns at composite metal-dielectric
junctions. Thick lines denote open metallic surfaces, dashed lines
denote dielectric surfaces, closed metallic objects are denoted by black
and curved arrows indicate the basis functions with the same unknown
coefficient. Numbers indicate domains.

PMCHWT is applied on the dielectric surfaces.
In this section we describe how the EFIE-CFIE-PMCHWT

formulation is enforced on the reduced system equations by removing
and combining certain equations. This gives a natural generalization of
the PMCHWT formulation for both multiple dielectric and composite
metal-dielectric junctions.

4.1. PMCHWT at Dielectric Edge or Junction

For a single edge on an interface of two dielectric domains the
PMCHWT formulation is a summation of the EFIEs and MFIEs,
respectively, defined on the opposite sides of the interface [20]. The
PMCHWT formulation is generalized for dielectric junctions as follows.
Let next en be a dielectric edge or a junction. We sum the adjacent
EFIEs and MFIEs, respectively, as follows,

M∑
m=1

EFIE(m)
n , and

M∑
m=1

MFIE(m)
n , (29)

where M is the number of domains meeting at en, and EFIE(m)
n and

MFIE(m)
n are the discretized EFIEs and MFIEs in those domains tested

with the oriented RWG functions assigned to en. Equation (29) is a
direct generalization of the conventional PMCHVVT equations with
M = 2. It is also the same formulation as e.g., in [15] and [16], though
the treatment is different in those papers. For the system equations,
(29) means that the system equations EFIE(m)

n and MFIE(m)
n are added
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together, respectively. This, in turn, corresponds to combining the
rows of the matrix equation.

4.2. EFIE and CFIE at Metallic Edges and Junctions

First let en be an open metallic edge or a junction of open metallic
surfaces. By Rule 2 we have already removed all unknowns associated
with the magnetic basis functions assigned to en. Since we apply EFIE
on open metallic surfaces, now we also remove all MFIEs and nMFIEs,
which are tested with the basis functions assigned to en, from the
system equations.

If en is completely inside one dielectric domain, by Rule 2 we have
also removed one of the unknowns associated with the electric basis
functions assigned to en. Thus, now we, in addition, remove that EFIE
from the system equations which was tested with the corresponding
electric basis function. Thereafter, if en is an edge or a junction
where M open metallic surfaces meet inside one dielectric domain,
there remain M − 1 electric equations for M − 1 (combined) electric
unknowns associated with en.

Next let en be a single edge on a closed metallic surface or at a
junction of a closed metallic surface and at least one open metallic
surface. Again by Rule 2 we remove all the unknowns associated with
the magnetic basis function assigned to en. The CFIE formulation [21]
at en means that the EFIE and nMFIE tested by the remaining electric
basis function and denoted by EFIE(l)

n and nMFIE(l)
n , respectively, are

combined as
αEFIE(l)

n + (1 − α)ηl nMFIE(l)
n , (30)

where ηl =
√
µl/εl and α is a coupling coefficient, which we set

α = 1/2. Accordingly, there remain one (combined) system equation
and one (electric) unknown at en and we have also removed the MFIE,
which is tested with the removed magnetic basis function, from the
system equations.

4.3. EFIE and CFIE on General Metal-Dielectric Junction

Finally we consider the formulation at a general metal-dielectric
junction en. Also here by Rule 2 we have already removed the magnetic
unknowns associated with the magnetic basis functions assigned to en.
Accordingly, we remove also all MFIEs tested by those magnetic basis
functions.

If en does not meet any closed metallic surfaces, then the EFIEs
assigned to en are combined between any two metallic surfaces by
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summing the corresponding EFIEs together

M∑
m=1

EFIE(m)
n , (31)

where M is the number of dielectric domains between the two metallic
surfaces. In that case we remove also all nMFIEs tested by those
electric basis functions associated to en.

If en lies on a closed metallic surface, then the EFIEs and nMFIEs
assigned to en are combined between any two metallic surfaces by
summing the corresponding CFIEs as

M∑
m=1

CFIE(m)
n , (32)

where M is again the number of dielectric domains between the two
metallic surfaces. Due to Rule 3 we in both above cases arrive at the
same reduced number of equations and unknowns at en.

5. NUMERICAL VALIDATION

In this section the developed method is verified by considering
numerical examples. We consider scattering by inhomogeneous
dielectric and composite objects and analysis of mlcrostrip and
dielectric resonator antennas. The example cases are illustrated in
Figure 7.

First consider an inhomogeneous dielectric sphere made of two
hemispheres illuminated with an axially incident plane wave. The
relative electric permittivity of the hemisphere at the top, εr1, is fixed
as 4 and the relative electric permittivity of the second hemisphere at
the bottom, εr2, is varied from 4 to 8. The electrical size of the sphere
is k0r = 1, where k0 is the free space wave number (wave number of the
exterior) and r is the radius of the sphere. Figure 8 shows the electric
and magnetic surface current densities on the surface of the sphere
along a circumferential arc. Along the arc, two current components,
Jθ, Jφ and Mθ, Mφ, normalized with the incident magnetic field and
electric field, respectively, are displayed similarly as in [26] and [25]. In
the case εr1 = εr2, the solution of our method is compared to the Mie
series solution and to the numerical solution of a homogeneous sphere
and the results show a good agreement.

Then we consider the same inhomogeneous dielectric sphere,
but in this case the second hemisphere at the bottom is PEC.
Figure 9 shows the equivalent electric and magnetic surface currents
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Figure 7. Example geometries from left to right and from
top to bottom: An inhomogeneous dielectric sphere made of two
homogeneous hemispheres, a composite sphere made of a dielectric
hemisphere and metallic hemisphere, a rectangular microstrip antenna
and a hemispherical dielectric resonator antenna. The spheres are
illuminated with a plane wave from the top (from the side of εr1)
and the antennas are excited with coaxial lines.

on the surface of the sphere similarly as in Figure 8. The currents
are calculated with the EFIE-PMCHWT and CFIE-PMCHWT
formulations.

Consider next a rectangular microstrip antenna with a finite
ground plane and substrate [27]. The size of the patch is 30 × 20 mm
and the size of the ground plane is 50 × 40 mm, both centered to
the origin. The antenna is fed by a coaxial line with inner radius
of 0.22 mm and outer radius of 1.4 mm at point (0,−2.5, 0) mm. The
relative epsilon of the substrate is 10 and the height of the substrate
is 6.35 mm. Figure 10 shows the calculated input impedance of the
antenna as a function of the frequency. The same antenna is considered
also in [28] with an infinite ground plane and with a lossy (infinite)
substrate (εr = 10.2, tanδ = 0.001). Figure 10 shows the results of the
present method with a lossy substrate, too. For comparison the results
obtained with the multilayered medium approach of [29] and [30] are
also presented. In that method, the ground plane and the substrate are
modeled as planar infinite layers with an appropriate layered medium
Green’s function. We repeated the calculations of Figure 10 with a
larger 100 × 80 mm ground plane and substrate, too, using the method
of this paper. Figure 10 shows that the results calculated with the large
substrate and ground plane agree better with the results obtained with
the layered model of [29] and [30] than the results calculated with the
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Figure 8. The electric and magnetic current densities on the surface
of an inhomogeneous sphere made of two hemisphere with εr1 = 4 and
εr2 = 4, 5, 6, 7, 8, illuminated with an axially incident plane wave.

original dimensions. Thus, we may conclude that the finite size of the
substrate and ground plane has a clear effect on the computed input
impedances.

Then we consider a hemispherical dielectric resonator antenna
(HSDRA) [31, 15]. The hemisphere of radius r = 0.0254 m is placed
over a finite PEC plane of size l1 × l2, where l1 = l2 = c ∗ r with a
constant multiplier c, both centered to the origin. The relative epsilon
of the sphere is 8.9 and tanδ = 0.0038. The antenna is fed by a 50 Ohm
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Figure 9. The electric and magnetic current densities on the surface
of an inhomogeneous sphere made of two hemisphere with εr1 = 4 and
σ2 = ∞, illuminated with an axially incident plane wave.

coaxial line of inner radius 0.75 mm placed at point (0, 0.0174, 0) m.
Height of the probe is 0.0152 m. Figure 11 shows the input impedance
of the antenna as a function of the frequency with c = 2 and c = 3.
The results compare reasonable well with the ones presented in [31]
and [15]. The differences may be explained by the fact we apply finite
ground plane whereas in [31] and [15] the ground plane is considered
by mirroring as an infinite one. Figure 11 shows that the results of
the present method approaches the ones of [15] when the size of the
ground plane is enlarged.



Progress In Electromagnetics Research, PIER 52, 2005 103

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2
0

20

40

60

80

100

120

140

Frequency [GHz]

Z
Real(Z)

Imag(Z)

Real(Z) - large

Imag(Z) - large

Real(Z) - infinite

Imag(Z) - infinite

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2
0

20

40

60

80

100

120

140

Frequency [GHz]

Z

Real(Z)

Imag(Z)

Real(Z) - large

Imag(Z) - large

Real(Z) - infinite

Imag(Z) - infinite

Figure 10. Input impedance of a rectangular microstrip antenna fed
by a coaxial line as a function of the frequency. Real part is denoted
by a solid line and imaginary part is denoted by a dashed line. At
the upper figure the substrate has εr = 10, tanδ = 0 and at the lower
figure εr = 10.2, tanδ = 0.001. The results obtained by the layered
model [29, 30], are denoted by circles and the results calculated with a
large 100 × 80 mm ground plane and substrate are denoted by stars.
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Figure 11. Input impedance of a HSDRA fed by a coaxial line as
a function of frequency. Real part of the impedance is denoted by a
solid line and imaginary part is denoted by a dashed line. The results
obtained with the larger ground plane of size 3r × 3r are denoted by
circles.

6. CONCLUSIONS

In this paper electromagnetic analysis of complex three dimensional
structures made of composite metallic and homogeneous dielectric
regions is considered with the surface integral equation method. The
method is based on the EFIE-CFIE-PCMHWT formulation and the
Galerkin method with the oriented RWG basis and testing functions.
An efficient three steps numerical procedure is presented. As the
first step, the discretization and testing of the integral equations
are performed individually in subdomains. In the second step, the
electromagnetic boundary conditions are enforced by removing zero
unknowns and combining linearly dependent unknowns. As the last
step, the number of equations is reduced by enforcing the wanted
integral equation formulation.

The great benefit of the our approach is that it separates the
expansion of the surface currents in the basis functions, the testing
and the integral equation formulation from the enforcement of the
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boundary conditions, thus making the treatment of junctions much
more straightforward and easier. In particular, no special junction
basis functions or special testing procedures at junctions are needed.
Also separating the formulation from the first two steps, makes it much
easier to modify the procedure for other integral equation formulations.
In practice, the procedure can be condensed into simple bookkeeping
rules by which the final system matrix can be directly assembled in
an efficient way. The presented approach is validated with numerical
examples.
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