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Abstract—A study is made of the characteristics of a perfectly
conducting cylindrical antenna insulated from the surrounding cold
collisionless magnetoplasma by an isotropic coaxial cylindrical sheath
for the case where the antenna is aligned with an external magnetic
field and is excited by means of a delta-function voltage generator.
A rigorous representation is obtained for the current distribution
on an infinitely long antenna. It is shown that in the whistler
frequency range, the current distribution of a sufficiently thin antenna
is determined mainly by the eigenmode whose guided propagation
is found to be supported along the antenna. Based on the results
obtained for an infinitely long antenna, a generalized transmission-line
theory is developed for determining the current distribution and the
input impedance of an insulated antenna of finite length located in a
resonant magnetoplasma. The influence of the sheath parameters on
the antenna characteristics is analyzed.
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1. INTRODUCTION

The characteristics of cylindrical antennas in an unbounded cold
magnetoplasma have been studied in a large number of papers. Many
earlier works on this subject (see, e.g., [1–4] and references therein)
treated the input impedance and the total field of a comparatively
short dipole antenna with assumed current distribution. For the special
case of a uniaxially anisotropic plasma medium, the problem of finding
the current distribution and the input impedance of a cylindrical
dipole antenna was considered exhaustively in [5–7]. The effect of
the insulation of the antenna conducting surface from such a medium
on the characteristics of an infinitely long cylindrical antenna was
examined in [8].

When the surrounding medium is a magnetoplasma possessing
gyrotropic properties, the problem of finding the current distribution
on a cylindrical antenna becomes so complicated that there
appear enormous difficulties for a solution. The complexity of this
problem increases significantly for the case where a cold collisionless
magnetoplasma is at resonance [6, 9]. Recall that the refractive index
surface for one of the characteristic waves of a resonant magnetoplasma
extends to infinity as the angle between the wavenormal direction
and the gyroelectric axis of the medium approaches a certain
value determined by the plasma parameters. For a nonresonant
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magnetoplasma, the problem of the antenna current distribution is
still tractable in some special cases [10, 11]. However, under resonance
conditions, the conventional approaches such as that based on the
integral-equation method cannot be employed readily for the antenna
analysis. This is explained by the fact that, in contrast to the
standard thin-antenna theory [12], it is now impossible to introduce
the customary small parameter of antenna theory in the form of the
ratio of the antenna-wire radius to the characteristic wavelength, since
there always exist some wavenormal directions for which wavelengths
in the plasma medium will be less than the wire cross-sectional
extent. Therefore, most analyses of the cylindrical antenna in a
resonant magnetoplasma use either the approximate transmission-line
theory [13] or treat the current distribution on the antenna surface as
a boundary-value problem [14–17].

Within the framework of the latter approach, as a first step,
the current waves in an infinitely long antenna are determined.
Then the truncation of the antenna to a finite length is performed,
which leads to reflections of current waves of similar type from the
antenna ends. Using such a waveguide approach, it was shown that,
in general, the current on an uninsulated antenna immersed in a
resonant magnetoplasma and excited by a voltage source comprises
contributions from an eigen (bound) mode, which can exist in some
frequency bands [18, 19], and from continuous-spectrum waves [14, 17].
In some cases important for applications, the eigenmode contribution
is found to dominate the current distribution on a fairly thin antenna
excited by a delta-function voltage source [17].

In recent years, there has been shown an increased interest in
the characteristics of long cylindrical antennas insulated from the
surrounding magnetoplasma by a concentric cylindrical sheath of a
dielectric or free space. This interest has in particular been motivated
by the results of experiments with a conducting ionospheric tether
capable of guiding the current waves [20]. It should be noted that
the insulation of the antenna from the surrounding magnetoplasma by
a coaxial dielectric sheath can make the antenna characteristics less
dependent on the plasma parameters and, hence, more predictable.
Moreover, it is well known that the conducting wire immersed in the
plasma is usually surrounded by the region of very reduced electron
density formed around the antenna due to absorption of charged
particles by the antenna surface. In theoretical considerations, the
presence of this region known as the ion sheath can be taken into
account in an idealized manner by considering the cylindrical antenna
to be insulated from the surrounding plasma by a coaxial layer of free
space.
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In view of the above, the analysis of the insulated cylindrical
antenna in a magnetoplasma is of crucial importance for an
understanding of the behavior of the antenna characteristics under
conditions of actual experiments. In the present paper, we consider
a cylindrical antenna insulated from the surrounding magnetoplasma
by a thin concentric dielectric or free-space sheath. The emphasis is
placed on the case of a resonant magnetoplasma in which the refractive
index surfaces may have unbounded branches. The main purpose of
this work is to determine conditions under which the presence of the
insulation can significantly affect the antenna characteristics.

We will fist consider an infinitely long structure comprising the
cylindrical conductor, the insulating sheath, and the plasma, assuming
that this structure is aligned with an external magnetic field. Then we
will proceed to the analysis of a more realistic finite cylindrical antenna.

0

B0

~

=0

Plasma

E

Figure 1. Geometry of the problem.

2. FORMULATION OF THE PROBLEM FOR AN
INFINITELY LONG ANTENNA

The geometry of the problem for an antenna of infinite length is shown
in Fig. 1. A perfectly conducting cylinder of radius a0 is oriented
in such a way that its axis is aligned with a superimposed uniform
static magnetic field �B0 = B0ẑ0 parallel to the z axis of a cylindrical
coordinate system ρ, φ, and z. The antenna is insulated from the
surrounding magnetoplasma by a homogeneous isotropic dielectric or
free-space sheath which extends radially from ρ = a0 to ρ = a. The
plasma medium in the region ρ > a is assumed cold, collisionless, and
homogeneous. The antenna is driven at its center by a given time-
harmonic voltage V applied uniformly around an infinitesimally thin
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circumferential gap. This voltage creates the field

Eext
z = V δ(z) (1)

on the cylinder surface, i.e., at ρ = a0 +0 (δ is a Dirac delta function).
The time dependence for the generator (1) and all the field components
is assumed as exp(iωt) and suppressed throughout the analysis.

The plasma medium is described by the relative dielectric tensor

ε =


 ε −ig 0

ig ε 0
0 0 η


 (2)

whose elements can be found elsewhere (see, e.g., [21]). In what follows
we focus on the case where sgn ε �= sgn η. It is in this case that a
magnetoplasma turns out to be resonant [6, 9, 22]. The insulating
sheath around the antenna is characterized by the relative dielectric
permittivity ε̃. If the medium inside the sheath is free space, then
ε̃ = 1.

The electric current �J induced on the antenna surface can be
expressed in the form

�J = ẑ0 Iz(z) δ(ρ− a0) + φ̂0 Iφ(z) δ(ρ− a0). (3)

Here, Iz and Iφ are, respectively, the axial and azimuthal components
of the surface-current density.

The time-harmonic Maxwell’s equations inside the plasma (ρ > a)
are given by

∇× �E = −iωµ0
�H, (4)

∇× �H = iωε0 ε · �E, (5)

where ε0 and µ0 are the permittivity and permeability of free space,
respectively. Replacing the tensor ε in (5) by the scalar permittivity
ε̃, we can obtain Maxwell’s equations for the field inside the sheath
(a0 < ρ < a). The boundary conditions for the electric and magnetic
fields are written as

Ez + Eext
z = 0, Eφ = 0 at ρ = a0 + 0 (6)

and

Eφ,z(ρ = a−0) = Eφ,z(ρ = a+0), Hφ,z(ρ = a−0) = Hφ,z(ρ = a+0).
(7)

Solving the above Maxwell’s equations with the boundary conditions
(6) and (7), one can find the axial and azimuthal components of the
current (3) induced on the antenna surface.
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3. CURRENT DISTRIBUTION ON AN INFINITELY
LONG ANTENNA

3.1. Integral Representation of the Antenna Current

The electric and magnetic fields in the regions a0 < ρ < a and ρ > a
can be expressed in the form of an integral representation by means of
spatial Fourier transforms as follows:

�E(ρ, z) =
k0

2π

∫ ∞

−∞
�E(ρ, p) exp(−ik0pz) dp,

�H(ρ, z) =
k0

2π

∫ ∞

−∞
�H(ρ, p) exp(−ik0pz) dp, (8)

where p is the axial wavenumber normalized to the free-space
wavenumber k0 = ω(ε0µ0)1/2. In (8), use was made of the fact that
all the field components are evidently independent of the azimuthal
coordinate φ in the problem under consideration. The vector functions
�E(ρ, p) and �H(ρ, p) can be described using two scalar functions Eφ(ρ, p)
and Hφ(ρ, p). Inside the insulating layer (a0 < ρ < a), they satisfy
Bessel’s equation

L̂

{
Eφ

Hφ

}
+ k2

0 (ε̃− p2)

{
Eφ

Hφ

}
= 0, (9)

where

L̂ =
∂2

∂ρ2
+

1
ρ

∂

∂ρ
− 1

ρ2
.

Inside the plasma (ρ > a), the functions Eφ(ρ, p) and Hφ(ρ, p) satisfy
the following system of second-order coupled differential equations [22]:

L̂Eφ +
k2

0

ε

[
ε(ε− p2) − g2

]
Eφ = −ik2

0

g

ε
pZ0Hφ,

L̂Hφ + k2
0

η

ε

(
ε− p2

)
Hφ = ik2

0

η

ε
gpZ−1

0 Eφ, (10)

where Z0 = (µ0/ε0)1/2 = 120π ohms is the impedance of free space.
Equations (9) and (10) are easily derived from Maxwell’s equations.
The details of the derivation can be found in [22].

Solving the above field equations, we can write the tangential
components (with respect to the surface ρ = const) of the electric
and magnetic fields as follows [22]:
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(i) inside the sheath (a0 < ρ < a),

Eφ(ρ, p) = i [A1 J1(Q0ρ/a0) + A2 Y1(Q0ρ/a0)] ,

Ez(ρ, p) =
iQ0

k0a0ε̃
[B1 J0(Q0ρ/a0) + B2 Y0(Q0ρ/a0)] ,

Hφ(ρ, p) = −Z−1
0 [B1 J1(Q0ρ/a0) + B2 Y1(Q0ρ/a0)] ,

Hz(ρ, p) = −Z−1
0

Q0

k0a0
[A1 J0(Q0ρ/a0) + A2 Y0(Q0ρ/a0)] ; (11)

(ii) inside the plasma (ρ > a),

Eφ(ρ, p) = i
2∑

k=1

Ck H
(2)
1 (Qkρ/a),

Ez(ρ, p) =
i

k0aη

2∑
k=1

Ck nkQkH
(2)
0 (Qkρ/a),

Hφ(ρ, p) = −Z−1
0

2∑
k=1

Ck nkH
(2)
1 (Qkρ/a),

Hz(ρ, p) = −Z−1
0

1
k0a

2∑
k=1

Ck QkH
(2)
0 (Qkρ/a). (12)

Here, Jm and Ym are Bessel functions of the first and second kind of
order m, respectively, H(2)

m are Hankel functions of the second kind of
order m, and A1,2, B1,2, and C1,2 are undetermined coefficients. The
remaining notations are given by the expressions

Q0 = k0a0q̃(p), Q1,2 = k0aq1,2(p),

n1,2 = −ε[p2 + q2
1,2(p) + (g2 − ε2)/ε]/(pg). (13)

The quantities q̃ and q1,2 are the normalized (to k0) transverse
wavenumbers referring to the insulating sheath and the magneto-
plasma, respectively, and are described by the expressions

q̃(p) = (ε̃− p2)1/2
, (14)

qk(p) =
{[

ε2−g2+εη−(η+ε)p2+(−1)kRq(p)
]/

2ε
}1/2

, k=1, 2, (15)

Rq(p) = −(η − ε)
[
(p2 − P 2

b )2(p2 − P 2
c )

]1/2
, (16)
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where

Pb,c =

{
ε− (η + ε)

g2

(η − ε)2
+

2χb,c

(η − ε)2
[
εg2η

(
g2 − (η − ε)2

)]1/2
}1/2

,

(17)
with χb = −χc = −1. The square root in the expression (15) for
q1,2 is chosen to ensure the inequality Im q1,2(p) < 0 appropriate
to the radiation condition at infinity. It is worth noting that, in
some frequency ranges, Im q1,2(p) may be zero in a cold collisionless
magnetoplasma. In this case, it is necessary to introduce a small loss
in the medium when choosing the branches of these functions. In the
resulting formulas, however, we will pass to the case of a lossless plasma
medium. The branches of the multivalued functions q̃(p) and Rq(p)
may be chosen arbitrary. To avoid ambiguity, we will put Re q̃(p) > 0
and ReRq(p) > 0 throughout.

By imposing the boundary conditions (6) and (7), we can
determine the coefficients A1,2, B1,2, and C1,2 in formulas (11) and (12).
Then the axial and azimuthal components Iz(p) and Iφ(p) of the
Fourier-transformed surface-current density on the antenna can be
obtained through the relations

Iz(p) = Hφ(a0, p), Iφ(p) = −Hz(a0, p). (18)

Evaluating Hφ(ρ, p) and Hz(ρ, p) at ρ = a0 and substituting them into
(18), after some lengthy algebra we arrive at

Iz(z) = − i

2π
V

Z0
k2

0a0ε̃

∫ ∞

−∞

Fz(p)
Λ(p)

exp(−ik0pz) dp, (19)

Iφ(z) =
2i
π3

V

Z0
k0ε̃

∫ ∞

−∞

Fφ(p)
Λ(p)

exp(−ik0pz) dp, (20)

where

Fz(p) = S2
10D00 + S10S11(D01 + D10) + S2

11D11,

Fφ(p) = Q1H
(2)
0 (Q1)H

(2)
1 (Q2) −Q2H

(2)
0 (Q2)H

(2)
1 (Q1),

Λ(p) = Q0 [S00(S10D00 + S11D01) + S01(S10D10 + S11D11)],

D00 = Q2H
(2)
1 (Q1)H

(2)
1 (Q2)(n1 − n2),

D01 = Q
[
n2Q1H

(2)
0 (Q1)H

(2)
1 (Q2) − n1Q2H

(2)
0 (Q2)H

(2)
1 (Q1)

]
,

D10 = −Q
ε̃

η

[
n1Q1H

(2)
0 (Q1)H

(2)
1 (Q2) − n2Q2H

(2)
0 (Q2)H

(2)
1 (Q1)

]
,

D11 =
ε̃

η
Q1Q2H

(2)
0 (Q1)H

(2)
0 (Q2)(n1 − n2),
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Slm = Jl(Q0)Ym(Q)−Jm(Q)Yl(Q0), Q=k0aq̃(p), l=0, 1, m=0, 1.
(21)

Formulas (19)–(21) constitute the solution to the problem of the
current distribution on the surface of an infinite, perfectly conducting
insulated cylinder and are valid for a magnetoplasma described by the
dielectric tensor of general form (2).

The expression Λ(p) in (19) and (20) has a clear physical meaning.
It is not difficult to verify that the relation

Λ(p) = 0 (22)

is the dispersion equation for axisymmetric eigenmodes guided by a
perfectly conducting insulated cylinder in a magnetoplasma. Further
analysis of the current distribution on the cylinder surface is preceded
by solving the dispersion equation for the cases of interest to us.

3.2. Eigenmodes Guided by a Thin Insulated Cylinder

We now consider eigenmodes which can be guided by an insulated
cylinder. The propagation constants (axial wavenumbers) of these
modes are poles of the integrands in formulas (19) and (20). As
mentioned above, these poles are zeros of Λ(p). Although the branch
points p = ±Pb,c of the functions qk(p) and Rq(p) are also roots
of (22), they are not poles of the above-mentioned integrands since
both the numerators and denominators of the integrands vanish at
these points so that the integrands approach finite values. As a result,
the integrands remain finite at the points p = ±Pb,c. Furthermore, it
can be shown that the branch points p = ±ε̃1/2 of the function q̃(p)
are not poles of the integrands in (19) and (20). Recall that a perfectly
conducting sheathless cylinder immersed in a resonant magnetoplasma
can in general support a single axisymmetric eigenmode if ε > 0 and
η < 0 [14, 17, 19]. In what follows we limit ourselves to consideration
only of the whistler frequency range. The resonant part of the whistler
range includes the subranges

ωLH < ω < ωH/2 < ωp, (23)

ωH/2 < ω < ωH < ωp, (24)

where ωLH is the lower hybrid frequency and ωH and ωp are the
gyrofrequency and the plasma frequency of electrons, respectively.
We note that waves whose frequencies lie in intervals (23) and (24),
in which ε > 0, g < 0, and η < 0, are of great importance for
numerous promising applications (see, e.g., [20, 22]). As is known,



144 Kudrin et al.

P

P

0

P

0

Figure 2. Typical whistler-mode refractive index surfaces for
(a) frequency range (23) and (b) frequency range (24).

only one characteristic wave of a cold homogeneous magnetoplasma
is propagating in the whistler range. This wave is commonly called
the whistler mode. The other characteristic wave is evanescent in the
frequency range considered. As an example, Figs. 2a and 2b show
typical whistler-mode refractive index surfaces for frequency ranges
(23) and (24). The refractive-index surface for range (23) is described
by the function q1(p) in the region 0 < q < qc, and by the function
q2(p) in the region qc < q < ∞, where the point qc = q1(Pc) = q2(Pc)
corresponds to conical-refraction whistler-mode waves possessing the
axial wavenumber p = Pc [22]. The refractive-index surface for range
(24) is described by the function q2(p). It is worth mentioning that
the quantity q1(p) cannot be purely real for all real values of p at
frequencies (24). We also introduce a quantity Pe = (ε− g)1/2, which
is the axial wavenumber of a whistler-mode wave propagating in a
homogeneous unbounded magnetoplasma strictly along the external
magnetic field (see Figs. 2a and 2b). At p = Pe, we evidently have
q1(Pe) = 0 for range (23) and q2(Pe) = 0 for range (24).

The properties of the eigenmode guided by a sheathless cylinder
in a magnetoplasma at frequencies (23) and (24) were considered in
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detail in [17]. It was shown that the propagation constant p = p0 of
the eigenmode can be found by solving the equation

n1Q1H
(2)
0 (Q1)H

(2)
1 (Q2) − n2Q2H

(2)
0 (Q2)H

(2)
1 (Q1) = 0, (25)

which follows from equation (22) in the case where a0 = a. In the
frequency range (23), the propagation constant p0 is found to lie in the
region

Pb < p0 < Pc, (26)

In this case, q1(p0) and q2(p0) are complex and satisfy the relationship
q1(p0) = −q∗2(p0), where the asterisk stands for complex conjugate.
Note that the mode field is transversely decaying since Im q1,2(p) < 0.
In the frequency range (24), inequalities (26) hold if the frequency ω
is not well away from half the electron gyrofrequency. With increasing
ω, the propagation constant p0 goes from the region (26) to the region

Pc < p0 < Pe, (27)

in which q1 and q2 are both purely imaginary. It is worth recalling that
the solution of equation (25) can be approximated by

p0 = ε1/2 (28)

in the limiting case a0 → 0, and by

p0 = {ε + [g2ε/(ε− η)]1/2}1/2 (29)

in the limiting case a0 → ∞ [17].
It should be emphasized that the eigenmode guided by a perfectly

conducting sheathless cylinder can exist only in the case of a gyrotropic
plasma. The fact that the off-diagonal term g of the plasma
dielectric tensor does not enter formula (28) requires explanation. For
nonzero a0, it can be shown that the element g does enter the solution
of the dispersion equation (25). However, in the limiting case a0 → 0,
the terms in the rigorous expression of the solution, which comprise
the element g, become small in comparison with ε1/2. These terms
were therefore neglected when reducing the solution to the approximate
form (28).

In the presence of the insulation, new eigenmodes can appear.
For most applications, however, the thickness ∆a = a − a0 of the
insulating layer is rather small such that k0∆aε̃1/2 � 1, and only a
single eigenmode can be found to exist, as in the case of a sheathless
cylinder. Let us show that the characteristics of the eigenmode can
be affected significantly by the insulating sheath. Equation (22),
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which defines the propagation constant of this eigenmode, is fairly
complicated to be solved analytically in the general case. However,
the limiting case where s = (a − a0)/a0 � 1 and κ = k0a0 � 1
allows some analytical treatment. To do this, we will also assume that
the inequalities k0a|q̃(p)| � 1 and k0a|q1,2(p)| � 1 hold for p < Pc.
Making use of the identity [23]

J1(ζ)Y0(ζ) − J0(ζ)Y1(ζ) = 2/πζ ,

we replace the cylindrical functions entering the expression for Λ(p) in
(22) by their small-argument approximations. It can be shown in this
case that

S00 =
2
π
s + O(s2), S01 =

2
πκq̃

[
1 − s + O(s2)

]
,

S10 =
2

πκq̃

[
1 + O(s2)

]
, S11 =

2
π
s + O(s2). (30)

Assuming, in addition, that | lnκ|  1 and | ln k0a|  | ln qk(p)| and
neglecting small terms of order κ ln2κ and of order s2 in the expression
for Λ(p), after some algebra we obtain

p0 = ε1/2

[
1 − s

(
1 +

1
lnκ

)]1/2[
1 − s

(
1 +

ε

ε̃ lnκ

)]−1/2

. (31)

For zero thickness of the insulating sheath when s = 0, formula (31)
yields the result given by (28).

Note that the quantity p0 determined by (31) lies in the same
intervals as for the case of a sheathless antenna where s = 0.
Consequently, for large ρ, the mode field decays exponentially in the
radial direction with distance from the boundary ρ = a of the insulating
sheath.

The behavior of the propagation constant p0 as a function of the
normalized thickness s of the insulation was analyzed by numerically
solving the rigorous dispersion equation (22) for the case ε̃ = 1,
which simulates the presence of the ion sheath around the conducting
cylinder. The elements of the dielectric tensor (2) at frequencies (23)
and (24) may be written approximately as [21, 22]

ε =
[
1 + Xp/(Y 2 − 1)

]
(1 − Y 2

LH), (32)

g = −XpY/(Y 2 − 1), (33)
η = 1 −Xp, (34)
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Figure 3. Eigenmode propagation constant p0 as a function of
s = (a − a0)/a0 for ε̃ = 1, Xp = 9 × 104, Y = 46.6, YLH = 0.26,
and κ = 6.28 × 10−6. Curves 1 and 2 represent the results of the
numerical solution of the rigorous dispersion equation (22) and the
approximate solution given by formula (31), respectively.

where Xp = ω2
p/ω

2, Y = ωH/ω, and YLH = ωLH/ω. For numerical
calculations, we took the following values of the plasma parameters
and the quantity κ: Xp = 9 × 104, Y = 46.6, YLH = 0.26, and
κ = 6.28 × 10−6 (lnκ = −12). Note that the chosen values of Xp, Y ,
YLH, and lnκ are typical of experiments on the excitation of whistlers
in the Earth’s ionosphere and the laboratory plasma. The values of p0,
obtained from (22) and (31), are shown in Fig. 3. It is seen in Fig. 3
that formula (31) yields a reasonably good approximation to the exact
p0 even when s is of order unity. It is to be noted that p0 decreases
monotonically to ε̃1/2 with increasing s. For a sheathless antenna, the
rigorous solution for p0 (see curve 1 in Fig. 3) exceeds only slightly
the approximate solution (28) obtained on the assumption that s = 0.
The most important conclusion which may be drawn from the results
shown in Fig. 3 is that the presence of a sufficiently thin sheath around
the antenna wire can significantly affect the value of the eigenmode
propagation constant. Moreover, the value of s, required to cause a
significant change in p0 as compared with the propagation constant
in the case of a sheathless cylinder, is smaller, the higher the tensor
element ε.

It should be noted that the waves guided along a perfectly
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conducting insulated cylinder immersed in a magnetoplasma have
previously been discussed in [24] for the case where the axis of the
cylinder is parallel to the direction of the external magnetic field.
In [24], the exact dispersion equation, obtained with the help of
Maxwell’s equations and the boundary conditions, has been reduced
to the approximate form in which the contribution of the terms
comprising one of the transverse wavenumbers q1,2 is neglected. The
approximation used in [24] can be employed in the case p  Pe (see [22]
for details). However, as follows from the above-presented results, the
propagation constants of true eigenmodes guided by the cylinder in the
whistler range should lie in regions (26) or (27). In those regions, both
branches q1 and q2 of the transverse wavenumber must be taken into
account in the dispersion equation in order to obtain the propagation
constant p0 properly. Therefore, the expressions derived in [24] do
not give the correct value for p0 in the whistler range. This becomes
fairly evident when one tries to perform the limiting transition from the
expressions given in [24] to the solution for the propagation constant
of the eigenmode in the case where the sheath thickness vanishes.

3.3. Spectral Representation of the Antenna Current

To obtain a representation which exhibits the eigenmode contribution
to the total current explicitly, it is necessary to make a suitable
deformation of the integration path in the complex p plane in
formulas (19) and (20). We will consider this procedure in detail for
the frequency range (23). Before proceeding in this way, we analyze the
analytic properties of the integrands entering expressions (19) and (20)
and comprising multivalued functions q̃(p), Rq(p), and q1,2(p). It can
be shown with the help of the identities [23]

Jn(ζeiπ) = einπ Jn(ζ), Yn(ζeiπ) = e−inπ Yn(ζ) + 2i cosnπ Jn(ζ)

that the integrands of (19) and (20) are independent of the sign of
q̃(p), so that p = ±ε̃1/2 are not their branch points. Moreover, these
integrands are invariant with respect to the replacement q1 ↔ q2.
Hence, the branch cuts starting at the points p = ±Pb,c and going
along the lines ReRq = 0 need not be taken into account (see [22] for
details). Thus, the singularities present are the poles p = ±p0 due to
zeros of Λ(p) and the branch cuts going along the lines Im q1,2 = 0
and associated with the branch points p = ±Pe = ±(ε− g)1/2 and
p = ±Po = ∓i(−ε− g)1/2 at which q1(±Pe) = 0 and q2(±Po) = 0.

The sheet of Riemann surface of the analyzed integrands, which
corresponds to the condition Im q1,2 < 0 stipulated above, is shown in
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Figure 4. Integration contours in the complex p plane for frequency
range (23).

Fig. 4 for range (23). In this figure, the branch cuts connecting the
branch points p = Pc and p = Pe as well as p = −Pc and p = −Pe go
along the lines at which Im q1 = 0. Other branch cuts go along the
lines at which Im q2 = 0. Also shown are the poles p = ±p0. If the
plasma medium is lossless, then the propagation constants p = ±p0

are real and are located on the real p axis. Also, the branch cuts
tend to merge with either real or imaginary p axis in this case. To
avoid ambiguity in the mutual location of these singularities, Fig. 4
was plotted for the case where small losses are introduced. Then the
poles and the branch cuts are slightly displaced off the corresponding
axes, as shown in Fig. 4.

We now separate explicitly the contribution of the eigenmode to
the general integral representation of the antenna current. The axial
distribution of the total current I(z) = 2πa0Iz(z) through the cylinder
cross section is considered in detail. For definiteness, we will discuss
the current for positive z. The case of negative z can be considered
analogously. Let us use the integration contour Γ∞ + Γo + Γe in (19).
This contour is shown in Fig. 4. Since the integral over the semicircle
Γ∞ of infinite radius is zero, the current I(z) is determined only by
the residue of the pole p = p0 and the integrals around the branch
cuts, i.e., along the contours Γo and Γe. As a result, we arrive at the
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following expression of the current for z > 0:

I(z) = α0 exp(−ik0p0z) + ∆I(z) (35)

where

α0 = − V

Z0
2π(k0a0)2 ε̃ Fz(p)

[
dΛ
dp

]−1
∣∣∣∣∣
p=p0

, (36)

∆I(z) =
∫
Γo

I(p) exp(−ik0pz) dp +
∫
Γe

I(p) exp(−ik0pz) dp , (37)

with
I(p) = −i

V

Z0
(k0a0)

2 ε̃
Fz(p)
Λ(p)

. (38)

The first term on the right-hand side of (35) represents the eigenmode
contribution to the total current I(z). The quantity α0 is the amplitude
coefficient of the eigenmode current. The term ∆I(z) gives the
contribution of continuous-spectrum waves to the total current. Note
that the circumferential current Iφ(z) can be represented in a similar
manner:

Iφ(z) = β0 exp(−ik0p0z) + ∆Iφ(z), (39)

where β0 is the amplitude coefficient of the eigenmode contribution
and ∆Iφ(z) is the contribution of continuous-spectrum waves to Iφ(z).
We do not give here formulas for β0 and ∆Iφ(z) for the sake of brevity.

It may be noted that the above-described transformation of
integration path yields the so-called spectral representation for the
antenna current [22]. In such a representation, the contribution due
to the eigenmode belonging to the discrete spectrum is expressed by a
separate term, whereas the contribution due to waves of the continuous
spectrum is described by integrals along paths at which one of the
transverse wavenumbers is purely real. At large distances z from the
excitation point of the antenna, the integrals along the contours Γo and
Γe can be evaluated by using the steepest-descent method in a manner
similar to the treatment of a sheathless antenna in [17]. We will not
dwell on the corresponding analytical calculations and immediately
proceed to discussing the numerical results for the current distribution.

3.4. Numerical Results for the Antenna Current

Numerical calculations performed under the same conditions that were
used for the derivation of (31) show that the inequality |I|  2πa0|Iφ|
holds with a sufficient margin. Moreover, the antenna current is
almost entirely determined by the eigenmode contribution. This
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Figure 5. Normalized amplitude α0 as a function of s for ε̃ = 1,
k0a0Y = 2.9 × 10−4, and different plasma parameters: Xp = 9 × 104,
Y = 46.6, and YLH = 0.26 (curve 1); Xp = 5.6 × 105, Y = 116.5,
and YLH = 0.65 (curve 2); Xp = 9 × 103, Y = 46.6, and YLH = 0.26
(curve 3); and Xp = 5.6 × 104, Y = 116.5, and YLH = 0.65 (curve 4).

contribution is illustrated by Fig. 5 showing the amplitude α0 as a
function of the normalized sheath thickness s = (a− a0)/a0 for ε̃ = 1,
k0a0Y = 2.9×10−4, and different values of the plasma parameters. For
comparison, Fig. 6 shows the normalized amplitude β0 of the eigenmode
contribution to the azimuthal component of the surface-current density.
This figure is plotted for the same parameter values as in Fig. 5. It is
worth mentioning that the plasma parameters are chosen such that,
in Figs. 5 and 6, curves 1 and 2 correspond to one value of the ratio
ωp/ωH, while curves 3 and 4 correspond to another value of this ratio.
It follows from Figs. 5 and 6 that |β0| � |α0|/(2πa0) for the chosen
parameter values. Moreover, the quantity β0 rapidly decreases with s.

It is seen in Figs. 5 and 6 that the quantities α0 and β0 increase
significantly with increasing plasma density if the insulating layer is
not too thick (s < 0.5). This is explained by the fact that, in this
case, the eigenmode field turns out to be more localized for a higher
plasma density. We do not present plots with the field structure of
this mode since they are similar to those for a sheathless antenna
(see [17] for details). The only difference can be observed for the
field inside the sheath region in which the components Eρ and Hφ,z
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Figure 6. Normalized amplitude β0 as a function of s for ε̃ = 1,
k0a0Y = 2.9 × 10−4, and different plasma parameters. Curves 1–4 are
plotted for the same values of Xp, Y , and YLH as the corresponding
curves in Fig. 5.

decay approximately as ρ−1, whereas the components Eφ,z and Hρ

increase almost linearly with ρ. Despite the fact that the eigenmode is
hybrid, the components Eρ and Hφ predominate in the field structure.
Thus the eigenmode has quasi-TEM behavior. For a thicker insulation
(s > 0.5), the quantities α0 and β0 are affected only slightly by the
parameters of the surrounding plasma. In this case, almost all of the
power carried by the eigenmode is confined to the sheath region and
the field structure in the vicinity of the antenna wire becomes much
closer to that of a TEM wave.

The contribution of the continuous-spectrum waves to the current
I(z) is shown in Fig. 7 obtained numerically for different values of
s. The computations were performed for the same parameter values
as for Fig. 3. It is evident from the dependences presented that the
contribution of continuous-spectrum waves to the current distribution
is negligible at large and moderate values of z, so that the function I(z)
is determined mainly by the eigenmode guided by the cylinder. As z
decreases, the relative contribution of continuous-spectrum waves to
the antenna current increases and becomes dominant at the sufficiently
small values of z (z < a0(−η/ε)1/2). Finally, at z = 0, the current goes
to infinity. This is related to the fact that a delta function was used
to represent the z dependence of Eext

z . The singularity in the current
distribution disappears if the voltage is applied to a region of finite
length along the z axis. Indeed, if the antenna is excited by a voltage
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Figure 7. Distributions of ∆I(r)(z) = Re ∆I(z) and ∆I(i)(z) =
Im ∆I(z) along an infinite antenna for various values of s and the
same parameter values as for Fig. 3.

applied to a narrow gap of width 2d so that

Eext
z =

{
V/(2d) for |z| < d,

0 for |z| > d,

then a factor sin(k0pd)/(k0pd) should be inserted in the integrands
of (19) and (20). With this factor, the corresponding integrals are
convergent at z = 0, and the singularity in the current distribution does
not appear. Moreover, it can be shown that, for a reasonable gap width
such that 2d > a0, the current is determined by the eigenmode on the
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whole antenna surface. Since the inequality |∆Iφ(z)| � |∆I(z)|/(2πa0)
holds in the case considered, plots for the quantity ∆Iφ(z) are not given
here.

Summarizing the main results following from the above analysis,
we can state that (i) the total current I(z) through the cross section
of a thin insulated cylindrical antenna of infinite length is determined
by the eigenmode whose propagation constant can be found by solving
the dispersion equation (22), (ii) the eigenmode amplitude depends
noticeably on s, and (iii) the continuous-spectrum contribution to the
total current decreases rather rapidly with increasing thickness of the
insulating sheath and is significantly smaller than that for a sheathless
antenna. At the same time, the eigenmode wavelength λ = 2π/(k0p0)
depends significantly on s (see Fig. 3), while the “period” of oscillations
of the continuous-spectrum current is almost independent of s and
turns out to be rather close to λc = 2π/(k0Pc). It is interesting to
note that if ωp  ωH and ω  ωLH, in which case formulas (32)
and (34) are simplified to ε = Xp/(Y 2 − 1) and η = −Xp, then
the expression (17) for Pc reduces to Pc = 2X1/2

p /Y = 2ωp/ωH

and, hence, λc = πωH/(k0ωp). Another important conclusion is
that the circumferential current of a thin cylindrical antenna in a
magnetoplasma is negligibly small compared with the axial current,
regardless of the thickness of the insulation.

To conclude this section, we note that although the above results
are obtained for the case of an unbounded plasma medium located in
the region a < ρ < ∞, they can be extended to an insulated antenna
surrounded by a plasma layer of finite thickness. Let us assume that
the plasma is located in the region a < ρ < b and an outer region ρ > b
is free space, which is typical of many laboratory experiments. It is
evident that the results of the foregoing analysis corresponding to the
limit b → ∞ continue to hold in the case where b is finite if the spatial
scale of decay of the dominant eigenmode in the ρ̂0 direction inside the
plasma layer is much smaller than the layer thickness b− a. That is,

b− a  (k0|Im q1,2(p0)|)−1.

In the presence of the ion sheath around the antenna wire, a is of
the order of the Debye length, which must be much smaller than b in
order for a mixture of charged particles in the region between ρ = a
and ρ = b to be a plasma. Then the above inequality is rewritten as
b  (k0|Im q1,2(p0)|)−1.
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4. CURRENT DISTRIBUTION AND INPUT
IMPEDANCE OF A FINITE-LENGTH ANTENNA

4.1. Current Distribution of a Finite-Length Antenna

Taking into account the dominant contribution of the eigenmode to the
total current, we can determine approximately the current distribution
of a finite-length antenna with the help of the concept of reflections of
the current eigenmode from the antenna ends.

Note that in the case of antenna excitation by a delta-function
voltage at z = 0, the components of the eigenmode field for an infinite
antenna are expressed as

Eφ(ρ, z) = sgn(z) E0 Eφ(ρ, p0) exp(−ik0p0|z|),
Ez(ρ, z) = E0 Ez(ρ, p0) exp(−ik0p0|z|),
Hφ(ρ, z) = E0 Hφ(ρ, p0) exp(−ik0p0|z|),
Hz(ρ, z) = sgn(z) E0 Hz(ρ, p0) exp(−ik0p0|z|), (40)

where E0 is a certain amplitude factor, and Eφ,z(ρ, p0) and Hφ,z(ρ, p0)
are functions describing the dependence of the azimuthal and
axial components of the eigenmode field on the radial cylindrical
coordinate ρ. Representation (40) is readily obtained from (8) by
evaluation of the residue of the eigenmode pole p = p0 enclosed by the
integration contour shown in Fig. 4. It may be adopted without any
loss of generality that the functions Eφ,z(ρ, p0) and Hφ,z(ρ, p0) satisfy
the following relationships [22]:

Eφ(ρ, p0) = −Eφ(ρ,−p0), Ez(ρ, p0) = Ez(ρ,−p0),
Hφ(ρ, p0) = Hφ(ρ,−p0), Hz(ρ, p0) = −Hz(ρ,−p0). (41)

These relationships will be used in what follows.
An antenna of length 2L can be described as a single-wire

transmission line consisting of the conducting cylinder, the dielectric
sheath, and the surrounding plasma. The azimuthal component of the
magnetic field inside the sheath is then represented approximately as

Hφ(ρ, z) = E0 Hφ(ρ, p0)
{
e−ik0p0|z| + R1 e

−ik0p0z + R2 e
ik0p0z

}
,

|z| < L, (42)

where R1 and R2 are coefficients which can be determined from
conditions for the current at the antenna ends. To find R1 and R2,
we apply the conditions

I(z = ±L) = 2πa0Hφ(a0, z = ±L) = 0 (43)
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for the axial current at z = ±L. Using (43), one obtains

R1 = R2 = − 1
2 cos(k0p0L)

exp(−ik0p0L) (44)

and

Hφ(ρ, z) = E0 Hφ(ρ, p0)
i

cos(k0p0L)
sin[k0p0(L− |z|)], |z| < L. (45)

The field Ez can be obtained by making the replacements Hφ(ρ, z) →
Ez(ρ, z) and Hφ(ρ, p0) → Ez(ρ, p0) in (42) and using formula (44). The
result is

Ez(ρ, z) = E0 Ez(ρ, p0)
i

cos(k0p0L)
sin[k0p0(L− |z|)], |z| < L. (46)

In deriving formulas (45) and (46), use was made of the fact that
Hφ(ρ, p0) and Ez(ρ, p0) are even functions of the propagation constant
(see (41)). In order to obtain the components Hz and Eφ, one should
bear in mind that the corresponding quantities Hz(ρ, p0) and Eφ(ρ, p0)
are odd functions of the propagation constant. Thus,

Hz(ρ, z) = E0 Hz(ρ, p0)
{
sgn(z)e−ik0p0|z|+R1 e

−ik0p0z−R2 e
ik0p0z

}
,

|z| < L. (47)

Substituting for R1,2 from (44) yields

Hz(ρ, z) = E0 Hz(ρ, p0)
sgn(z)

cos(k0p0L)
cos[k0p0(L− |z|)], |z| < L. (48)

Similarly, the azimuthal electric field is given by

Eφ(ρ, z) = E0 Eφ(ρ, p0)
sgn(z)

cos(k0p0L)
cos[k0p0(L− |z|)], |z| < L. (49)

Expressions (45), (46), (48), and (49) give the tangential (with respect
to the cylindrical surface ρ = const) components of the field inside the
dielectric sheath of a finite-length antenna.

The axial current of the antenna is found from (45) as I(z) =
2πa0Hφ(a0, z). Therefore,

I(z) =
I0

sin(k0p0L)
sin[k0p0(L− |z|)], |z| < L, (50)
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where I0 is the current at the antenna input. In the case k0p0L � 1,
we evidently have, from (50),

I(z) = I0

(
1 − |z|

L

)
. (51)

If ε̃ = 1 and the current wavelength is determined by the sheath
parameters, i.e., p0 ≈ ε̃1/2 = 1, then the inequality k0p0L � 1 reduces
to k0L � 1, which is ensured for almost all dipole antennas operating
in the whistler range under conditions of actual experiments in the
laboratory plasma and space. It is important that the conditions for
the applicability of a triangular current distribution in the form (51)
can be satisfied if the antenna is not short compared to the maximum
whistler wavelength λW = 2π/(k0Pe) in the plasma, provided that
Pe  ε̃1/2. It is also worth mentioning that the circumferential
current on a finite-length antenna can readily be found from (48) as
Iφ(z) = −Hz(a0, z).

The above results imply that the current distribution on a
cylindrical antenna surrounded by a magnetoplasma and operating
in the whistler range can be described using the transmission-line
theory. Within the framework of such an approach, the quantity
p0 determining the current distribution along the single-wire line
corresponding to the antenna is obtained from (22). We found that
this quantity is the propagation constant of the eigenmode whose
amplitude is constant along the wire, provided that dissipative losses
are negligible. On the contrary, for antennas located in isotropic or
uniaxially anisotropic media, the “propagation constant” determining
the current distribution corresponds to the branch point of the
integrand in the integral representation of the current on an infinite
cylindrical conductor [6]. For the latter case, therefore, the magnitude
of the current wave should decay with distance from the excitation
point due to radiation losses.

4.2. Input Impedance of a Finite-Length Antenna

To determine the input impedance Z = R + iX of a finite-length
antenna with the known shape of the current distribution, standard
techniques based on Poynting’s theorem can be used [9, 12, 25]. Then,
knowing the antenna input impedance Z, the current I0 at the antenna
input is found as I0 = V/Z. A very simple expression for the antenna
reactance X can be obtained in the case of a moderately thick sheath
(e.g., see Fig. 3) where

p0 ≈ ε̃1/2, ln(1 + s)  (ε̃/ε) ln(ρ∗/a). (52)
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Here, ρ∗ = L|ε/η|1/2 for a “short” antenna (k0p0L < 1) and ρ∗ =
(k0|Im q1,2(p0)|)−1 for a “long” antenna (k0p0L > 1). It is also assumed
that the conditions used for the derivation of (31) continue to hold.
Then almost all of the antenna near-zone field is localized in the sheath
and the field penetrating into the surrounding magnetoplasma can be
neglected. In this case, the antenna reactance is readily expressed
via the difference of the time-averaged electric and magnetic energies
stored inside the sheath (see [25] for details). Taking into account the
approximate expressions

Eρ ≈ i
Z0

k0ε̃

∂Hφ

∂z
, Hφ ≈ I(z)

2πρ
,

which are valid for the predominant field components inside the sheath,
and using some general relationships given for the reactive part of the
input impedance in [25], we arrive at the formula

X = − Z0

πε̃1/2
ln

a

a0
cot k0p0L. (53)

It should be mentioned that, in fact, the approximation yielding the
last expression for X corresponds to the transmission-line theory for an
insulated antenna located in a magnetoplasma. In the case k0p0L � 1,
formula (53) takes the form

X = − Z0

πk0p0Lε̃1/2
ln

a

a0
. (54)

It is interesting to compare the reactance of an insulated antenna
with that of a sheathless antenna. In the absence of the insulation,
a simple universal formula for the reactance of a sheatless antenna of
arbitrary length located in a magnetoplasma cannot be derived. For
a thin (a0 � |ε/η|1/2L), short (k0Lε

1/2 � 1) sheathless antenna, it is
well known [1] that

X = − Z0

πk0Lε

[
ln

(√
ε

|η|
L

a0

)
− 1

]
. (55)

But if a thin sheathless antenna, for which the inequalities k0a0 � 1
and | ln k0a0|  | ln q1,2| hold, is very long such that k0Lε

1/2  1, then

X = − Z0

πε1/2
γ ln

1
k0a0

cot k0Lε
1/2, (56)

where γ is a factor of order unity. According to numerical calculations,
γ � 0.59 in the whistler range. Formula (56) can be derived using the
results of [17].
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By comparing (53) with (55) and (56), it is seen that the
reactance X in the presence of the insulating sheath can differ
significantly from that for a sheathless antenna. In the case where
the antenna comprises the ion sheath, the reactance can evidently be
changed by varying the sheath thickness. For instance, the sheath
effects can be almost avoided if the antenna static potential is ensured
to be close to that of the surrounding plasma [9]. This can be provided
by the application of an appropriate static voltage between the antenna
and the other comparatively large conducting object immersed in
the plasma. On the contrary, when the ion sheath effects are well
pronounced, the antenna is expected not to be coupled strongly to the
plasma. Hence, the reactive part of the input impedance will tend to
that described by (53). For an actual antenna in a magnetoplasma,
the reactance may be somewhere between the quantity (53) and the
quantity found in the absence of the ion sheath. Therefore, varying the
antenna static potential, one can modify the antenna impedance, which
may presumably be used for both diagnostic purposes and controlling
the antenna characteristics.

To evaluate the resistive part R of the input impedance, we
should calculate the power Prad radiated from the antenna with the
current distribution (50) and then use the relation R = 2Prad/|I0|2.
The total radiation power of the finite-length insulating antenna can
be determined with the help of Huygens’ principle. Since the fields
�E(ρ, z) and �H(ρ, z) in the near zone of the antenna are known,
fictitious electric and magnetic currents with the densities �J e and
�Jm, respectively, can be specified on the cylindrical surface ρ = a

for |z| < L. The quantities �J e and �Jm are given by

�J e(�r) = ρ̂0 × �H(a, z) δ(ρ− a), �Jm(�r) = −ρ̂0 × �E(a, z) δ(ρ− a),
|z| < L. (57)

According to Huygens’ principle, the power radiated from the insulated
antenna coincides with that radiated from the currents �J e,m into the
surrounding medium:

Prad = −1
2

Re
∫ [(

�J e(�r)
)∗

· �E(�r) +
(
�Jm(�r)

)∗
· �H(�r)

]
d�r, (58)

where �E(�r) and �H(�r) are the electric and magnetic fields excited by
currents (57) in a homogeneous unbounded magnetoplasma whose
parameters are identical to those of the plasma surrounding the
antenna. Introducing the spatial Fourier transform of any function
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f(�r) and its inverse as

f(�n) =
∫

f(�r) exp(ik0 �n · �r) d�r,

f(�r) =
k3

0

(2π)3

∫
f(�n) exp(−ik0 �n · �r) d�n

and using Parseval’s theorem, we can express the radiated power (58)
via the integral in �n-space:

Prad = − k3
0

16π3
Re

∫ [(
�J e(�n)

)∗
· �E(�n) +

(
�Jm(�n)

)∗
· �H(�n)

]
d�n. (59)

Then we should perform integrations over nz and the azimuthal angle
χ = tan−1(ny/nx) in �n-space. These two integrations, whose details
are described in [22], yield the radiated power in the form of an integral
over q = (n2

x +n2
y)

1/2. The resulting expression for Prad turns out to be
extremely cumbersome and will not be given here. A close inspection
of Prad shows that for the above-discussed parameter values, the power
radiated from the antenna in the resonant part of the whistler range
can be found, to a good approximation, by putting �J e(�r) = �J(�r) and
�Jm(�r) = 0 in (58) and neglecting the contribution from the azimuthal
component of �J(�r) to Prad. In particular, such an approximation is
always applicable for the antenna in a magnetoplasma modeled upon
the Earth’s ionosphere if ε̃ is of order unity and the sheath thickness
∆a is of the order of the Debye length or smaller. Taking into account
formula (50) for the distribution of the axial current along z and
performing the above-described integrations it follows from (59) that

R = Z0
p2
0

sin2(k0p0L)
4

π(−η)

×
∫ ∞

0

q2 + p2
e(q) − ε

q2 − η

q3pe(q)J2
0 (k0a0q)

[q4(1 − ε/η)2 − 4q2g2/η + 4g2]1/2

×sin2[k0L(pe(q) − p0)/2] sin2[k0L(pe(q) + p0)/2]
[p2

e(q) − p2
0]2

dq, (60)

where

pe(q) =

{
ε− 1

2

(
1 +

ε

η

)
q2 +

[
1
4

(
1 − ε

η

)2
q4 − g2

η
q2 + g2

]1/2}1/2

.

Note that the function p = pe(q) describes the dependence of the axial
wavenumber p of the whistler mode on the transverse wavenumber q
(see Fig. 2 and [22]).
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Since the eigenmode guided along the antenna is transversely
localized, the quantity (60) calculated for the current (50) vanishes in
the limit L → ∞. Therefore, in the case k0p0L  1, the contribution
due to continuous-spectrum waves should be taken into account in
the antenna current to determine correctly the resistive part of the
input impedance. Allowance for this contribution can be important
only near the excitation point z = 0 and the antenna ends z = ±L.
However, if the antenna length does not exceed several wavelengths of
the eigenmode, then formula (50) for the antenna current can be safely
used for evaluating R.

It follows from (53) and (60) that the input impedance is infinite
if k0p0L = πn, i.e., L = λn/2, where n = 1, 2, . . . . This is related to
the fact that the approximate formula (50) was used for the antenna
current. Therefore, the results of the transmission-line theory should
be refined for this particular case. In this paper, we do not consider
the corresponding corrections to the transmission-line theory since for
most insulated antennas encountered in actual practice, the condition
L < λ/2 usually holds in the whistler range.

Let us discuss some special cases in which the expression for R
becomes simpler. In the case k0p0L � 1, when the current distribution
is triangular, formula (60) reduces to

R = Z0
4

π(k0L)2(−η)

×
∫ ∞

0

q2+p2
e(q)−ε

q2−η

q3

p3
e(q)

J2
0 (k0a0q) sin4(k0Lpe(q)/2)

[q4(1−ε/η)2−4q2g2/η+4g2]1/2
dq. (61)

When k0Lε
1/2 � 1, most contributions to the integral in (61) come

from the region |η|1/2 < q < |η|1/2(k0Lε
1/2)−1. For q > |η|1/2, we can

write

pe(q) � (−ε/η)1/2q sgn ε, (q2 + p2
e(q) − ε)/(q2 − η) � 1 − ε/η.

In addition, we assume that a0 � |ε/η|1/2L. Then the integrand in
(61) is greatly simplified, such that

R = Z0
4

π(k0L)2
|η|1/2

ε3/2

∫ ∞

0

1
q2

sin4
(k0L

2
ε1/2

|η|1/2
q
)
dq. (62)

Evaluating the integral on the right-hand side of (62), we arrive at the
expression

R = Z0/(2k0Lε). (63)
Note that (63) is precisely the result yielded by the quasi-static theory
for an uninsulated antenna with a triangular current distribution [1].
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We have thus established the conditions under which the quasi-
static theory can be used for calculating the resistive part of the
input impedance of a cylindrical insulated antenna in a resonant
magnetoplasma. It should also be kept in mind that in the presence of
the ion sheath, allowance for a sheath conductance can be important
for correctly determining the resistive part of the antenna impedance
at frequencies much lower than the ion plasma frequency [9]. When
required, an appropriate correction term to R may be found using the
approach described in [9].

5. CONCLUSIONS

In this paper, we have studied the current distribution and the input
impedance of a perfectly conducting cylindrical antenna insulated from
the surrounding magnetoplasma by a coaxial dielectric or free-space
sheath and aligned with an external magnetic field. Main attention has
been paid to analysis of the case where the antenna current is excited
by a delta-function voltage source in the whistler frequency range. We
have found that the current distribution on a rather thin, infinitely long
antenna is determined by the contribution of the eigenmode guided
along the antenna. It has been shown that the presence of the very
thin insulating sheath around the antenna can lead to a decrease in the
relative contribution of continuous-spectrum waves to the total current
as compared with the case of a sheathless antenna. The propagation
constant of the eigenmode was shown to depend significantly on the
dielectric permittivity and thickness of the sheath.

Based on these results, a generalized transmission-line theory was
developed for finding the characteristics of a finite-length antenna
located in a resonant magnetoplasma. Within the framework of this
theory, the current distribution is constructed, in a first approximation,
as the standing current wave. In this case, the propagation constant
of the eigenmode guided by the corresponding infinitely long antenna
should be taken as the propagation constant of the current wave. Using
the developed approach, we analyzed the current distribution of a
finite-length antenna and proposed a method for calculating its input
impedance. It follows from the results obtained that in the presence of
the insulation, the short-antenna current approximation (see (51)) is
applicable for an antenna which physically can be much longer than an
uninsulated antenna, provided the condition ε̃ � ε is satisfied. Also,
a possibility of varying the antenna characteristics by controlling the
parameters of the ion sheath around the antenna wire was pointed out.
This can be available by means of changing the static potential of the
antenna with respect to that of the surrounding plasma. In particular,
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for moderate thicknesses of the insulation, the antenna reactance can
be made less dependent on the parameters of the surrounding plasma
medium.

ACKNOWLEDGMENT

This work was supported by the European Commission and the
General Secretariat of Research and Technology of Greece (project
ENTER 01ER63) and in part by the Russian Foundation for
Basic Research (project Nos. 04–02–16344a and 04–02–16506a), the
Ministry of Education and Science of the Russian Federation (project
Nos. 40.020.1.1.1171 and UR.01.01.024), and the Program for the State
Support of the Leading Scientific Schools of the Russian Federation
(project No. NSh–1639.2003.2).

REFERENCES

1. Balmain, K. G., “The impedance of a short dipole antenna in a
magnetoplasma,” IEEE Trans. Antennas Propagat., Vol. AP-12,
No. 5, 605–617, 1964.

2. Seshadri, S. R., “Radiation resistance of elementary electric-
current sources in a magnetoionic medium,” Proc. IEE, Vol. 112,
No. 10, 1856–1868, 1965.

3. Wang, T. N. C. and T. F. Bell, “Radiation resistance of a short
dipole immersed in a cold magnetoionic medium,” Radio Sci.,
Vol. 4, No. 2, 167–177, 1969.

4. Wang, T. N. C. and T. F. Bell, “On VLF radiation resistance of an
electric dipole in a cold magnetoplasma,” Radio Sci., Vol. 5, No. 3,
605–610, 1970.

5. Hurd, R. A., “The admittance of a linear antenna in a uniaxial
medium,” Can. J. Phys., Vol. 43, No. 6, 2276–2309, 1965.

6. Lee, S. W., “Cylindrical antenna in uniaxial resonant plasmas,”
Radio Sci., Vol. 4, No. 2, 179–189, 1969.

7. Chugunov, Yu. V., “On the theory of a thin metal antenna in
anisotropic media,” Izv. Vyssh. Uchebn. Zaved., Radiofiz., Vol. 12,
No. 6, 830–834, 1969.

8. Chen, C. L. and S. R. Seshadri, “Infinite insulated cylindrical
antenna in a simple anisotropic medium,” IEEE Trans. Antennas
Propagat., Vol. AP-14, No. 6, 715–726, 1966.

9. Mareev, E. A. and Yu. V. Chugunov, Antennas in Plasmas [in
Russian], Inst. Appl. Phys. Press, Nizhny Novgorod, 1991.



164 Kudrin et al.

10. Lu, H. S. and K. K. Mei, “Cylindrical antennas in gyrotropic
media,” IEEE Trans. Antennas Propagat., Vol. AP-19, No. 5, 669–
674, 1971.

11. Eremin, S. M., “The impedance of an electric dipole in an
anisotropic plasma,” Radiotekh. Élektron., Vol. 33, No. 9, 1852–
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