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Abstract—Presently various models consistent with Einstein’s
Special Relativity theory are explored. Some of these models have
been introduced previously, but additional models are possible, as
shown here. The topsy-turvy model changes the order of postulates
and conclusions of Einstein’s original theory. Another model is given
in the spectral domain, with the relativistic Doppler Effect formulas
replacing the Lorentz transformation. In this model a new principle
tantamount to the constancy of the speed of light in vacuum is stated
and analyzed, dubbed as the constancy of light slowness in vacuum.
Because the slowness is derived in the spectral domain from the
Doppler Effect formulas, this result is not trivially semantic. It is
shown that potentials and equations of continuity can replace the
Maxwell Equations used by Einstein for his “Principle of Relativity”
in electrodynamics. It is also shown that defining convection currents
and assuming the current-charge densities transformations can replace
the Lorentz transformation. The list of feasible models representative
rather than exhaustive, since parts of the models presented here can
be combined to yield additional models. The two underlying elements
of Einstein’s original Special Relativity theory are always present: (1)
the theory requires a kinematical element (e.g., the constancy of the
speed of light in vacuum in Einstein’s original model), and (2), a
dynamical element (e.g., the form-invariance of the Maxwell Equations
in all inertial systems of reference in Einsteins original model).
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1. INTRODUCTION: EINSTEIN’S THEORY AND
PRESENT NOTATION

The original approach by Einstein, in his monumental 1905 article [1],
was to postulate the form-invariance of the Maxwell Equations, and
the constancy of the speed of light relative to all observers in inertial
(non-accelerated) frames of reference:

“· · · Examples of this sort, together with the unsuccessful attempts
to discover any motion of the earth relatively to the “light
medium,” suggest that the phenomena of electrodynamics as
well as of mechanics possess no properties corresponding to
the idea of absolute rest. They suggest rather that, as has
already been shown to the first order of small quantities, the
same laws of electrodynamics and optics will be valid for all
frames of reference for which the equations of mechanics hold
good. We will raise this conjecture (the purport of which will
hereafter be called the “Principle of Relativity”) to the status
of a postulate, and also introduce another postulate, which is
only apparently irreconcilable with the former, namely, that light
is always propagated in empty space with a definite velocity
which is independent of the state of motion of the emitting body.
These two postulates suffice for the attainment of a simple and
consistent theory of the electrodynamics of moving bodies based
on Maxwell’s theory for stationary bodies · · ·”
We can quibble here about the sufficiency of these postulates,

pointing out that “in the midst of the race” Einstein heuristically
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introduces a few times the phrase “· · · from reasons of symmetry
· · ·”, which raises the question whether the assumed symmetry
considerations should be considered to be additional postulates, but
the two postulates above are the paramount basis of Relativistic
Electrodynamics. Essentially Einstein’s theory involves two elements:
The first is a kinematical part, in the final form this is the Lorentz
transformation, derived from the constancy of light speed postulate,
expressed above. The second element is the dynamical part represented
by the form-invariance of Maxwells Equations of electrodynamics. In
what will be developed subsequently, these two elements must always
be represented in one form or another, in order to provide a consistent
framework for any equivalent Special Relativity theory.

Einstein [1] derives the transformation of the spatiotemporal
coordinates, since then called the Lorentz transformation because H.
A. Lorentz first introduced it in 1904. For historical background
the reader is referred to Whittaker [2], and the many comments and
references given by Pauli [3]. From the principle of relativity, Einstein
derived transformation formulas for the various electromagnetic fields
appearing in the Maxwell Equations. In spite of the fact that Einstein
restricted his analysis to free space (vacuum), his results hold, with
the appropriate modifications, for the general case of the macroscopic
Maxwell Equations as used here.

For the mathematical structure of Einstein’s theory see for
example Stratton [4], who follows the technique of using the
electromagnetic tensor. The present compact notation was used before
in [5]. The macroscopic Maxwell Equations for the electromagnetic
field (in the “unprimed” frame of reference denoted by Γ) are given by

∂x × E = −∂tB − jm
∂x × H = ∂tD + je
∂x · D = ρe

∂x · B = ρm (1)

where ∂x (often symbolized by ∇ and called “Nabla”, or sometimes
“Del”) and ∂t denote the space and time differential operators,
respectively. In general all the fields are space and time dependent,
e.g., E = E(X). Here

X = (x, ict) (2)

denotes the spatiotemporal coordinate quadruplet, in terms of the
Minkowski four-space notation [6], with i the unit imaginary complex
number. We do not subscribe to the mathematical properties of the
Minkowski four-space, we only use the notation. Going beyond this
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point of mere notation already implies the Lorentz transformation, a
step which we do not wish to take at this point.

For symmetry and completeness, in the present representation the
Maxwell Equations include the usual electric (index e), as well as the
fictitious magnetic (index m), current and charge density sources. To
date, the existence of the magnetic current and charge densities in
(1) has not been empirically established. Therefore at this time they
should be considered as fictitious, in the sense that they are auxiliary
and not intrinsic physical entities. The original set of Equations (1)
can be split into two sets of fields one driven by je, ρe the other by jm,
ρm. This yields

∂x × Ee = −∂tBe

∣∣∣ ∂x × Em = −∂tBm − jm

∂x × He = ∂tDe + je
∣∣∣ ∂x × Hm = ∂tDm

∂x · De = ρe

∣∣∣ ∂x · Dm = 0

∂x · Be = 0
∣∣∣ ∂x · Bm = ρm

(3)

By adding the two sets (3), we obtain (1) once again, i.e., E = Ee+Em,
etc.

The formal similarity between the two sets (3) leads to the
following duality “dictionary”

je ⇔ −jm
ρe ⇔ −ρm

Ee ⇔ Hm

He ⇔ Em

Be ⇔ −Dm

De ⇔ −Bm

(4)

By substitution according to this dictionary we obtain the e-indexed
set of Maxwell Equations from the m-indexed one, and vice-versa.

The principle of relativity asserts that the form-invariance of the
Maxwell Equations (1) applies to all inertial systems. Accordingly
in another inertial frame (the “primed” frame of reference Γ′), the
Maxwell Equations have the form

∂x′ × E′ = −∂t′B′ − j′m
∂x′ × H′ = ∂t′D′ + j′e
∂x′ · D′ = ρ′e
∂x′ · B′ = ρ′m (5)
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where now E′ = E′(X′) etc., and the native, or proper, space-time
coordinates in the Γ′ system are denoted by X′ = (x′, ict′), using
once again the Minkowski four-vector notation. Corresponding to (5),
there also exists an analog of (3), (4), with all the relevant fields and
coordinates now denoted by primes.

The kinematical part in Einstein’s theory starts with the postulate
of the constancy of c in all inertial frames of reference and culminates
in the Lorentz transformation, mediating between spatiotemporal
coordinates in Γ and Γ′, which can be written in the form

x′ = Ũ · (x − vt), t′ = γ(t − v · x/c2)
γ = (1 − β2)−1/2

, β = v/c, v = |v|,
Ũ = Ĩ + (γ − 1)v̂v̂, v̂ = v/v

(6)

where v is the velocity by which the origin of Γ′ is moving, as observed
from Γ, and the tilde denotes dyadics, Ĩ is the idemfactor or unit
dyadic (same as unit matrix). The Lorentz transformation (6) can be
symbolized in the form X′ = X′[X]. The role of Ũ is to multiply
the component along the velocity by γ. It is a simple matter of
inverting a system of equations, in order to show that the inverse of
(6), X = X[X′], is obtained from (6) by interchanging primed and
unprimed coordinates and inverting the sign of v. This property is a
key element of the theory, as it shows that the same transformation
works in both directions, and thus there is no single preferred inertial
frame of reference.

By taking differentials in (6), the differential Lorentz transforma-
tion is obtained

dx′ = Ũ · (dx − vdt), dt′ = γ(dt − v · dx/c2) (7)

By applying the chain-rule of calculus to (7), the relations between
derivatives in Γ and Γ′ are established

∂x′ = Ũ · (∂x + v∂t/c2), ∂t′ = γ(∂t + v · ∂x) (8)

where the new transformation (8) is fully equivalent to the original
Lorentz transformation (6), and thus could have provided a starting
point for Einstein’s model. This is an example of the many alternatives
for possible “games”, i.e., consistent models of the theory. Similarly
to the notation X′ = X′[X] above, we can compactly denote (8) by
∂x′ = ∂x′ [∂x], to which also corresponds an inverse transformation
∂x = ∂x[∂x′ ].

The four-gradient ∂x can be defined as a Minkowski four-vector

∂x = (∂x,− i

c
∂t) (9)
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Essentially by exploiting (8) in (5), and comparing to (1), Einstein
derives the transformation formulas for the various fields

E′ = Ṽ · (E + v × B), B′ = Ṽ · (B − v × E/c2)

D′ = Ṽ · (D + v × H/c2), H′ = Ṽ · (H − v × D)

Ṽ = γĨ + (1 − γ)v̂v̂ (10)

Unlike (6)–(8), the role of Ṽ in (10) is to multiply the components
perpendicular to the velocity by γ. In addition to (10), we find for the
sources

j′ = Ũ · (j − vρ), ρ′ = γ(ρ − v · j/c2) (11)

where (10), (11) are applicable to both e-indexed and m-indexed fields
and sources, as well as the sum fields.

The equations (10), (11) look deceptively simple, but it must
be noted that the two sides of each equation depend on different
coordinates, e.g., the first expression in (10) reads

E′(X′) = Ṽ · (E(X) + v × B(X)) (12)

consequently (10), (11) are meaningless for comparing measurements
in two inertial frames of reference unless we have at our disposal
X′ = X′[X] in (6) to mediate between the two sets of spatiotemporal
coordinates.

This, in a nutshell, summarizes the Special Relativity theory. The
question posed in this study is whether alternative yet compatible
theories can be stated. For example, the functional similarity of (6)
and (11) is obvious and intriguing. This immediately suggests that (11)
can be used to state an alternative set of equations for the theory. Can
we assume (11) and derive (6)? Are the Maxwell Equations (1), (5)
indispensable for the statement of the theory, or can equivalent forms
be identified? These and other questions will concern us subsequently.

2. THE TOPSY-TURVY MODEL

The topsy-turvy model has been devised mainly for didactic reasons, in
order to facilitate a straight-forward and compact analysis [5, 7] for an
application-oriented audience. Accordingly the Lorentz transformation
(6) has been taken as a postulate, replacing the kinematical postulate
of the constancy of c.

By dividing the two Equations (7), velocities are defined, thus
leading to the relativistic formula for addition of velocities

u′ = u′
⊥ + u′

‖ = Ũ · (u − v)/(γL) = (u⊥ + γ(u‖ − v))/(γL)



Progress In Electromagnetics Research, PIER 52, 2005 307

u′
⊥ = u⊥/(γL), u′

‖ = (u‖ − v)/L

L = 1 − v · u/c2 = 1 − vu‖/c2, u = dx/dt, u′ = dx′/dt′ (13)

where in (13) the components of the velocities parallel and
perpendicular to the relative velocity between the inertial frames, v,
are indicated. Some arithmetic manipulation shows that if we assume

u
′2
⊥ + u

′2
‖ = c2 (14)

then

u2
⊥ + u2

‖ = c2 (15)

follows, hence the constancy of c, the speed of light in free space,
in all inertial frames, is established. From the postulated Lorentz
transformation (6), the transformation of space and time derivatives
(8) follows. This terminates the kinematical part.

Like Einstein [1], the Maxwell Equations (1), or in the form (3)
are assumed for the topsy-turvy model, but instead of postulating
the form-invariance of (1), (5), the model postulates (10), (11). By
substitution of (8), (10), (11) into (5), the Maxwell Equations (1) are
derived, so the form-invariance is here a consequence.

Thus the presentation of Special Relativity in terms of Einstein’s
original model and according to the topsy-turvy model are equivalent.

3. LORENTZ TRANSFORMATION, PHASE
INVARIANCE, AND DOPPLER EFFECT

We are already familiar with the Lorentz transformation (6) as
the kinematical element of the Special Relativity theory. Is it an
indispensable element of the theory, or (in addition to the obvious
(8) derived from (6)) can it be replaced by other postulates? In the
present section we introduce the Phase Invariance and Doppler Effect
concepts, and show that any two of these three elements implies the
third one.

Einstein’s “Principle of Relativity” [1], i.e., the form-invariance
of the Maxwell Equations, does not imply that the solutions of these
equations are also form-invariant. In case such an assumption is made
for any solution, it must be properly stipulated as a postulate. In spite
of this, when Einstein [1] discusses the relativistic Doppler Effect, he
tacitly assumes that a plane wave in one inertial frame appears as a
plane wave in another inertial frame too. Without this lesser postulate,
he could not have derived the formulas for the relativistic Doppler



308 Censor

Effect. However, “cosi fan tutti”, many authors do the same and do
not emphasize this point. See for example Kong [8].

In addition to the location four-vector (2) we define now a
quadruplet involving the wave-vector and (angular) frequency in the
Minkowski notation

K = (k, iω/c) (16)

The inner product for such Minkowski quadruplets is formally defined
as

K · X = k · x + (−iω/c)ict = k · x − ωt (17)

which is the phase of a plane wave. Note that we are still using
Minkowski four-vectors only in the sense of a convenient compact
notation. If we assume that plane waves are plane waves in all inertial
systems, we essentially postulate the Phase Invariance, i.e.,

K · X = k · x − ωt = K′ · X′ = k′ · x′ − ω′t′ (18)

From (6) and (18) the transformation

k′ = Ũ · (k − vω/c2), ω′ = γ(ω − v · k) (19)

is derived. This is referred to as the relativistic Doppler effect, first
announced by Einstein [1]. It is worthwhile to mention that before the
advent of Einstein’s theory, the relativistically correct Doppler Effect
for reflection from a moving mirror was worked out by Abraham [9],
see also [3]. The second expression (19) looks quite familiar as being
the Doppler frequency-shift formula. The first expression (19) is akin
to the phase velocity in moving media, in fact, to the first order it is a
statement of the Fresnel Drag Effect, related to the celebrated Fizeau
experiment [3, 8, 10]. It is now clear that (6) and (19) satisfy (18), or
any two out of (6), (18), (19) satisfy the remaining formula.

4. FOURIER TRANSFORM, MINKOWSKI SPACE, AND
DOPPLER EFFECT

Thus far we avoided the full Minkowski-space mathematical structure.
Forms like (2), (9), (16) were used as a compact notation only. An
arbitrary quadruplet Q is a proper Minkowski four-vector if and only
if

Q · X = Q′ · X′ (20)
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where in (20) X is a-priori considered as a Minkowski four-vector, i.e.,

X · X = x · x − c2t2 = X′ · X′ = x′ · x′ − c2t′2 (21)

By substituting the Lorentz transformation (6) into (21) it is verified
that (21) is identically satisfied. Therefore the assumption of X being
a Minkowski four-vector is tantamount to postulating the Lorentz
transformation, and vice-versa. Equation (21) is therefore also a
statement of the constancy of c postulate, because it asserts that if
the equation of motion is x · x = c2t2 in Γ, it will be x′ · x′ = c2t

′2 in
Γ′, with the same factor c.

The general definition (20) facilitates the introduction of
additional four-vectors. Thus (9) can be tested by evaluating

∂x · X = ∂x · x + ∂tt = ∂x′ · X′ = ∂x′ · x′ + ∂t′t
′ = 4 (22)

It follows that ∂x, (9), is a four-vector too. Of course, this does not
come as a surprise, because (9) was derived from (2) using the chain-
rule of calculus, but (22) provides the formal proof.

One could play the game a little differently, by starting with a
statement that the four-gradient ∂x, (9), is a proper Minkowski four-
vector, and then using (22) to derive X as a Minkowski vector.

Once a quadruplet Q has been established as a Minkowski four-
vector, it can be used to test any new quadruplet P. In general, any
four-vector multiplied by itself is an invariant

Q · Q = Q′ · Q′ (23)

and this can be used as a definition of a four-vector in the statement:
the length of a four-vector in the Minkowski space is a scalar invariant
under rotation. However, it must be remembered that this whole
mathematical edifice rests on the original definition (21), i.e., when
the physics comes into the game, the Lorentz transformation is already
assumed here.

The use of (20) etc. provides a very convenient technique for
dealing with various aspects of the Special Relativity theory, but it
is not an essential part of it. In other words, anything that we can do
using the Minkowski four-space we can also do without it.

As an illustration, let us demonstrate how (19) can be derived
using the Minkowski four-vector concept. We start with the
assumption that (2) is a four-vector proper. It follows that ∂x, (9),
is a four-vector too, because (22) is satisfied.
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Now consider the four-dimensional Fourier transformation

f(x, y, z, ict) = q

∫
f(kx, ky, kz,

iω

c
)

ei(kxx+kyy+kzz−ωt)dkxdkydkzd
iω

c
q = (2π)−4 (24)

which can be compactly recast [5] in the form

f(X) = q

∫
(d4K)f(K)eiK·X (25)

with the corresponding inverse transformation

f(K) =
∫

(d4X)f(X)e−iK·X (26)

Applying the four-gradient operator ∂x to (25) yields

∂xf(X) = q

∫
(d4K)f(K)iKeiK·X (27)

From (27) it follows that if ∂x is a Minkowski four-vector, then so
must K be too, and vice-versa. In turn, it follows that K · X is a
Minkowski-space invariant, i.e., the Phase Invariance (18) appears as a
result of (27), and therefore becomes a special case in such a context.
Consequently (27) also prescribes (19), since the various coordinates
in (16) must agree one by one with the corresponding coordinates in
(9). In other words, we have here a “dictionary”

∂x ⇔ iK, ∂x ⇔ ik, ∂t ⇔ −iω (28)

where in (28) the last two expressions are the three-space and time
representation.

Direct application of the dictionary (28), by substitution of the
components of iK into (9) yields the relativistic Doppler Effect (19)
and vice-versa. The direct use of such dictionaries can save a lot of
manipulation. It seems therefore advantageous to use the Minkowski-
space and its associated four-vectors. However the game we play
relative to the postulates and ratiocinations of the Special Relativity
theory must be carefully stated. As another example, consider the
identical functional structure of (6) and (11), already noticed above.
From the similarity and the statement that (2) is a four-vector, it
follows that

J = (j, icρ) (29)
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is a Minkowski four-vector as well, where (29) applies to both e-
indexed and m-indexed sources. Using (11), it is easily verified that
J, (29), satisfies (23). We have established that subject to the Lorentz
transformation, which is embedded in (21), the quadruplet J in (29) is
a Minkowski four-vector. Conversely, if we start with a statement that
(29) constitutes a Minkowski four-vector, then the transformation (11)
is concluded.

Originally (11) was presented as a result of the form-invariance
(1), (5) of the Maxwell Equations, and in addition (8), which already
assumes the Lorentz transformation. The question whether it is
possible to postulate (11) in order to derive the Lorentz transformation
(6) will be considered in a subsequent section.

5. DOPPLER EFFECT AND CONSTANCY OF
SLOWNESS IN VACUUM

The process of using (7), which led to the relativistic velocity
transformation (13) can be mimicked using for the Doppler Effect (19),
thus yielding

dk′ = Ũ · (dk − vdω/c2), ω′ = γ(ω − v · k)

s′ = s′⊥ + s′‖ = Ũ · (s − v/c2)/(γM)

= (s⊥ + γ(s‖ − v/c2))/(γM) (30)

s′⊥ = s⊥/(γM), s′‖ = (s‖ − v/c2)/M

M = 1 − v · s, s = dk/dω, s′ = dk′/dω′

In (30) the new function s is dubbed as “slowness” [11], due to its
dimensions. Obviously velocity is not simply the inverse of slowness,
because we have vectors in (13) and (30). Also it is noted that s,
defined in the spectral domain, does not actually refer to motion of an
object. Note carefully that the velocity in (13) did not require a special
definition, because velocity as the derivative along the trajectory is
already available from mechanics. On the other hand, slowness, which
can be understood as the derivative along the trajectory in the spectral
domain, is a new concept, and needs to be stated.

Analogously to (13) we assume in (30)

s
′2
⊥ + s

′2
‖ = 1/c2 (31)

After some manipulation (30), (31) yield, analogously to (15)

s2
⊥ + s2

‖ = 1/c2 (32)
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This is a remarkable (novel, as far as this author can assess) result
showing that the Doppler Effect has the same properties as the Lorentz
transformation, namely, when the slowness in one inertial frame is
the vacuum slowness 1/c, then this is a constant slowness observed in
all inertial systems. Therefore the kinematical element of the Special
Relativity theory can be embodied in this new principle, or by invoking
the Doppler Effect formulas (19).

6. EINSTEINIAN AND TOPSY-TURVY SPECTRAL
MODELS

There is no apparent reason for starting with the Maxwell Equations in
the spatiotemporal domain. The Fourier transform pair (25), (26) can
be used to transform (1), (5) (or (3) and the corresponding Maxwell
equations in Γ′) into the spectral domain. Conversely, we can start
with the spectral representation and from there transform into the
spatiotemporal domain.

Thus a consistent Special Relativity model can be stated in the
spectral domain. We start with the Fourier transformed Maxwell
Equations in Γ, obtained by applying (25) to (1)

ik × E = iωB − jm
ik × H = −iωD + je
ik · D = ρe

ik · B = ρm

(33)

where in (33) the transformed fields E = E(K) etc. are understood.
Following the Einstein approach, the principle of relativity now
prescribes in Γ′ the corresponding set of the transformed Maxwell
Equations

ik′ × E′ = iω′B′ − j′m
ik′ × H′ = −iω′D′ + j′e
ik′ · D′ = ρ′e
ik′ · B′ = ρ′m

(34)

where in (34) E′ = E′(K′), etc.
Consistent with Einsteins approach, we assume now the principle

of constancy of slowness 1/c, and derive the analog of the Lorentz
transformation, namely the Doppler Effect formulas K′ = K′[K] given
in (19). This yields the analog of (10), (11), i.e., transformation
formulas for the fields and sources, where the independent variables
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are in the spectral domain, e.g., the analog of (12) is now

E′(K′) = Ṽ · (E(K) + v × B(K)) (35)

The topsy-turvy analog follows in an almost trivial way: We start
with the postulated Fourier transformed Maxwell Equations (33), the
fields and sources transformation formulas, i.e., (10) and (11) modified
according to prescription (35), and the Doppler Effect formulas (19).
From these the Maxwell Equations set (34) is derived.

7. MAXWELL EQUATIONS, POTENTIALS, AND
EQUATIONS OF CONTINUITY

The Maxwell Equations facilitate the statement of potentials. These
are usually derived from the sourceless equations in each set of (3).
In addition, by applying a divergence, ∂x·, operator to the vector
equations containing sources, or equivalently, applying a factor ik· in
the Fourier transformed equations, equations of continuity are derived.
Thus for the set of Maxwell Equations (3) we have

Be = ∂x × Ae

∣∣∣ Dm = ∂x × Am

Ee = −∂xφe − ∂tAe

∣∣∣ Hm = ∂xφm + ∂tAm

∂X · Je = ∂x · je + ∂tρe = 0
∣∣∣ ∂X · Jm = ∂x · jm + ∂tρm = 0

(36)

where in (36) E = E(X) etc., and the equations of continuity are also
expressed in terms of the four-vector notation. Equivalently, in the
spectral domain

Be = ik × Ae

∣∣∣ Dm = ik × Am

Ee = −ikφe + iωAe

∣∣∣ Hm = ikφm − iωAm

K · Je = k · je − ωρe = 0
∣∣∣ K · Jm = k · jm − ωρm = 0

(37)

where in (37) E = E(K) etc. We can work backwards and derive
the Maxwell Equations (3), or the corresponding spectral domain set
obtained from (33), by exploiting (36), or (37), respectively. For
example, in (36) perform ∂x × Ee = −∂t∂x × Ae = −∂tBe to get
the first equation on the left, (3). Inasmuch as any scalar can be
represented as a divergence of a vector, we can arbitrarily define
∂x ·De = ρe. Consequently, from the equation of continuity in (36) we
have ∂x · (je + ∂tDe) = 0, and because ∂x · ∂x× of any vector vanishes,



314 Censor

we conclude that je + ∂tDe = ∂x ×He, and so on. A similar procedure
applies to spectral set (37).

Hence we could apply Einstein’s principle of relativity to (36)
or (37) instead of the original Maxwell equations. Stipulating these
expressions to be form-invariants in all inertial systems prescribes

B′
e = ∂x′ × A′

e

∣∣∣ D′
m = ∂x′ × A′

m

E′
e = −∂x′φ′

e − ∂t′A′
e

∣∣∣ H′
m = ∂x′φ′

m + ∂t′A′
m

∂x′ · j′e + ∂t′ρ
′
e = 0

∣∣∣ ∂x′ · j′m + ∂t′ρ
′
m = 0

(38)

where in (38) E′ = E′(X′) etc. Similarly, add primes in (37) and
express the fields in terms of the appropriate quadruplet of spectral
coordinates, e.g., E′ = E′(K′) etc.

Finally, in addition to the form-invariant (36), (38), include
the Lorentz transformation (6) in the model. In the corresponding
spectral domain model, in addition to (37) and the corresponding
primed equations, include the Doppler Effect transformation (19).
Thus consistent and complete Special Relativity models are obtained
with the form-invariance of the Maxwell Equations appearing as
a consequence, rather than a postulate. In a similar fashion the
relevant topsy-turvy models can be stated. It is important to note
that in addition to the potentials, the equations of continuity must
be postulated, in order to achieve consistent and complete Special
Relativity models.

The above argument can be presented using the Minkowski four-
space formalism. But the need for new concepts, such as six-vectors
and the electromagnetic tensor, and the associated loss of compactness,
together with increasing departure from the original concepts, makes
this a cumbersome game of dubious advantage. Inasmuch as this game
is widely used, e.g., see [3, 4, 12], it is worthwhile to cursorily outline
its origins here.

The potentials appearing in (36) can be regrouped into four-
vectors

Φ = (A, iφ/c) (39)

where (39) applies to both e-indexed and m-indexed fields. From the
formal similarity of the definition (16) and the Doppler

Effect transformations (19), it immediately follows that the
potentials transform according to

A′ = Ũ · (A − vφ/c2)
φ′ = γ(φ − v · A) (40)
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where (40) applies to both e-indexed and m-indexed potentials.
Therefore we have

Φ′ · Φ′ = Φ · Φ (41)

i.e., Minkowski-space invariants for both e-indexed and m-indexed
potentials.

A four-dimensional ∂x × Φ operation is now defined

∂X × Φ = (∂XiΦj − ∂XjΦi), i, j = 1, 2, 3, 4 (42)

∂X×Φ must be understood as merely a symbol, because a direct analog
of the three-dimensional rotor operation does not exist. It is easily
shown that in (42) only six independent equations exist, therefore
∂X × Φ is referred to as a six-vector.

Carrying out the operations indicated in (42) yields the following
six-vectors

∂X × Φe = (Be,−
i

c
Ee), ∂X × Φm = (Hm,−icDm) (43)

and therefore the various fields in (36) can be expressed as the real or
imaginary components of ∂X × Φe, ∂X × Φm, e.g., Be = �(∂X × Φe)
etc. Now these forms, together with the equations of continuity,
can be chosen as a basis for the principle of relativity, i.e., as the
sets that are form-invariant in all inertial systems. This approach is
akin to the electromagnetic tensor representations, appearing in most
mathematically-oriented statements of the Special Relativity theory.
Obviously these approaches are only some of the many possibilities of
playing the game.

8. CHARGE CONSERVATION, CONVECTION
CURRENT AND THE LORENTZ TRANSFORMATION

Recently another possibility of replacing the Lorentz transformation
has been considered [13]. The author adopts Einstein’s principle of
relativity, i.e., the form-invariance of (1), (5), and adds to it the
conservation of charge of an isolated body. In this section we examine
an approach based on (11).

Let us start with Einstein’s principle of relativity, i.e., the
stipulation of form-invariance in (1), (5). As long as the Lorentz
transformation (6) is not included, we do not have (8) to work
with, hence (10), (11) cannot be derived, let alone the comparison
of observations in various inertial frames of reference, as suggested by
(12), is not available.
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The formal similarity of (11) and the Lorentz transformation (6)
has already been noticed above as very suggestive for creating an
alternative relativistic model. Let us now introduce the new concept
of convection current density, and assume that such current densities
can exist in all inertial frames

jc = ucρc, j′c = u′
cρ

′
c (44)

In (44) a statement has been made that a convection current density
is created by moving charge densities. In other words, uc, u′

c are
considered as proper velocities as understood in mechanics, i.e., like u
in (13).

Note that Maxwell Equations (1) do not prescribe (44). In the
Maxwell Equations the number of unknowns exceeds the number
of equations, hence additional relations are necessary in order to
solve (1). Such new equations relating quantities appearing in the
Maxwell Equations, are termed constitutive relations. Therefore (44)
constitutes such a constitutive relation, which has the status of a
postulate.

Furthermore, let us now consider (11) as a postulate. For the
convection current densities and the associated charges densities this
prescribes

j′c = Ũ · (jc − vρc), ρ′c = γ(ρc − v · jc/c2) (45)

By substituting (44) into (45), once again (13) is derived with uc

replacing u. The assumption that uc = dx/dt is a proper velocity
facilitates working our way backwards to derive (7) and therefore
(6). Thus we have demonstrated that the principle of relativity, i.e.,
the form-invariance of (1), (5), together with (44), (45) constitutes a
consistent Special Relativity model.

Having at our disposal the Lorentz transformation (6), or its
differential form in (7), the convection current densities (44), and the
postulate (45), we can now prove the conservation of charge. The
following development is somewhat similar to the definition of the
self (proper) time and the idea of time dilation in Special Relativity.
Consider (45) with j′c = 0, and substitute the ensuing jc = vρc into
the second expression (45). This yields

ρ′c = ρc/γ (46)

Note that (46) depends on our starting assumption j′c = 0. Had we
started with jc = 0, we would end up with ρc = ρ′c/γ. There is no
conflict here, and both results show that in the proper frame, where
the current density vanishes, the charge density is smaller than that
observed in any other reference frame, i.e., ρ′c < ρc.
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Similarly to the argument leading to (46), the relativistic time
dilation is obtained from (6) upon assuming x′ = 0 and substituting
x = vt into the second expression (6), yielding t′ = t/γ, i.e., t′ < t,
where in the proper frame, in which the clock is at rest, the amount
of measured time is smaller than that measured by other observers, a
phenomenon dubbed as time dilation.

We now wish to show how our analysis leads to conservation of
charge. Consider in Γ′ an elementary charge defined by the charge
density times a volume element

dq′ = ρ′cdV ′ = ρ′cdx′dy′dz′ (47)

The corresponding charge in Γ is moving according to x = vt. hence

dq = ρcdV = ρcd(x − vt)dydz (48)

By exploiting (7) and (46) in (47), (48), and some manipulation, we
obtain

dq = (ρc/γ)(γ(dx − vdt))dydz = dq′ (49)

showing that the charge is conserved.
Conversely, we start with the postulate of charge conservation, as

in (49). To derive (47) we need to postulate (46) and

dy = dy′; dz = dz′ (50)

Consequently (49), (50) establish the first expression of (7), hence also
the corresponding one in (6). Postulating (44) we can backtrack to
derive from (46) the second expression (45). Obviously, we still miss
something, and that is either the second expression (6) or the first
expression (45). One of them must be postulated, or some intermediate
expression such as

dt′/dt = dρ′c/dρc (51)

Anyhow, this seems to be a very contrived game, although a legitimate
one nevertheless.

The length contraction phenomenon is shown from (7) when the
two ends of a length element are concurrently observed in Γ, at some
fixed time i.e., dt = 0. Accordingly (7) yields dx′ = Ũ · dx, thus
dx′ > dx. By substituting dt = 0 into the second expression (7) it is
seen that in Γ′ the two ends of the length element are observed at a
time difference dt′ = −γv · dx/c2.

One may wonder if (11) displays a phenomenon analogous to the
relativistic length contraction. Obviously if we assume ρ = 0 in (11),
this leads formally to dj′ = Ũ · dj, dρ′ = −γv · dj/c2, but it is not clear
what this means physically.
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9. SUMMARY AND CONCLUDING REMARKS

Einstein’s Special Relativity theory combines with Maxwell’s theory
of electrodynamics into one of the pinnacles of physical theory, indeed
of human intellect. This will always be associated with the names of
Maxwell and Einstein.

The present research does not refute or replace the edifice of
Relativistic Electrodynamics. The question asked here is: is the
statement of Relativistic Electrodynamics unique? By providing many
examples, it is shown that indeed it is not singular.

Einstein’s original theory is based on a set of postulates and
leads to conclusions. What we demonstrate above is the feasibility
of choosing some conclusions to act in the role of postulates, and
derive Einstein’s original postulates as conclusions. Although no novel
physical theory is proposed, the flexibility gained by this strategy
allows for better understanding, and provides for more sophisticated
teaching methods and the handling of specific problems. It also shows
the way to determine when the theory is under-determined, i.e., needs
more postulates and definitions, and when a certain approach might
be over-determined, in the sense that too many postulates have been
assumed, some of them already constituting results.

In the topsy-turvy approach, the constancy of c for all inertial
observers is replaced by the Lorentz transformation, and the principle
of relativity, by which the set of the Maxwell Equations is form-
invariant in all inertial systems, is replaced by a set of Maxwell
Equations in one arbitrary frame of reference, and in addition
the transformation formulas for the fields and sources, allowing to
determine those in other inertial systems.

The equivalence of the Lorentz transformation and the relativistic
Doppler Effect formulas is demonstrated, facilitating a consistent
model in the spectral domain (related to the spatiotemporal domain
by the four-dimensional Fourier transform). An interesting result of
this approach is the constancy of slowness of light in vacuum, which is
the counterpart of the constancy of light speed in vacuum. This is not
merely some semantic game on words, it is an interesting result which
allows all the equivalent theories to be stated in the spectral domain.

We have also examined the alternative of replacing the Maxwell
Equations by potentials and equations and continuity.

Finally, it has been shown that the inclusion of the convection
current in the postulates allows for a replacement of the Lorentz
transformation by the current-charge density transformation formulas.

One theme which remains valid for all the models is the need for
two elements: the theory needs a kinematical element, dealing with
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transformation of coordinates, and a dynamical element dealing with
measurable fields.
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