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Abstract—The increasing interest in electromagnetic effects in
double-negative (DNG) materials requires a formulation capable of a
full analysis of wave propagation in such materials. We develop a
novel technique for discretization of the Drude medium model and
adopt multi-domain pseudospectral time-domain (PSTD) algorithm
and well-posed PML formulation to analysis the plane wave scattering
properties of a single circular cylinder and a periodic array of
the circular cylinders fabricated from the Drude medium. The
simulation results show accuracy of the proposed constitutive equation-
discretization scheme.
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1. INTRODUCTION

It has been demonstrated recently, that a substance studied
theoretically by Veselago [1] in which the dielectric constant ε
and magnetic permeability µ are both negative, can be attained
artificially in a metamaterial represented by a periodic medium
of metallic wires [2] and split-ring resonators (SRR’s) [3] that is
characterized by an effective permittivity εeff and permeability µeff

that can both have negative values in a certain frequency range.
Remarkably, simultaneously negative material parameters lead to
opposite directions of the Poynting and phase velocity vectors of plane
waves propagating in the material, that is, to the existence of backward
waves in double-negative (DNG) media. Three vectors �E, �H and �k
form the left-handed triplets in DNG media, so such materials have
been termed left-handed (LH) media.

Up to now both theoretical and experimental efforts [2–9] have
focused on the study of the dispersion relations of the thin wire medium
that is described by the frequency-dependent dielectric function

εeff (ω) = 1 −
ω2

p

ω2
(1)

Here ωp is the plasma frequency, which depends on the geometrical
parameters of the wires in a manner that allows scaling down ωp to
microwave frequencies. On the other hand, an array of split ring
resonators exhibits behavior that can be described by an effective
frequency-dependent permeability in the form

µeff (ω) = 1 − Fω2

ω2 − ω2
0 + iωΓ

(2)

Ziolkowski et al. [8] has enlivened the discussion by numerical
simulation means. He chose the finite-difference time-domain (FDTD)
method to solve Maxwell’s equations directly, without any assumption
on the sign of the refractive index or the direction of wave propagation
inside the DNG slab. Davi et al. [9] add the perfectly matched
layers (PMLs) formulation to Ziolkowski’s approach to reduce the
requirements for the computational domain, and simulate three-
dimensional wave propagation problems.

In recent years, pseudospectral time-domain (PSTD) methods as
an effective higher-order and spectral method have been proposed
[10–16] and demonstrated to greatly outperform the FDTD method.
The Fourier PSTD, originally proposed by Liu [10, 11], promises
the superior accuracy in approximation of spatial derivatives by
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the fast Fourier transform (FFT) with a grid density of only two
points per minimum wavelength. The Chebyshev PSTD [12–16] with
Chebyshev collocation methods to approximate spatial derivatives
has shown a spectral accuracy for discontinuous materials but with
a slightly increased computational burden of π cells per minimum
wavelength. With a multidomain scheme [12–16] that divides the
whole computational domain into a series of subdomains naturally
conformal to the problem geometry, Chebyshev PSTD method can
deal with curved objects and strongly inhomogeneous media with a
great flexibility.

In this paper, we develop a novel technique for discretization of
the constitutive equations, and adopt the multidomain pseudospectral
time-domain algorithm and well-posed PML formulation [17] to
flexibly analyze plane wave scattering from an infinitely long cylinder
fabricated from double-negative materials and one-dimensional
periodical array composed of the cylinders fabricated from double-
negative materials.

2. DISCRETE MODEL FOR MATERIAL EQUATIONS
OF DNG CYLINDER

2.1. Maxwell’s Equations in the Drude Materials

The formulation used to simulate wave scattering by an infinitely
long cylinder fabricated from double-negative materials follows the one
proposed by Ziolkowski et al. in [7]. There the authors developed the
idea of the Drude medium used to simulate the negative ε and µ. Note
that by simply imposing ε and µ negative inside the DNG slab would
produce an unstable simulation, since the field at the interface, for a
matched case, would blow up. Hence, the Drude medium approach
is more general and can be applied to both matched and unmatched
interfaces.

The constitutive relations for a frequency dispersive isotropic
medium read as follows: {

�D = ε(ω) �E
�B = µ(ω) �H

(3)

Negative permittivity and permeability are realized with the Lorentz
medium model. The expressions for the permittivity and permeability
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are of the form


ε(ω) = ε0

(
1 +

ω2
pe

ω2
oe − ω2 + jΓeω

)

µ(ω) = µ0

(
1 +

ω2
pm

ω2
om − ω2 + jΓmω

) (4)

This model corresponds to a realization of DNG materials as
mixtures of conductive spirals or omega particles, as discussed in [6].
Substituting those expressions into 2-D TMz (transverse magnetic to
z) polarization Maxwell’s equations in the frequency domain, we can
obtain

jωHx = − 1
µ0

∂Ez

∂y
−Gx

jωHy =
1
µ0

∂Ez

∂x
−Gy

jωEz =
1
ε0

(
∂Hy

∂x
− ∂Hx

∂y

)
− Sz

(5)

where

jωGx = ω2
pmHx − ΓmGx − ω2

omFx

jωFx = Gx

jωGy = ω2
pmHy − ΓmGy − ω2

omFy

jωFy = Gy

jωSz = ω2
peEz − ΓeSz − ω2

oeRz

jωRz = Sz

(6)

In the time domain, we finally have

∂Hx

∂t
= − 1

µ0

∂Ez

∂y
−Gx

∂Hy

∂t
=

1
µ0

∂Ez

∂x
−Gy

∂Ez

∂t
=

1
ε0

(
∂Hy

∂x
− ∂Hx

∂y

)
− Sz

(7)
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where

∂Gx

∂t
= ω2

pmHx − ΓmGx − ω2
omFx

∂Fx

∂t
= Gx

∂Gy

∂t
= ω2

pmHy − ΓmGy − ω2
omFy

∂Fy

∂t
= Gy

∂Sz

∂t
= ω2

peEz − ΓeSz − ω2
oeRz

∂Rz

∂t
= Sz

(8)

Note that with this new approach, we avoid the instability issue present
when setting directly ε < 0 and µ < 0. The application of multidomain
PSTD algorithm is then straightforward, with Gx, Fx, Gy, Fy, Sz, and
Rz being updated in each time step, as the �E and �H fields.

2.2. PML in the Drude Medium

Contrary to the two-time-derivative Lorentz material absorbing
boundary condition [8] and Berenger’s Split-PML [9] employed to
terminate the grid, we adopt well-posed PML [15] to absorb the
outgoing waves in this paper. Following [16], we introduce complex
coordinate stretching variables as following:


∂x ⇒

[
1 +

ωx(x)
jω

]

∂y ⇒
[
1 +

ωy(y)
jω

] (9)

Defining new field variables for the PML region{
H̃x = Hx + ωxQx

H̃y = Hy + ωyQy

(10)
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We can rewrite (7) and (8) for the PML as

∂H̃x

∂t
= − 1

µ0

∂Ez

∂y
+ (ωx − ωy)

(
H̃x − ωxQx

)
−Gx − ωyFx

∂H̃y

∂t
=

1
µ0

∂Ez

∂x
+ (ωy − ωx)

(
H̃y − ωyQy

)
−Gy − ωxFy

∂Ẽz

∂t
=

1
ε0

(
∂H̃y

∂x
− ∂H̃x

∂y

)
− (ωx + ωy)Ez − ωxωyPz

−Sz − (ωx + ωy)Rz − ωxωyR
′
z

(11)

where
∂Qx

∂t
= H̃x − ωxQx

∂Qy

∂t
= H̃y − ωyQy

∂Pz

∂t
= Ez

∂Gx

∂t
= ω2

pmHx − ΓmGx − ω2
omFx

∂Fx

∂t
= Gx

∂Gy

∂t
= ω2

pmHy − ΓmGy − ω2
omFy

∂Fy

∂t
= Gy

∂Sz

∂t
= ω2

peEz − ΓeSz − ω2
oeRz

∂Rz

∂t
= Sz

∂R′
z

∂t
= Rz

(12)

Note that this nonsplit PML is well-posed for Lorentz medium because
(10) remains the same symmetric hyperbolic system as the original
Maxwell’s equations plus some lower-order terms that do not affect
the well-posedness [17]. When ω2

pe = ω2
pm = 0, the Maxwell’s

equations in PML region reduce to ones known for linear, nondispersive
media. When ωx = ωy = 0, the PML equations reduce to Maxwell’s
equations for a regular Lorentz medium. In addition, (12) are ordinary
differential equations without spatial derivatives, ensuring a simple and
efficient implementation.
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3. TIME STEPPING SCHEME

To advance (7) in time we use a fourth-order, fivestage, low-storage
version of the classical Runge-Kutta method. For the equation

∂q

∂t
= f(t, q) (13)

we denote q(tn) as qn and tn = n∆t where ∆t is the time step size.
The low-storage form of the Runge-Kutta method is given as [18]

u0 = qn

qn+1 = un

∀j ∈ [1, 5] :

{
kj = ajkj−1 + ∆tf ((n + cj)∆t, uj−1)

uj = uj−1 + bjkj
(14)

where the constants aj , bj and cj are determined to yield the desired
order, s−1, of the scheme. For the scheme to be self-starting we require
that a1 = 0. Note that we need only two storage levels containing kj

and uj to advance the solution. The actual values of aj , bj and cj can
be found in [18].

4. NUMERICAL RESULTS

The computational domain of rectangular shapes is divided into
nonoverlapping quadrilaterals. The outer layer of quadrilaterals is
used as PML subdomains in which the PML lossy media is applied
using a quadratic profile of the PML absorption coefficient. Each
quadrilateral is meshed with a grid where the grid points are located
at the Chebyshev-Guass-Lobatto collocation points. In all examples,
a grid with 16 × 16 points are used for each subdomain. The time
function of the plane wave source and line electric current source is
given by

f(t) =




gon(t) sin(ω0t) 0 ≤ t < mTp

sin(ω0t) mTp ≤ t ≤ (m + n)Tp

goff (t) sin(ω0t) (m + n)Tp ≤ t ≤ (m + n + m)Tp

0 (m + n + m)T ≤ t

(15)

where Tp = 1/f0 is the period of one single cycle and the three-
derivative smooth window functions are given by


gon(t) = 10x3

on − 15x4
on + 6x5

on

goff (t) = 1 −
(
10x3

off − 15x4
off + 6x5

off

) (16)
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Figure 1. Fields due to line source at the center of a square cylinder
fabricated from DNG materials.

with {
xon = 1 − (mTp − t)/mTp

xoff = (t− (m + n)Tp) /mTp
(17)

The time function is the multiple cycle m-n-m pulse. It is a sinusoidal
signal that has a smooth windowed turn-on for m cycles, a constant
amplitude for n cycles, and then a smooth windowed turn-off for
m cycles; hence, it has an adjustable bandwidth (through the total
number of cycles m+n+m) centered at the frequency f0. For the cases
considered below, a 20-cycle, 5-10-5 pulse is used in computation. The
Matrix-Pencil method [19] is used to reduce the required computing
time to reach the harmonic steady state.
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Figure 2. Plane wave scattering from a circular cylinder fabricated
from DNG materials.

As a first example we consider a square cylinder fabricated from
double-negative materials. The problem consists of an infinitely long
line source located at the center of the square cylinder which is
surrounded by free space, as shown Fig. 1(a). The grid points used
in the calculation are shown in Fig. 1(b). The problem space is
two-dimensional, with the electric field directed parallel to the line
current. Hence, the field components Hx, Hy, Ez exist in the model.
The peak of the incident spectrum is at ωp = 5.0 × 109 rad/s, and
the parameters in (4) are as follows: ωoe = ωom = 1.0 × 109 rad/s,
ω2

pe = ω2
pm = 4.8× 1019 (rad/s)2, Γe = Γm = 0. With these choices, we

obtain ε(ω)/ε0 = µ(ω)/µ0 for all ω and ε(ω)/ε0 = µ(ω)/µ0 = −1, at
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Figure 3. Plane wave scattering from a circular cylinder fabricated
from DNG materials.

ω = ωp. Fig. 1(c) illustrates the electric field intensity Ez at the center
of the square cylinder, and Fig. 1(d) shows the Ez-field distribution
corresponding to the time t = 1000000∆t.

The second example is the plane wave scattering from a circular
cylinder fabricated from double-negative materials in free space.
The radius of the cylinder is 0.2 m. The Fig. 2(a) illustrates the
decomposition, and Fig. 2(b) shows the grid points used in the
calculation. A plane wave is incident on the cylinder along the x-
axis. The electric field intensity Ez at x = y = −0.210355 m is shown
in Fig. 2(c) and the Ez-field distribution corresponding to the time
t = 250000∆t is shown in Fig. 2(d).

As a final example, we consider the plane wave scattering from a
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periodic array of the circular cylinders fabricated from double-negative
materials, as shown in Fig. 3(a). The parameters of the problem
are a = 0.2 m and d = 1 m. We apply the periodic boundary
condition [20] into the multi-domain PSTD algorithm to calculate
the electromagnetic fields. The geometry, grid points and source are
similar to the second example [see Fig. 2(a) and (b)]. We also choose
the observation point as x = y = −0.210355 m. Fig. 3(b) shows the
electric field intensity Ez at the observation point, and Fig. 3(c) shows
the Ez-field distribution corresponding to the time t = 125000∆t.

5. CONCLUSION

A complete formulation, adding the well-posed PML approach to
the formulation of the Drude medium model, has been developed
in this paper. The scattering properties of a single circular
cylinder and a periodic array of the circular cylinders having both
a dispersive permittivity and a dispersive permeability, in particular
in the frequency range where both characteristics are negative, which
corresponds to the case when cylinder exhibits the behavior of
the double-negative medium, have been numerically studied. The
simulation results show accuracy of the proposed constitutive equation-
discretization scheme and provide a base for the more research on
properties of the double-negative medium.
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