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ONE-DIMENSIONAL SIMULATION OF REFLECTED
EM PULSES FROM OBJECTS VIBRATING AT
DIFFERENT FREQUENCIES
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Abstract—In this report one-dimensional simulation of Electromag-
netic pulses reflected from moving and/or vibrating perfectly conduct-
ing surfaces is presented. The computational results are obtained
through the application of the method of characteristics with the aid
of the characteristic variable and the relativistic boundary conditions.
The reflecting perfect surface is set to constantly travel at relatively
high speed and/or sinusoidally vibrate with very high frequency in or-
der to easily observe the relativistic effects on the reflected pulses. To
validate the numerical method, the reflected electric fields and the cor-
responding spectra are demonstrated side-by-side for comparisons with
the theoretical Doppler shift values. It is found that the computational
results and the theoretical values are in good agreement.
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1. INTRODUCTION

The main purpose of this report is to apply a newly developed
numerical method to the solution of EM scattering problem involved
with moving/vibrating boundary. It is also of interest to predict
and observe the relativistic effects of the moving/vibrating perfect
boundary on the reflected EM fields. The scheme performance
is investigated by comparing the computational results with the
theoretical values of Doppler shifts. The analytical theory of
electromagnetic wave scattering from moving conductors have been
developed and can be found in many literatures, such as references
[1–3]. For the past half-century many numerical techniques have
been developed for modeling the EM scattering problems. Among
them, the two most well known and widely used approaches are
the method of moments (MoM) and the finite-difference time-domain
(FDTD) technique. From the above mentioned researches the following
observations can be found: the familiar Doppler shifts can be observed
in the reflected fields from perfect planes experiencing translational
motion; the oscillation of object results in changes in phase and
magnitude of the scattered fields.

Besides MoM and FDTD, a recently developed approach for
direct approximation of the time-domain Maxwell’s equations is the
method of characteristics (MOC). This characteristic-based method
was originally applied to the solutions of the Navier-Stokes equations
for the fluid dynamic problems by Whitfield and Janus in the 80s
[4]. Shang solves the time-domain Maxwell’s equations by using
the explicit finite-difference formulation in MOC in the early of
90s [5]. By elaborating with lower-upper approximate factorization
method, the implicit formulation was developed for the direct time
domain computation of the Maxwell curl equations and found in good
agreement with results generated by FDTD [6]. Different from the
MoM and FDTD approach where field components are allocated in
different nodes, the characteristic-based method positions all field
variables in the grid cell center. Each field variable in MOC is then
the averaged value over the computational cell. MOC is consequently
considered to be a suitable approach for problems involving time-
varying cell, such as cases where the object or boundary is in motion.
To solve the governing equations, MOC first casts the Maxwell’s
equations in the form of Euler equation, transforms them into a
curvilinear coordinate system, and then directly approximate them
by balancing the net flux within each computational cell.
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2. BOUNDARY CONDITION TREATMENT

The time-domain Maxwell curl equations constitute a hyperbolic
system meaning that in order to obtain a unique solution of the
problem one must specify initial values and satisfy appropriate
boundary conditions (BC). To specify initial values implies that both
the electric and magnetic fields are defined before the numerical
procedure progresses. The realization of the boundary conditions
means the follows: layers of computational cell around the object’s
surfaces and the truncated computational boundaries field variables
must be manipulated according to physics during the process. For
instance, on the surface of a stationary perfect conductor the tangential
component of the electric field intensity must vanish and there’s no
penetration of the field into the conductor. On the other hand, on
the interface between media, both the tangential component of field
intensities and the normal component of field flux densities must be
continuous. On the outer computational boundaries, the Sommerfeld’s
radiation condition must hold, the proper BC’s ensure that this layer
of cell should not bounce the outward going fields.

Since the boundary is relativistically moving and/or vibrating, the
relativistic boundary conditions have to be taken into account. The
boundary conditions used in the present method are the combination
of the characteristic variable (CV) boundary conditions and the
relativistic boundary conditions. The former are inherited from the
nature of MOC. Based on the definition, CV is the product of the
instantaneous variable vector and one row eigenvector associated with
one particular eigenvalue [4]. Since each eigenvalue designates the
direction and velocity of the information propagating across the cell
face, the helpfulness of CV for the evaluation of boundary variables is
evident, which bears more accurate interpretation of physics. The CV
arriving on the boundary is the one carries information propagating
across the cell face from the adjacent cell and given by

CV ∗ = n × Ba + η0D
a (1)

with η0 being the impedance of free space and both Ba and Da are
the variables of the cell immediate adjacent to the boundary, and
n is the unit normal vector of the surface. In order to incorporate
the relativistic effects due to the motion of perfect boundary, the
relativistic relation is considered and written as

n × E∗ = (�v · n)B∗ (2)

where �v is the velocity to the perfect surface, and E∗ and B∗ are the
electric field intensity and magnetic flux density evaluated right on the
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boundary, respectively. The boundary values E∗ and B∗ then can
be directly solved from (1) and (2). It is therefore predictable that
the reflected fields would be impressed with noticeable double-Doppler
shifts if the reflecting surface experiences a motion at relatively high
speed or instantaneous velocity.

 (a) (b)   (c)     

 … N-1 N … N-1 N  … N-1 N N+1  

  Perfect 
surface 

 
       →

→→

→

Figure 1. Computational cell indexing: (a) stationary grid system,
(b) The Nth cell is partially truncated, (c) The (N + 1)th fractional
cell is introduced.

A stationary grid system will be used for problems involving
stationary boundary where both the cell number and cell size are time-
invariant and alike as depicted in Figure 1(a). If the boundary is in
motion, as in the present simulation, both cell number and cell size
are functions of time. If the boundary moves to the left, portion
of the Nth cell is truncated as in Figure 1(b). Alternatively, as
shown in Figure 1(c), when the boundary travels to the right, an
extra fractional cell, the (N + 1)th cell, is introduced into the grid
system. It is understood that the total number of cell eliminated or
added may be multiple and depends on the oscillation amplitude and
the grid density, and that the determination of the numerical time
step is quite important. One has to ensure that the propagation of
the numerical field would not to pace or skip any grid during the
simulation, which is achievable by cautiously updating the effective
cell and the corresponding numerical time step.

3. THE PROBLEM

The incident excitation used in the model is a plane EM pulse having
a Gaussian distribution profile and only components Dz and By, or
equivalently Ez and Hy where the electric field intensity is normalized
to unity. The incident is initially set to propagate in the positive x-
direction in free space, and normally illuminates upon a perfect plane
that is either at rest or in motion. For practical reason, a rectangular
window is applied to the Gaussian pulse and has a cutoff level of
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100 dB with respect to the peak. The EM pulse is assumed to have a
temporal width of about 1.9024 ns measured from the center to e−0.5

in magnitude and a highest frequency content of about 404 MHz in
the spectrum. The whole spatial span of such pulse is approximately
6 meters. The number of grid cell for the Gaussian pulse is 1000
points and the numerical time step is set so that the numerical EM
pulse takes ten steps for one grid cell. Note and recall that, under the
above assumption, the CV ∗ in equation (1) is tangential to the perfect
surface. The final forms of the boundary variables are respectively
given by

B∗
y =

1
�v − 1

CV ∗ (3)

E∗
z =

�v

�v − 1
CV ∗. (4)

For the purpose of easy examination on the effects of the moving object
on the reflected pulses, the perfect boundary is set to move as specified
below. The perfect boundary is uniformly traveling at a speed of
10 percent of the light speed (C) and/or sinusoidally vibrates with
constant frequency and amplitude so that the extreme instantaneous
velocity equals to ±0.1 C around the equilibrium position of the
vibration motion. If the vibration frequency and amplitude are 1 GHz
and 9.5493 mm peak-to-peak, then it results in a speed of 0.1 C near
the equilibrium position. Alternatively, if the vibration frequency is
0.5 GHz then the corresponding amplitude is 19.0986 mm to maintain a
speed of 0.1 C at the equilibrium position. The resultant instantaneous
velocities may be superposed when the perfect surface travels and
vibrates at the same time. Furthermore, in this report symbols βτ

and βv are used to represent the ratios of the translational velocity
and oscillatory velocity to the light speed, respectively. Since βv ranges
between −0.1 and + 0.1, |βv| is used to neglect the change of direction.
The sign of β’s is positive if the boundary and the incident move in
the same direction and negative if they are approaching each other.

The variation in the reflected electric field strength is investigated
by |Ei|1−βc

1+βc
where βc is the combined velocity and |Ei| is the normalized

incident electric field intensity. The change in the highest frequency
content is examined and compared with f0

√
1−βτ

1+βτ
where f0 is the

highest frequency content of the incident excitation.
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βτ = +0.1 

| βν | = 0.1 

⇔ (a) ⇔ 

βτ = 0.1  

| βν | = 0.1 

(b) 

Figure 2. EM pulses reflected from moving and vibrating perfect
planes: (a) Vibrating and moving to the left, (b) Vibrating and moving
to the right.

4. RESULTS

In order to observe how the EM fields interact with the moving and
vibrating perfect boundary, two time-sequences of the electric field
intensity are illustrated in Figure 2. The reflected electric fields reveal
not only the oscillatory behavior of the perfect surface but also the
Doppler effects on the pulse widths. Closer observation on the electric
field on the surface found that the electric fields are not always zero
in magnitude owing to the application of the relativistic boundary
conditions on the boundary.

Plotted in Figure 3 are two pure vibration cases where the EM
pulses are reflected by vibrating surfaces with three different vibration
frequencies (fv), namely 0, 0.5 and 1 GHz. Also shown are the field
strengths along with the theoretical values in parenthesis. It is noticed
that the simulation results are quite accurate and that at the center of
the reflected pulses where the EM pulse peak almost coincides with
the equilibrium position of the vibration, as pointed by arrows in
the plot, the extreme instantaneous velocity is equal to 0.1 C when
fv = 0.5 GHz while it is −0.1 C when fv = 1.0 GHz. The evidence
of the vibration frequency of the boundary is obvious by simply
calculating the temporal separations between two consecutive peaks
or valleys. The two calculated periods are 2 ns and 1 ns, respectively.
Examinations on the effects of the translational movement of the
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Figure 3. Reflected electric fields from perfect planes vibrating at
various frequencies.
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Figure 4. Reflected electric fields from perfect planes vibrating and
moving at various velocities.
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Figure 5. Reflected electric fields spectra of those in Figure 3.
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Figure 6. Reflected electric fields spectra of those in Figure 4.
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Table 1. Doppler shifts in the side-lobes of the reflected spectrum (as
in Figure 6).

Velocities 1st side lobe (GHz) 2nd side lobe (GHz) 
|  | Calculated Theoretical Calculated Theoretical 

0 0.1 0.9980 1.0000 1.9833 2.0000
− 0.1 0.1 1.1176 1.1055 2.2137 2.2111 
+ 0.1 0.1 0.9137 0.9045 1.8196 1.8091 

β τ β ν

boundary on the reflected were carried out by setting fv = 1.0 GHz and
βτ is one of the following values: −0.1, 0, and +0.1. Once more the
characteristics of the boundary motion is impressed on the reflected.
The Doppler effect in both the magnitude and the pulse duration are
rather clear from the plot in Figure 4.

Further investigations on the spectrum are given in Figures 5
and 6. Locations of side-lobes in the spectrum release the oscillatory
behavior of the boundary and the relativistic effects due to the motion
of the perfect reflector along the propagation direction of the EM pulse.
The calculated and theoretical frequencies of side-lobes are listed in
Table 1 for comparisons.

5. CONCLUSION

The method of characteristics has been shown to successfully solve
EM scattering problems in one-dimension. The worked problems are
featured by moving and/or vibrating perfect planes and numerically
solved by applying the relativistic and characteristic variable boundary
conditions. The computational results are quite accurate compared
to the exact values. To develop the existing code for problems with
objects of finite dimension is our future goal.
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