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Abstract—In this paper, simulated annealing algorithms are applied
to the analyses of nonlinearly loaded antenna arrays. The analysis is
first transformed into an optimization problem and then be solved by
simulated annealing algorithms. Numerical examples show that the
results calculated by the proposed method are consistent with those
of other published papers. Nearly global optimum solutions can be
obtained since the simulated annealing algorithm is inherently a direct
searching method. It should be noted that the array mutual coupling
effects are included in the analyses of this paper.
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1. INTRODUCTION

There have been many studies for the frequency-domain analyses
of nonlinearly loaded antenna arrays [1–8]. In those studies, the
problems are transformed into equivalent microwave circuits and then
solved by different frequency-domain approaches. In this paper, a
new frequency-domain approach for the analyses of nonlinearly loaded
antenna arrays including mutual coupling effects is presented. In this
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new approach, the analysis of a nonlinear problem is first transformed
into an optimization problem. This optimization problem is then
solved by simulated annealing algorithms [9, 10].

The simulated annealing algorithm has widespread application in
engineering optimization. It utilizes the behavior of systems with many
degrees of freedom in thermal equilibrium at a finite temperature to
find the minimum of a given function with many parameters. However,
the application of the simulated annealing algorithm in this study
is for analysis, but not for optimization. To our knowledge, this
paper is the first study to apply this algorithm to such problems of
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Figure 1. (a) Schematic diagram of a single nonlinearly loaded
antenna, and (b) its equivalent microwave circuit.
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nonlinearly loaded antenna arrays. Numerical examples show that the
results calculated by the proposed methods are consistent with the
results of other published papers. Nearly global optimum solutions
can be obtained since the algorithm is a direct searching method
of optimization and requires no gradient operations in the iteration
procedures.

2. FORMULATIONS

For simplicity, a single nonlinearly loaded antenna element is
considered first. As shown in Fig. 1(a), the system is illuminated
by a plane wave Ei. According to [1, 2, 5, 6], the analysis becomes
an equivalent microwave circuit problem for the solution of terminal
voltage V s at different harmonic frequencies, as shown in Fig. 1(b). In
Fig. 1(b), the Ieq is the short-circuit current at the antenna terminal
due to the incident wave and the IsN is the current of the nonlinear
load. Each variable in Fig. 1(b) is described in the frequency domain.
For example,

V s =
[
Vs0 Vs1 Vs2 · · · Vs2P−1 Vs2P

]T
, (1)

represents the Fourier series coefficients of the time-domain signal vs(t),
i.e.,

vs(t) = Vs0 +
P∑

p=1

{
Vs2p−1 cosωpt+ Vs2p sinωpt

}
. (2)

In (1) and (2), the P is an integer representing the number of harmonics
and “T” denotes the transposition. The Y in Fig. 1(b) is defined as

Y =




0 0 0 · · · 0 0

0 G1 B1 0
... 0

0 −B1 G1
. . . 0

...
... 0 0

. . . . . . 0

0
...

... 0 GP BP

0 0 · · · 0 −BP GP




(3)

where Gp and Bp denote the real part and imaginary part of the
antenna input admittance at the p-th harmonic (p = 1, · · · , P ). It
should be noted that Ieq and Y can be obtained by moment methods
[11].
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The analysis then becomes the solution of terminal voltage V s

at different harmonic frequencies. Assume vs(t) is a vector with its
components sampled from vs(t) and the relation between the time-
domain and frequency-domain variable is given as




V s = Dvs(t)

vs(t) = D
−1
V s

. (4)

Applying KCL at terminal a-a′ of Fig. 1(b), we have an error vector ε
given by

ε = Y V s − Ieq +Df

(
D

−1
V s

)
→ 0, (5)

where f(·) is the i-v characteristics of the nonlinear device. The
problem then becomes to find an optimum vector V s that makes the
error vector ε approach zero, i.e.,

Minimize g(V s) = ‖ε‖2 =
∥∥∥∥Y V s − Is +Df

(
D

−1
V s

)∥∥∥∥
2

→ 0. (6)

In this study, simulated annealing algorithms [9, 10] are used to find an
optimum V s that satisfies (6). The iteration procedures of simulated
annealing algorithms are described in detail in [9]. Initially, a random
V s is selected in the feasible region and its cost function g(V s) is
evaluated. The iteration is given as

(V s)new = (V s)old + rsiêi, for i = 0, 1, · · · , 2P, (7)

where r is a random number in the range [−1, 1], êi is the coordinate
direction and si is its step size. If this point is outside the feasible
region, the i-th component of V s is adjusted to be a random point
in the feasible region. A new cost function value g[(V s)new] is then
evaluated. If g[(V s)new] ≤ g[(V s)old], the point is accepted and (V s)old

is replaced by (V s)new. If g[(V s)new] > g[(V s)old], the acceptance or
rejection about the point depends on a probability “prob” defined as

prob = e
g[(V s)new]−g[(V s)old]

Temp , (8)

where Temp is called “temperature” in the simulated annealing
algorithm. A random number r in the range [0, 1] is generated. If
r < prob, the point of the new step is accepted. Otherwise it is rejected.
This procedure is for the purpose of reducing the chance of getting
stuck in local solutions and referred to as the Metropolis criterion [10].
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At each temperature Temp in (8), NT loops with the same temperature
are repeated. Each loop consists of NC cycles. A cycle involves taking
a random step in each of the 2P + 1 directions in (7) successively. To
speed the convergence, the step size si in (7) should be adaptive and
proportional to the acceptance rate in Metropolis criterion [10]. The
temperature is then iterated by a reducing factor rT (< 1), i.e., Temp
is replaced by rT ·Temp in the next iteration loop of temperature, until
acceptable g(V s) = ‖ε‖2 → 0 is obtained. An optimum vector V s can
then be found to make the error vector ε in (5) or (6) approach zero.

The above analyses can be extended to problems of nonlinearly
loaded antenna arrays including mutual coupling effects. For an N -
element nonlinearly loaded antenna array illuminated by a plane wave
Ei, as shown in Fig. 2(a), the equivalent circuit can be expressed as
Fig. 2(b), where port k represents the k-th antenna terminal. It should
be noted that the array mutual coupling effects are included in the
linear network. The circuit equations are similar to those described
above except the definitions in (1) and (3) are modified as

V s =
[
Vs,10 Vs,11 Vs,12 · · · Vs,12P−1 Vs,12P ; · · · · · · ;
Vs,N0 Vs,N1 Vs,N2 · · · Vs,N2P−1

Vs,N2P

]T
, (9)

and

Y =




Y 11 · · · Y 1N
...

. . .
...

Y N1 · · · Y NN


 , (10)

where Y ij denotes the mutual admittances between the i-th and the
j-th antenna elements at different harmonics. After the cost functions
ε are determined, simulated annealing algorithms can be used to find
the optimum V s of (9) that satisfies (6).

3. NUMERICAL SIMULATION RESULTS

In this section, two numerical examples are given to illustrate the
formulations described above. Without loss of generality, dipole
antennas are considered for simplicity. Each dipole has length of
0.467λ and length-to-diameter ratio of 74.2. The incident wave is
monochromic with frequency ω and assumed to have strength Ei =
1.0 volt/m. The i-v characteristic f(·) of the nonlinear device in Fig. 1
and Fig. 2 is given as

i = f(v) =
1
75
v + 4v3. (11)
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Figure 2. (a) Schematic diagram of a nonlinearly loaded antenna
array, and (b) its equivalent microwave circuit.

In the simulated annealing algorithm, the temperature starts at
Temp = 50 and the parameters of iteration procedures are chosen
as NT = 5, NC = 20 and rT = 0.5.

In the first example, a single nonlinearly loaded dipole is
considered. Following the procedures described above, the final
voltages of terminal a-a′ at different mixing frequencies are shown in
Fig. 3. For comparison, the results in Fig. 3(a) of [6] are converted
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Figure 3. Spectrum of voltages at the dipole-terminal of a single
nonlinearly loaded dipole by using the approaches of this study and
reference [6].

into antenna terminal voltages and are also plotted in Fig. 3. It shows
that they are in good agreement.

In the second example, two parallel dipole antennas with each
antenna loaded with a nonlinear lumped load are considered. Each
array element is the same as that of the first example. The spacing
between the two dipoles is 0.75λ. Due to the symmetry, the resulting
terminal voltages of the two dipoles are the same. Following the
procedures given above, the final terminal voltages of each dipole at
various mixing frequencies are given in Fig. 4. For comparison, the
results in Fig. 4(a) of [6] are also plotted in Fig. 4. It shows that they
are in good agreement. It should be noted that the mutual coupling
effects within the array have been considered in this example.

The explanations for the nonlinear phenomena of Fig. 3 and Fig. 4
are given in detail in [6]. Due to the linear term and the cubic term of



278 Lee

0 ω 1 ω 2 ω 3 ω 4 ω 5ω
frequency

1E-005

0.0001

0.001

0.01

0.1

1

m
a

g
n

itu
d

e
 o

f t
e

rm
in

a
l v

o
lta

g
e

 (
vo

lts
)

this study
reference [6]

Figure 4. Spectrum of voltages at each dipole-terminal of a two-
element nonlinearly loaded dipole array by using the approaches of
this study and reference [6].

f(·) in (11), it is found that the maximum voltage component occurs
at fundamental frequency ω and the voltage component at mixing
frequency 3ω is slightly greater than those at mixing frequencies 2ω,
4ω, 5ω, and DC (0ω). The radiation and scattering characteristics of
the above examples are given in [2, 5, 6] in detail. However, this paper
has the same results using different approaches.

To realize the converging speed of the analyses described above,
the square error ‖ε‖2, i.e., the cost function g(V s), for the first
numerical example in each iteration loop of temperature in the
simulated annealing algorithm is shown in Fig. 5. In this example,
the threshold for stopping the iteration is set to be 1.E-12. It shows
that iteration loops of temperature larger than 50 can give good results
in this problem. Note that the convergence problem is not important
in this paper since we have known that the optimum value of the cost
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Figure 5. The square error ‖ε‖2, i.e., the cost function g(V s), (in Log
scale) in each iteration loop of temperature in the simulated annealing
algorithm for the first numerical example.

function is zero in our problems.
The above numerical example is computed using Fortran-90 codes

on a PC with Intel Pentium 2.8 GHz CPU. The computation time of
iteration procedure for one example is about 0.42 second.

4. CONCLUSION

In this paper, simulated annealing algorithms are applied to the
frequency-domain analyses of nonlinearly loaded antenna arrays. The
array mutual coupling effects are included in the proposed analyses.
Numerical examples show that the results calculated by the proposed
methods are consistent with the results of [6]. Nearly global optimum
solution can be obtained due to the use of Metropolis criterion [10] in
the iteration procedures. Similar to the genetic algorithms, neither
a suitable guess of an initial solution nor the gradient operations
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are required in the simulated annealing algorithms. However, the
simulated annealing algorithms are in general more efficient then the
genetic algorithms in application of this problem because the genetic
algorithms require the transformations between the binary and the
decimal systems.

ACKNOWLEDGMENT

The author would like to express his sincere gratitude to Professor
Tsung-Nan Lin, Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan, for his helpful discussion about
the simulated algorithm. The work in this paper was supported by the
National Science Council, Taiwan, Republic of China, under Grant
NSC 93-2611-E-006-027.

REFERENCES

1. Sarkar, T. K. and D. D. Weiner, “Scattering analysis of nonlinearly
loaded antennas,” IEEE Trans. Antennas Propagat., Vol. AP-24,
No. 3, 125–131, Mar. 1976.

2. Huang, C. C. and T. H. Chu, “Analysis of wire scatterers with
nonlinear or time-harmonic loads in the frequency domain,” IEEE
Trans. Antennas Propagat., Vol. AP-41, No. 1, 25–30, Jan. 1993.

3. Lee, K. C., “Analysis of large nonlinearly loaded antenna arrays
under multi-tones excitation,” Microwave and Optical Technology
Letters, Vol. 25, No. 5, 319–323, June 2000.

4. Lee, K. C., “An efficient algorithm for the steady-state analysis of
a nonlinearly loaded antenna array,” Journal of Electromagnetic
Waves and Applications, Vol. 14, No. 10, 1373–1382, October
2000.

5. Lee, K. C., “Two efficient algorithms for the analyses of a
nonlinearly loaded antenna and antenna array in the frequency
domain,” IEEE Trans. Electromagn. Compat., Vol. EMC-42,
No. 4, 339–346, November 2000.

6. Lee, K. C., “Genetic algorithms based analyses of nonlinearly
loaded antenna arrays including mutual coupling effects,” IEEE
Trans. Antennas Propagat., Vol. AP-51, No. 4, 776–781, April
2003.

7. Lee, K. C. and T. H. Chu, “Analysis of injection-locked antenna
array including mutual coupling effects,” IEEE Trans. Antennas
Propagat., Vol. AP-52, No. 11, 2885–2890, November 2004.



Progress In Electromagnetics Research, PIER 53, 2005 281

8. Lee, K. C. and T. N. Lin, “Application of neural networks to
analyses of nonlinearly loaded antenna arrays including mutual
coupling effects,” IEEE Trans. Antennas Propagat., Vol. AP-53,
2005.

9. Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science Vol. 220, No. 4598, 671–680, May
1983.

10. Belegundu, A. D. and T. R. Chandrupatla, Optimization Concepts
and Applications in Engineering, Chap. 7, Prentice-Hall, New
Jersey, 1999.

11. Harrington, R. F., Field Computation by Moment Methods,
Macmillan, New York, 1968.

Kun-Chou Lee was born in Chia-yi, Taiwan, in 1966. He received
the BS degree in 1989, M.S. degree in 1991, and Ph.D. degree in 1995,
from the National Taiwan University, Taipei, Taiwan, all in Electrical
Engineering. From 1995 to 1997, he joined the army of his country.
From 1997 to 2003, he joined the faculty of the Wu-Feng Institute
of Technology, Shu-Te University, and National Kaohsiung University
of Applied Sciences, all in southern Taiwan. Since 2004, he joined
the faculty of the Department of Systems and Naval Mechatronic
Engineering, National Cheng-Kung University, Tainan, Taiwan, where
he is now an associate professor. His research interests include
microwave imaging, antennas, microwave circuits, and application of
wireless technologies in land, oceanic and underwater environments.


