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1. INTRODUCTION

Scattering from a semicircular channel is a typical boundary value
problem (BVP) in electromagnetics. Many authors have utilized the
dual-series solution for the radar cross section (RCS) analysis of a single
channel or the one loaded by dielectric cylinders [1–7]. In dual-series
solution, the fields are expanded in terms of cylindrical harmonics and
boundary conditions are enforced to obtain the expansion coefficients.
Recently, the authors in [8] extended the solution to two semicircular
channels using the addition theorems in half space. However, only TM
polarization is considered.

Generally, the dual-series solution belongs to the mode matching
method which has been widely used in modeling the discontinuities in
waveguides. The mode matching method could provide very accurate
solution efficiently. However, it will become very cumbersome when
dealing with complex channel structures. To overcome this drawback,
the authors have proposed a novel method which combines T-matrix
and microwave network approaches [9]. The introduction of the
T-matrix for a semicircular channel greatly simplifies the analysis
procedure and thus, very complex channel structures could be handled
readily. On the other hand, scattering from channels filled with one
kind of novel medium becomes an interesting research topic. For
example, P. L. E. Uslenghi investigated a slotted semielliptical channel
filled with isorefractive material [10].

In this paper, we extend the T-matrix solution into scattering
of parallel channels filled with chiral media. The chiral medium is
a special bi-isotropic material which has been continuously studied
in this decade [11–13]. It is well known that a linear polarization
wave propagating in a chiral material undergoes a rotation of its
polarization. This means TM and TE waves are coupled together
and thus, could not be analyzed separately. This introduces additional
difficulties in analysis. Here, we first derive the T-matrix of a single
channel filled with a chiral medium. This T-matrix includes the
coupling effects explicitly. Then addition theorems in half space are
used to consider the multiple scattering of several channels. All the
formulas are expressed in matrix form to ease the implementation.
Section 2 will derive the T-matrix of a single chiral-filled channel. In
Section 3, multiple scattering of parallel channels are discussed with
the aid of addition theorems in half space. Validation and numerical
examples are provided in Section 4 followed by a short conclusion.
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Figure 1. Cross section of a single channel filled with a chiral medium.

2. T-MATRIX OF A SINGLE SEMICIRCULAR
CHANNEL FILLED WITH CHIRAL MATERIAL

Let us first consider a semicircular channel filled with a chiral medium
in a ground plane as shown in Fig. 1. The channel locates in an
isotropic medium with the relative permittivity ε1 and permeability
µ1 (region I). The radius of the channel is denoted as and the
chiral material is characterized as (µr, εr, ξr) which represents relative
permeability, permittivity and chirality admittance, respectively
(region II). These parameters describe the constitutive relations of the
chiral medium as (time factor ejωt is assumed throughout the paper):

D = εrε0E − jξcB (1)

H =
1

µrµ0
B − jξcE (2)

It is well known that a chiral medium supports both right and left
circular polarized waves with two different wave numbers kR and kL

respectively, given by

kR = k0
√
µrεr

(√
1 + χ2 + χ

)
(3)

kL = k0
√
µrεr

(√
1 + χ2 − χ

)
(4)

where the chirality parameter χ =
√
µr/εrη0ξc, is a dimensionless value

and η0 = 120π ohms is the wave impedance of free space.
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Since the TM and TE waves are coupled together in the chiral
medium, the corresponding electric and magnetic components in region
I could be written as follows:

EI
z =

∞∑
n=1

[
aE

n Jn(kIρ) sinnϕ + bEnH
(2)
n (kIρ) sinnϕ

]
(5a)

HI
z =

∞∑
n=0

[
aH

n Jn(kIρ) cosnϕ + bHn H(2)
n (kIρ) cosnϕ

]
(5b)

EI
ϕ = jη0

√
µ1

ε1

∞∑
n=0

[
aH

n J ′
n(kIρ) cosnϕ + bHn H(2)′

n (kIρ) cosnϕ
]

(5c)

HI
ϕ =

1
jη0

√
ε1

µ1

∞∑
n=0

[
aE

n J
′
n(kIρ) sinnϕ + bEnH

(2)′
n (kIρ) sinnϕ

]
(5d)

where Jn(·) and H
(2)
n (·) are n-th order of the Bessel function and the

second kind of Hankel function, respectively. From Eqs. (5a)–(5d),
one can observe that the expansion vectors aE , aH and bE , bH could
be viewed as the incident and scattering field respectively, for either
TM or TE waves. On the other hand, in region II, the corresponding
electric and magnetic fields are expressed as [12]:[

Ez

Hz

]
=

[
1 1

jη−1
c −jη−1

c

] [
Rz

−Lz

]
(6)

[
Eϕ

Hϕ

]
= −

[
1 1

jη−1
c −jη−1

c

] [
k−1

R ∂pRz

k−1
L ∂pLz

]
(7)

where ∂ρ is the partial derivative with the radius ρ and the chiral wave
impedance ηc is defined as

ηc =
√
µr/εrη0√
1 + χ2

(8)

In Eqs. (6) and (7), the auxiliary functions Rz and Lz satisfy 2D
Helmholtz equation and are pertaining to the right and left circular
polarized waves, respectively. Since there is no irregular inclusions in
region II, Rz and Lz are expanded with the Bessel functions as

Rz =
∞∑

n=−∞
aR

nJn(kRρ)ejnϕ (9)

Lz =
∞∑

n=−∞
aL

nJn(kLρ)ejnϕ (10)
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where coefficient vector aR and aL represent the corresponding right
and left circular polarized waves, respectively. Substituting (9) and
(10) into (6) and (7), we could express the relavant field components
in region II as:

EII
z =

∞∑
n=−∞

[
aR

nJn(kRρ)ejnϕ − aL
nJn(kLρ)ejnϕ

]
(11a)

HII
z = jη−1

c

∞∑
n=−∞

[
aR

nJn(kRρ)ejnϕ + aL
nJn(kLρ)ejnϕ

]
(11b)

EII
ϕ = −

∞∑
n=−∞

[
aR

nJ
′
n(kRρ)ejnϕ + aL

nJ
′
n(kLρ)ejnϕ

]
(11c)

HII
ϕ = −jη−1

c

∞∑
n=−∞

[
aR

nJ
′
n(kRρ)ejnϕ + aL

nJ
′
n(kLρ)ejnϕ

]
(11d)

The objective in this section is to derive T-matrix relating outward
waves bE and bH to inward excitations aE and aH as[

bE

bH

]
=

[
T ee T eh

T he T hh

] [
aE

aH

]
(12)

where the matrices T ee, T hh are the T-matrices for co-polarization
components while T eh, T he, represent the cross-polarization effects of
the chiral medium. Obviously, T eh and T he should vanish in case of
the isotropic-filled channels. Here, we enforce the continuous boundary
conditions of the tangential electric and magnetic fields on ρ = a as
following:

EII
z =

{
EI

z ϕ ∈ [0, π]
0 ϕ ∈ [π, 2π] (13a)

EII
ϕ =

{
EI

ϕ ϕ ∈ [0, π]
0 ϕ ∈ [π, 2π] (13b)

HII
z = HI

z ϕ ∈ [0, π] (13c)

HII
ϕ = HI

ϕ ϕ ∈ [0, π] (13d)

Substituting (5a–d) and (11a–d) into (13a–d), yield

Q∑
n=−Q

[
aR

nJn(kRa)ejnϕ−
aL

nJn(kLa)ejnϕ

]
=




NE∑
n=1

[
aE

n Jn(kIa) sinnϕ+

bEnH
(2)
n (kIa) sinnϕ

]
ϕ ∈ [0, π]

0 ϕ ∈ [π, 2π]
(14a)
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Q∑
n=−Q

[
aR

nJ
′
n(kRa)ejnϕ+

aL
nJ

′
n(kLa)ejnϕ

]
=




η0

j

√
µ1

ε1

NH∑
n=0

[
aH

n J ′
n(kIa) cosnϕ+

bHn H
(2)′
n (kIa) cosnϕ

]

ϕ ∈ [0, π]
0 ϕ ∈ [π, 2π]

(14b)

jη−1
c

Q∑
n=−Q

[
aR

nJn(kRa)ejnϕ+
aL

nJn(kLa)ejnϕ

]
=

NH∑
n=0

[
aH

n Jn(kIa) cosnϕ+

bHn H
(2)
n (kIa) cosnϕ

]
ϕ ∈ [0, π]

(14c)

η−1
c

Q∑
n=−Q

[
aR

nJ
′
n(kRa)ejnϕ−

aL
nJ

′
n(kLa)ejnϕ

]
=



η−1
0

√
ε1

µ1

NE∑
n=1

[
aE

n J
′
n(kIa) sinnϕ+

bEnH
(2)′
n (kIa) sinnϕ

]

ϕ ∈ [0, π]
0 ϕ ∈ [π, 2π]

(14d)
Notice that the infinite coefficient vectors aE(bE), aH(bH), and
aR(aL) have been truncated into finite vectors with NE , NH + 1
and 2Q + 1 elements, respectively. By multiplying both sides of
Eqs. (14a) and (14b) with e−jmϕ and integrating ϕ in [0, 2π]; and
similarly, multiplying Eq. (14c) with cosmϕ, Eq. (14d) with sinmϕ,
and integrating ϕ in [0, π]; then we have

JRaR − JLaL = JIa
E + HIb

E (15a)

J ′
RaR + J ′

LaL = J ′
Ia

H + H ′
Ib

H (15b)

JC
RaR + JC

LaL = JC
I aH + HC

I bH (15c)

JS
RaR − JS

LaL = JS
I aE + HS

I bE (15d)

The elements of matrices in (15a–d) could be evaluated analytically
and listed in the Appendix. Eqs. (15a–d) is further written as following
equations:
[

JR −JL

J ′
R J ′

L

] [
aR

aL

]
=

[
HI 0
0 H ′

I

] [
bE

bH

]
+

[
JI 0
0 J ′

I

] [
aE

aH

]

(16)[
JS

R −JS
L

JC
R JC

L

] [
aR

aL

]
=

[
HS

I 0
0 HC

I

] [
bE

bH

]
+

[
JS

I 0
0 JC

I

] [
aE

aH

]

(17)
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From Eqs. (12), (16) and (17), yields
[

T ee T eh

T he T hh

]
=

{[
HS

I 0
0 HC

I

]
−

[
JS

R −JS
L

JC
R JC

L

][
JR −JL

J ′
R J ′

L

]−1[HI 0
0 H ′

I

]}−1

{[
JS

R −JS
L

JC
R JC

L

][
JR −JL

J ′
R J ′

L

]−1[JI 0
0 J ′

I

]
−

[
JS

I 0
0 JC

I

]}
(18)

It is worth to note that the matrices T ee, T eh, T he, T hh are NE ×
NE , NE × (NH + 1), (NH + 1)×NE , (NH + 1)× (NH + 1) matrices,
respectively. The parameters NE , NH , Q should be selected carefully
to get the convergence of final RCS calculation. In our simulation, we
chose NE , NH , Q related to the geometrical and electrical parameters
as NE ≈ NH ≈ Q ≈ (1.5 ∼ 2.0)kRa.

3. MULTIPLE SCATTERING FROM PARALLEL
CHIRAL-FILLED CHANNELS

To consider the multiple scattering between parallel channels using the
T-matrix derived above, a new set of addition theorems in half space
could be derived [9] as follows:

H(2)
m (k|ρ − ρj |) sinmϕj =



∞∑
n=1

{
[Jn−m(kρji)−(−1)mJn+m(kρji)]
cosnϕji cosmϕji

}
H(2)

n (k|ρ − ρi|) sinnϕi

|ρ − ρi| > ρji

∞∑
n=1

{[
H

(2)
n−m(kρji)−(−1)mH

(2)
n+m(kρji)

]
cosnϕji cosmϕji

}
Jn(k|ρ − ρi|) sinnϕi

|ρ − ρi| < ρji

(19)

H(2)
m (k|ρ − ρj |) cosmϕj =



∞∑
n=0

2−δn0

2

{
[Jn−m(kρji)+(−1)mJn+m(kρji)]
cosnϕji cosmϕji

}
H(2)

n (k|ρ−ρi|) cosnϕi

|ρ − ρi| > ρji

∞∑
n=0

2−δn0

2

{[
H

(2)
n−m(kρji)+(−1)mH

(2)
n+m(kρji)

]
cosnϕji cosmϕji

}
Jn(k|ρ−ρi|) cosnϕi

|ρ − ρi| < ρji

(20)
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Jm(k|ρ − ρj |) sinmϕj =
∞∑

n=1

{
[Jn−m(kρji)−(−1)mJn+m(kρji)]
cosnϕji cosmϕji

}
Jn(k|ρ − ρi|) sinnϕi (21)

Jm(k|ρ − ρj |) cosmϕj =
∞∑

n=0

2−δn0

2

{
[Jn−m(kρji)+(−1)mJn+m(kρji)]
cosnϕji cosmϕji

}
Jn(k|ρ−ρi|) cosnϕi

(22)

The geometric meaning of the parameters in (19)–(22) is shown in
Fig. 2. It should stress that ϕji = arg(ρj − ρi) which means if ρj lies
on the right of ρi, then ϕji = 0 while ρj lies on the left of ρi, ϕji = π.

Oi
j

i
j

ji�

i

j

ρ ρ

ϕ

− ρ ρ−

ρ
ρ

ρ

ρ

Figure 2. Coordinate system transform in two semicircular channels.

We assume that there are totally M channels and for each channel,
the scattering field in its local coordinates are represented as bE

i and
bH

i , i = 1, 2, . . . ,M . Then we have following equations:

bE
i = T ee

i


βE

i0a
E
0 +

M∑
j=1
j �=i

αE
ijb

E
j


 + T eh

i


βH

i0a
H
0 +

M∑
j=1
j �=i

αH
ij b

H
j


 (23)

bH
i = T he

i


βE

i0a
E
0 +

M∑
j=1
j �=i

αE
ijb

E
j


 + T hh

i


βH

i0a
H
0 +

M∑
j=1
j �=i

αH
ij b

H
j


 (24)

where T pq
i , p, q = e, h are sub-matrices of the T-matrix of i-th channel;
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the matrix βp
i0, p = E,H denotes the transform of incident wave from

global origin to the center of i-th channel, whose elements are evaluated
as:

βp
i0(m,n) =




[
Jm−n(kIρi)−
(−1)nJm+n(kIρi)

]
cosnϕji cosmϕji

m,n = 1, 2, . . . p = E

2 − δm0

2

[
Jm−n(kIρi)+
(−1)nJm+n(kIρi)

]
cosnϕji cosmϕji

m,n = 0, 1, . . . p = H

(25)

and the matrix αp
ij , p = E,H stands for the transform of the scattering

wave in j-th channel to the incident wave in i-th channel, and its
elements are obtained by

αp
ij(m,n) =





 H

(2)
m−n(kIρij)−

(−1)nH
(2)
m+n(kIρij)


 cosnϕji cosmϕji

m,n = 1, 2, . . . p = E

2 − δm0

2


H

(2)
m−n(kIρij)+

(−1)nH
(2)
m+n(kIρij)


 cosnϕji cosmϕji

m,n = 0, 1, . . . p = H

(26)

In (23) and (24), aE
0 and aH

0 stand for the incident TM and TE waves
in global coordinate systems. The holding of the Eqs. (23) and (24)
is due to the fact that for the i-th channel, the illuminating sources
consist of both TM and TE waves and for each polarization, it contains
both the incident waves outside of all channels and the scattering waves
from other channels.

Combining all the equations (23) and (24) for all channels, we
have[

bE

bH

]
=

[
T EE T EH

T HE T HH

]{[
βE

1 0
0 βH

1

][
aE

0

aH
0

]
+

[
αE 0
0 αH

][
bE

bH

]}
(27)

The combined matrices involved in Eq. (27) are listed as

bp =




bp
1

bp
2
...

bp
M


 βp

1 =




βp
10

βp
20
...

βp
M0


 αp =




0 αp
12 · · · αp

1M

αp
21 0 · · · αp

2M
...

...
. . .

...
αp

M1 αp
M2 · · · 0




(28)
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where p = E for TM or TE waves and

T PQ =




T pq
1 0 · · · 0
0 T pq

2 · · · 0
...

...
. . .

...
0 0 · · · T pq

M


 p, q = e, h; P,Q = E,H (29)

The unknowns bE and bH in Eq. (27) could be solved directly and
expressed as:[

bE

bH

]
=

{
I−

[
T EE T EH

T HE T HH

][
αE 0
0 αH

]}−1[
T EE T EH

T HE T HH

][
βE

1 0
0 βH

1

][
aE

0

aH
0

]

(30)
Therefore, the scattering field could be obtained readily as

ES
z (ϕ) =

M∑
i=1

NE∑
n=1

bEi (n)H(2)
m (kI |ρ − ρi|) sinnϕi (31a)

HS
z (ϕ) =

M∑
i=1

NH∑
n=1

bHi (n)H(2)
n (kI |ρ − ρi|) cosnϕi (31b)

Using the large argument approximation of the Hankel functions, the
co-polarization echo width of parallel channels is expressed as:

σEE(ϕ) =

4
kI

∣∣∣∣∣∣
M∑
i=1

ejkρi cos ϕ
NE∑
n=1

bEi (n)jn sinnϕ

∣∣∣∣∣∣
2

|Einc
z |2

(32a)

σHH(ϕ) =

4
kI

∣∣∣∣∣∣
M∑
i=1

ejkρi cos ϕ
NH∑
n=0

bHi (n)jn cosnϕ

∣∣∣∣∣∣
2

|H inc
z |2

(32b)

The cross-polarization echo width is defined as

σEH(ϕ) =

4
kI

∣∣∣∣∣∣
M∑
i=1

ejkρi cos ϕ
NE∑
n=1

bEi (n)jn sinnϕ

∣∣∣∣∣∣
2

|ηIH inc
z |2

(32c)

σHE(ϕ) =

4
kI

∣∣∣∣∣∣
M∑
i=1

ejkρi cos ϕ
NH∑
n=1

bHi (n)jn cosnϕ

∣∣∣∣∣∣
2

|Einc
z /ηI |2

(32d)
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where ηI =
√
µ1/ε1η0, is the wave impedance in region I.

4. NUMERICAL RESULTS AND DISCUSSIONS

To validate the method proposed, all the results in [3] have been
reproduced for a single dielectric-filled semicircular channel in case
of either TM or TE waves. For the chiral-filled channels, however, to
the best of our knowledge, there are no publications to compare with.
Therefore, the tangential field components, as shown in Fig. 3, are
carefully checked on the boundary of a chiral-filled channel. In this
example, a TE polarized wave incident from 45◦ upon a channel with
radius a = 2.0λ. From Fig. 3(a), it can be seen that the boundary
conditions are satisfied very well except the points near φ = 0◦(360◦)
or φ = 180◦. Fig. 3(b) gives the relative discrepancy of electric fields
along the boundary. Again, the greater discrepancy occurs at the
tips of the channel. The ripples of electric fields in [0, π] could be
explained as the Gibbs phenomenon in Fourier transform due to the
“sharp jumps” of Ez and Eϕ along the boundary at the tips. From
the equivalent principle, RCS is an average integration of tangential
field components. Therefore, the discrepancies between internal and
external field components in these tips do not introduce great errors
in RCS calculations.

The backscattering from two channels versus the channel radius
is shown in Fig. 4. Obviously, the present method agrees very well
with the radial mode matching method used in Ref. [8]. This further
verified the proposed algorithm.

Fig. 5 gives a schematic illustration of two chiral-filled channels.
The discussions of following examples will based on the geometric and
electrical parameters shown in Fig. 5. Fig. 6 provides the bistatic co-
polarization and cross-polarization scattering from two chiral channels
for either TM or TE waves with the incident angle 45◦. It can be seen
that in this case, the cross-polarization components are stronger than
the co-polarization counterparts in some scattering directions. Fig. 7
studies the backscattering versus the separation of two chiral-filled
channels. Obviously, scattering amplitudes vary almost periodically
with the increase of the separation for each polarization. Finally, we
investigate the impact of the chirality admittance on the backscattering
of two channels in Fig. 8. It can be seen that the increase of chirality
admittance does not inevitably increase the cross-polarization coupling
of the channels. Another observation is that for either TM or TE waves,
the cross-polarization is quite sensitive to the chirality admittance.
This means the slight variation of the chirality could greatly change
the scattering pattern of the cross-polarized waves. To the best of
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Figure 3. (a) Real and imaginary parts of external or internal
tangential field components on the boundary of a semicircular channel
filled with a chiral medium in case of TE wave incidence from angle 45◦.
(b) The relative discrepancy R(ϕ) = |Eext

z (ϕ)−Eint
z (ϕ)|

max |Eint
z |) between external

and internal electrical fields (a = 2.0λ, µr = 1.0, εr = 2.0, ξC =
0.002).
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Figure 6. Co-polar and cross-polar bistatic scattering from two
semicircular channels filled with different chiral media. (ε1 = ε2 =
2.0, ξc1 = 0.005, ξc2 = 0.002, d = 2.0λ, a1 = a2 = 0.8λ, ϕi = 45◦)
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Figure 7. Backscattering versus the separations of two channels filled
with chiral medium. (ε1 = ε2 = 2.0, ξc1 = ξc2 = 0.005, a1 = a2 =
0.8λ, ϕi = 90◦)
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Figure 8. Backscattering versus the chirality admittance of two chiral-
filled channels. (ε1 = ε2 = 3.0, d = 2.0λ, a1 = a2 = 0.7λ, ϕi = 90◦)
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our knowledge, this phenomenon has not been reported before. This
sensitivity will surely have some influences on the design of devices
containing chiral materials.

5. CONCLUSION

A novel approach is proposed in this paper to simulate the multiple
scattering from parallel chiral-filled semicircular channels. In our
approach, the T-matrix of a single chiral-filled channel is first derived
and then addition theorems in half space are used to take account of the
multiple scattering effects among parallel channels. The introduction
of T-matrix for chiral-filled channels greatly simplifies the analysis
procedure. The effectiveness is validated by either comparing with
previous publications or testing the boundary conditions. The impacts
of geometric and electrical parameters on the scattering properties of
chiral channels are discussed.

APPENDIX A.

For the completeness of the paper, the matrices in (15a–d) and its
index range are listed below:

JR(m,n) = 2πJn(kRa)δmn −Q ≤ m, n ≤ Q (A1)
JL(m,n) = 2πJn(kLa)δmn −Q ≤ m, n ≤ Q (A2)
JI(m,n) = Jn(kIa)fS(m,n) −Q ≤ m ≤ Q, 1 ≤ n ≤ NE (A3)

HI(m,n) = H(2)
n (kIa)fS(m,n) −Q ≤ m ≤ Q, 1 ≤ n ≤ NE (A4)

J ′
R(m,n) = 2πJ ′

n(kRa)δmn −Q ≤ m, n ≤ Q (A5)
J ′

L(m,n) = 2πJ ′
n(kLa)δmn −Q ≤ m, n ≤ Q (A6)

J ′
I(m,n) =

η0

j

√
µ1

ε1
J ′

n(kLa)fC(m,n) −Q ≤ m ≤ Q, 0 ≤ n ≤ NH

(A7)

H ′
I(m,n) =

η0

j

√
µ1

ε1
H(2)′

n (kLa)fC(m,n) −Q≤m≤Q, 0 ≤ n ≤ NH

(A8)

JC
R(m,n) = jη−1

c Jn(kRa)fC(−n,m) 0 ≤ m ≤ NH , −Q ≤ n ≤ Q

(A9)

JC
L (m,n) = jη−1

c Jn(kLa)fC(−n,m) 0 ≤ m ≤ NH , −Q ≤ n ≤ Q

(A10)

JC
I (m,n) = Jn(kIa)gC(m,n) 0 ≤ m, n ≤ NH (A11)
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HC
I (m,n) = H(2)

n (kIa)gC(m,n) 0 ≤ m, n ≤ NH (A12)

JS
R(m,n) = η−1

c J ′
n(kRa)fS(−n,m) 1 ≤ m ≤ NE , −Q ≤ n ≤ Q

(A13)

JS
L(m,n) = η−1

c J ′
n(kLa)fS(−n,m) 1 ≤ m ≤ NE , −Q ≤ n ≤ Q

(A14)

JS
I (m,n) = η−1

0

√
ε1

µ1
J ′

n(kIa)gS(m,n) 1 ≤ m, n ≤ NE (A15)

HS
I (m,n) = η−1

0

√
ε1

µ1
H(2)′

n (kIa)gS(m,n) 1 ≤ m, n ≤ NE (A16)

where δmn is the Kronecker’s delta and the functions fS , fC , gS , gC

are defined as:

fS(m,n) =
∫ π

0
e−jmϕ sinnϕdϕ (A17)

fC(m,n) =
∫ π

0
e−jmϕ cosnϕdϕ (A18)

gS(m,n) =
∫ π

0
sinmϕ sinnϕdϕ (A19)

gC(m,n) =
∫ π

0
cosmϕ cosnϕdϕ (A20)
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