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Abstract—A parallel implementation of an automatic CAD tool
based on the parallel virtual machine software package, genetic
algorithms and finite element simulators is presented. It is shown
that the parallel implementation can be obtained by developing just
a few hundred lines of code and a pseudocode description is provided.
Finally, selected numerical results are provided in order to show the
effectiveness and the reliability of the proposed approach.

1. INTRODUCTION

Microwave CAD tools are aimed at providing the designer with
an environment where a given component can be characterized,
investigated and also modified towards a desired electrical response.
As far as the modification of a given component is concerned, a key
point is the development of microwave CAD environments [1] where the
component is modified automatically by the microwave tool itself with
an improvement of the component performances in an unsupervised
fashion.

Such useful automatic design tools have been the object of research
for some years [2–4]. As a common feature, these environments
integrate an optimizer and a numerical simulator [2–4].
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Even though in the last decade the performances of computers
and of electromagnetic simulators have been improved in an impressive
way, the computation costs required for the analysis of many microwave
devices can last for several minutes on typical desktop computers [4].

For this reason, as pointed out in [4], there is the need of the
“development of a variety of optimization techniques aimed at reducing
to a bare minimum the number of times a full electromagnetic-field
analysis has to be performed”. Another way to obtain significant
time savings is to calculate relatively inaccurate numerical solutions
in the early stages of the optimization and progressively improve the
accuracy as the optimization process goes on [4]. However, quite
recently another possibility has emerged [5–7]. It is based, on the one
hand, on the fact that nowadays several interconnected computers are
available in most laboratories, thus making the actual computational
power already installed much bigger than that of a single standard
computer usually exploited, and, on the other hand, on the fact that
there are free software packages [6] (MPI, PVM, etc. [8]) making the
exploitation of this big distributed computational power simple and
affordable [5].

In this relatively new context, the reduction to a bare minimum
of the number of full electromagnetic field analysis required by
the optimization process is not anymore a need and new strategies
can be developed. As a matter of fact, it proves conveniently to
use optimization algorithms that are well suited to parallelism or
intrinsically parallel such as Genetic Algorithms (GAs) instead of using
serial optimization algorithms like Conjugate Gradient (CG). Such an
approach was used, for instance, in [9] and [10]. It is well known that
the choice of a GA is not the best one, in terms of the number of
cost-function evaluations, when it is possible to start from an initial
guess which is close to the final design configuration [4]. However,
the switch from serial to parallel computing could allow quicker device
designs even if more cost-function evaluations are required. Moreover,
the condition needed on the good initial guess not necessarily holds
true, especially when complex microwave devices are to be designed
and this is likely to be the usual application of CAD tools in the
future. Thus, on the one hand, GAs can easily be implemented to fully
exploit distributed computing resources quite efficiently and, on the
other hand, their performances as global optimizer could be relevant
in sampling the solution space.

This paper is aimed at showing, on the one hand, that it is a trivial
task to devise a simple but performing parallel implementation of the
whole automatic design code, when this is done by using PVM [8], the
optimization algorithm is based on a GA and the tool of numerical
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analysis can be considered as a black box (Section 2). On the other
hand, the manuscript will show that the proposed approach guarantees,
at the same time, interesting overall performances in terms of speed-up
[7] of the automatic design phase (Section 3). In particular, by using
a sufficiently high number of computers working in parallel, the major
drawback of GAs is overcome whereas its features as global optimizers
are retained. The speed-up, which can be achieved by using different
numbers of parallel computers, will be reported and the corresponding
parallel efficiency is shown to be relatively close to unity as far as the
number of computers available is less than or equal to the number of
individuals of each population of the GA. Finally, it will be shown that
the proposed approach does not prevent the exploitation of other ideas
which could reduce the global design time.

2. PARALLEL IMPLEMENTATION OF THE
AUTOMATIC CAD TOOL

Let us assume that the numerical analyses required for any particular
device configuration considered during the optimization process can
be dealt with as a unique serial process. In this sense, let us consider
design tools particularly suited to deal with devices of small to medium
complexity. The automatic design of highly complex devices could
require the parallelization of the code of numerical analysis and this is
out of the aims of this work.

As far as the numerical analysis is concerned, there are several
numerical methods that can be exploited for this serial task, which are
reliable and which are available in most laboratories (by the way, we
decided to use the finite element (FE) method [11, 12] based on lowest
order edge elements [12, 13]). Thus, without loss of generality, we
can suppose that a script file able to read from a file some parameters
identifying the configuration of the device of interest to be analyzed and
to manage all necessary computations to calculate the corresponding
cost function value is available.

With the indicated simplifying assumption, parallelism can be
exploited just at the optimization level by using the so-called master-
slave paradigm [8]. The optimizer is the master, which spawns several
FE based slave serial processes, one per cost function evaluation
required.

Since parallelism is just considered at the optimization level
it was natural to choose a minimization algorithm intrinsically
parallel. Thus a GA was the natural choice. GAs are multi-agent
stochastic search methods that have been successfully applied in many
syntheses and optimization problems (see [14] and the references
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cited therein). Unlike most other optimization techniques, a GA
maintains a population of M encoded trial solutions that evolve in the
solution space by means of some genetic operators in order to reach
a satisfactory solution. Let us outline the skeleton of such algorithms
(Figure 1). A GA proceeds in an iterative way by generating new
populations of trial solutions
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. The standard algorithm applies stochastic

operators such as selection, crossover, and mutation to generate a new
population. The iterative process is terminated when a fixed number
of iterations has been reached (k = K) or when the fitness function of
the optimal solution satisfies assigned synthesis constraints.

For a practical parallel implementation of the algorithm it is
sensible to choose a software package that simplifies the exploitation of
the power of a cluster of computers and the intrinsic parallelism of the
optimizer. Our choice was PVM [8] since it provides simple subroutines
for the management of the network, the spawning of processes and the
transmission and reception of data between processes. Moreover, in
order to exploit parallelism it is natural to focus on the step of the
genetic algorithm whose target is the “evaluation of the cost function
for all individuals of a given population”, since this task can be carried
out in parallel by assigning the calculation of the cost function of
different individuals to different computers. In order to further reduce
the computational time required for ranking the individuals of each
population fully exploiting the intrinsic parallelism of the algorithm,
the parallel implementation considers also a memory-based control for
function evaluation. To this end, at each generation, the higher order
schemata [15] of the GA are stored and the new trial solutions are
compared with reference models. If a condition of high similarity is
satisfied, the cost function is not evaluated. We will actually consider
this step concerning the ranking of the individuals of a population
as a subroutine of the GA code. In our parallel implementation this
is the only subroutine which required a modification since all other
parts of the GA code are not changed (apart from some trivial variable
declarations and parameter definitions at the main level) with respect
to their serial implementations.

A simple high level pseudocode of this subroutine is the following,
where it has been assumed that a population ofM different individuals
is given as an input parameter:
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Figure 1. Flow chart of a standard GA.
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Find the number M of new individuals
Find the number N of hosts available
if P ≤ N then
{

Spawn P slave processes
Send individual data to the spawned slave processes
Wait for a reply from all spawned slave processes

}
else
{

Spawn N slave processes
Send individual data to the spawned slave processes
Repeat until the no. of spawned processes is lower than P

{
Wait for a reply from a slave process
Spawn a new slave process
Send the data of a single individual to the new process

}
Wait for the slave replies not received yet

}
Return control to the calling program

Each time this subroutine is executed, it has to determine the
number of new individuals requiring a cost function evaluation and
the number of hosts available. Once this is done, it has to distinguish
two cases: when there are more hosts than design configurations (new
GA individuals) to be analyzed and when the opposite holds true.
The first possibility can be managed in a simpler way (see the “if”
part of the above pseudocode) since it is possible to assign different
computations to different hosts. But note that also the latter is not
complicated (see the “else” part of the above pseudocode). As we have
already pointed out, in order to keep to a minimum the complexity of
the switch from serial to parallel computing we considered the script
file which manages the tool of numerical analysis as a black box. For
this reason and also to reduce the complexity of the top-level slave
code we use each host for the calculation of one cost function value
at a time. Note that, however, the calculation of two or more cost
function values on a single host at a time does not give significant
improvement in terms of performances and could require an increasing
in the complexity of the top-level slave code since that, for instance,
two different numerical analyses could disturb one another if executed
at the same host directory.
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From a practical point of view, it is quite interesting to note that,
by using PVM and C or Fortran languages, it is possible to implement
such a subroutine in about one hundred lines of code.

So far we have just considered a high level description of a
subroutine of the master. On the slave side, PVM must be exploited
too in order to make the master-slave communication possible. Under
indicated assumptions, the task a single slave process has to carry out
is trivial and the high level pseudocode of this part of the algorithm is

Receive the data of a single individual sent by the master
Write the received data into a dialog file
Execute the finite element based simulator script file
Wait until its end
Read the cost function value from the dialog file
Send back this value to the master
Notify the end of the task to the master

A PVM based implementation of this code can be obtained in
less than fifty lines of code. Thus, in summary, it is possible to
obtain a parallel implementation of the whole automatic CAD tool
by developing less than two hundred new lines of code overall (taking
account even of variable declarations, parameter definitions, etc., at the
main level) in a PVM environment whenever a GA and a FE based
simulator are already available.

Moreover, it should be pointed out that the performances of such
an algorithm can still be improved in a significant way by relaxing
our initial assumption at the cost of an increasing of the complexity
of the code to be developed, provided that the cluster of computers
exploited is bigger than the number of new chromosomes of any single
population. As a matter of fact, the evaluation of the cost function for
any new particular device configuration considered by the optimization
algorithm requires the numerical analysis of the device for a number
[16] of discrete frequencies in the frequency band of interest [4] and
all such numerical analyses can be carried out in parallel. In order to
manage such a generalization by retaining the master-slave paradigm
exploited above, it is necessary to simplify the script file which manages
the numerical analyses of a given device configuration at all, let us say,
F frequencies of interest by reducing it to a tool of simulation at a single
frequency and, at the same time, make the master able to manage the
spawning of P ×F processes by calculating just P cost function values.
With this change more complicated devices can be analyzed with an
increased value of speed-up provided that the number N of available
computers working in parallel is bigger than P .
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3. PERFORMANCES OF THE PARALLEL AUTOMATIC
CAD TOOL

In order to complete the analysis of the chosen approach, it is
mandatory to show that the developed CAD tool is able to fully exploit
the power of a cluster of computers providing impressive speed-up
values compared to the serial implementation of the same algorithm.

For this purpose, the described code has been applied to the
design of a three port junction. The three ports areWR28 rectangular
waveguides (7.112 mm by 3.556 mm). It is required that at a frequency
of 38.5 GHz the following conditions are satisfied:

ηmin
12 ≤ |s12| ≤ ηmax

12 , ηmin
13 ≤ |s13| ≤ ηmax

13 , ηmin
22 ≤ |s22| ≤ ηmax

22
(1)
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12 + ηmin

12

2
= 0.606,

ηmax
12 − ηmin

12

2
= 0.032,

ηmax
13 + ηmin

13

2
= 0.650,

ηmax
13 − ηmin

13

2
= 0.030
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2
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2
= 0.045

In order to do so the position d, the width w, and the length d of
a diaphragm (whose height is equal to that of the waveguide) placed
in the central region of an H-plane T junction are to be determined
(see Figure 2).

These design requirements are considered just to point out the
important features and the achievable performances of the proposed
parallel and automatic CAD tool and no practical direct application is
presented.

Since the requirements are specified in terms of s13 and s22 it
is necessary to perform two numerical calculations for any design
configuration considered by the GA. Thus having specified a fixed
working frequency is not to be regarded as a too heavy simplification
since each serial FE-based task could in principle be splitted into
two parallel FE numerical analyses to improve the parallel efficiency,
exactly as indicated at the end of the previous section for the efficient
management of multiple frequency analyses.

In order to synthesize a microwave circuit satisfying (1), the
following cost function was defined

f {x} = f1 {x} + f2 {x} + f3 {x} (2)
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Figure 2. H-plane T junction with a diaphragm. The diaphragm
position d, width w, and length h are to be determined.
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x = {d, w, h} being the array of the design parameters.
It is well known that GAs are global optimizers. For such a reason

they are particularly useful in the early stages of the design when local
minima can still have heavy effects on the convergence of algorithms
like CG to the global minimum. No hypothesis on the quality of the
initial guess is made, because this is representative of more complicated
situations, even though for the simple design we are considering in
this example a good initial guess could probably be found. Moreover,
as pointed out in [4], relatively inaccurate numerical solutions can
be carried out during the early stages of the design provided that
this accuracy is increased as the optimization process goes on. On
the basis of these considerations, we carried out an automatic design
starting from a (pseudo) randomly selected initial population of the
GA. Moreover, a relatively coarse discretization was used in order
to perform the FE based simulations of the junction. Note that,
however, the discretization is not made finer and finer as the work of
the optimizer proceeds, since this improvement could complicate the
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analysis of the relative performances of the parallel automatic CAD
tool in comparison with those of its serial implementation.

The above indicated relatively coarse discretization is obtained by
discretizing the longer side of the waveguide into i = 10 linear elements,
the shorter one into j = 5 segments, the length (= 25 mm) of the lateral
arms (ports 1 and 3) into l = 25 segments and the length (= 20 mm)
of the central port (port 2) into q = 20 linear elements. The obtained
hexahedra are then divided into six tetrahedra [11]. The diaphragm
always extends over a region given by the union of an integer number
of hexahedra and, for this reason, an integer coded GA was adopted
[9].

If i1 indicates the first hexahedra belonging to the diaphragm
starting from the left of the central region (see Figure 2), i2 provides
its width in terms of number of hexahedra, and i3 indicates its length,
again in terms of number of hexahedra, we have that, if the diaphragm
is completely contained in the central region of the junction (see the
dotted lines in Figure 2), the following conditions must be satisfied:

1 ≤ i1 ≤ i,
1 ≤ i3 ≤ i,

1 ≤ i2,
i1 + i2 ≤ i+ 1,

i3 ≤ i when (i1 = 1) or (i1 + i2 = i+ 1)

Thus, overall, there are

i (i− 1) +
i∑

i1=2

{i (i− i1) + (i− 1)} =
i3 + i2 − 4i+ 2

2
,

possible different configurations of the diaphragm. To carry out fair
comparisons between serial and parallel implementations of the same
algorithm, the initial pseudo-random population of the GA was always
the same and in all cases the populations are made up of M = 10
individuals. This guarantees that the evolution of the populations
generated by the GA is always the same independently of the number
of computers exploited.

During its evolution the GA generated five populations (k = 5
in Figure 1) in addition to the first one in order to synthesize a good
(satisfying inequalities (1)) design configuration. A top view of the
central part of the junction thus determined is shown in Figure 3 where
some indications on the fixed 3D discretization adopted are reported
as a 2D mesh of rectangles (for each rectangle in the 2D mesh shown
there are j = 5 hexahedra; the 3D mesh is then given by discretizing
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Figure 3. Final design configuration of the diaphragm. Top view of
the central part of the junction.

each hexahedra into six tetrahedra). The final design configuration has
a diaphragm identified by i1 = 5, i2 = 5, and i3 = 3 corresponding to
a cost function value of f

{
x

(5)
opt

}
= 0.0.

The cost function values corresponding to the best individuals of
all populations generated by the GA are reported in Figure 4. For
completeness all addends of the right-hand side member of (2) are
reported.

In order to limit the number of computationally intensive
simulations and taking into account of the memory-based control
strategy the computation of the cost function is avoided for all
individuals of the current population that have already been considered
in previously generated populations. For this integer coded GA
exploiting coarse discretizations in FE analyses the high similarity
criteria is actually an equality criteria. Thus the algorithm had to
carry out M FE-based simulations for all M individuals of the initial
population but just (M − 2) for the second (k = 1), (M − 3) for the
third (k = 2) and fourth (k = 3) and (M − 4) for the fifth (k = 4)
and sixth (k = 5), resulting in 44 different diaphragm configuration
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Figure 4. Behavior of the optimal value of the cost function and
related terms versus k.

analyses overall (out of 531 different possibilities).
By considering the numerical evaluation of the cost function for

a single diaphragm configuration as a single serial task the results
reported in Figure 5 are achieved.

Let us consider the serial case (N = 1) for comparison purposed.
If ts denotes the overall CPU-time required to complete the automatic
design in the serial case and tp(N) denotes the time needed to complete
the automatic design when N computers are exploited in parallel,
the parameter most commonly used to measure the usefulness of the
parallel implementation is the speed-up, which is defined as follows:

SU (N) =
ts

tp (N)
(3)

the ideal speed-up being
ISU (N) = N (4)

when the N computers exploited in parallel are all identical. To
evaluate the computational effectiveness, other parameters are used
as well. The normalized time is by definition
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Figure 5. Performances of the parallel architecture.

NT (N) =
1

SU (N)
(5)

and the parallel efficiency is

PE (N) =
SU (N)
ISU (N)

. (6)

The results shown in Figure 5 are obtained when no other tasks
(except for the master and those tasks it spawns) are carried out by the
computers exploited during the parallel automatic design. However,
due to the fact that an iterative solver is used in the FE based simulator
it is difficult to predict the execution time required to complete the
design even though all simulations have to deal with the same number
of unknowns.

Figure 5 shows that even though the GA requires 44 different
evaluations of the cost function, the design time is reduced by a factor
equal to 6.5 when N = 10 parallel computers are exploited, a time
required to carry out less than 7 cost function evaluations on average
on a serial machine (one of the cluster made up of 12 equal PCs with
the following characteristics: Pentium IV , f = 1.7 GHz, 256 MB of
RAM). The parallel efficiency, representing the algorithm ability to
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fully exploit the available computational power, is close to unity in all
cases (PE (N) ≥ 0.65, N = 1, ..., 10) of interest. The case of N = 11
computers is reported for the sake of completeness but the result in this
case was exactly predictable since the GA with N = 10 chromosomes
per population is not able to exploit more than 10 computers in parallel
when the simplest algorithm is used.

Moreover, it should be pointed out that if the generalization
described in Section 2 is implemented, by splitting the FE based serial
task that requires the numerical solution of two different problems,
it is possible to divide approximately by an additional factor 2 the
overall computational time when the number of computers is twice the
number of individuals of a single population. Thus, to be conservative,
it is expected that by using a cluster of N = 20 computers the final
design could be achieved in a time required for just 4 (> 3.5) cost
function evaluations on a serial machine.

On summary, the parallel implementation of the algorithm
overcomes the major drawback of GAs and it retains the GA’s
features as a global optimizer provided that several computers can be
concurrently exploited. When such a number is sufficiently high even
a trivial implementation of the whole code can guarantee important
absolute performances.

Finally, let us point out that the proposed implementation does
not prevent the exploitation of other useful ideas, such as those
presented in [4]. Moreover, from an implementation point of view,
it would be extremely easy to use different discretizations to calculate
the cost function for individuals of different populations.

4. CONCLUSIONS

An evolutionary-based automatic CAD tool able to exploit distributed
computing resources is presented and a detailed description of its
possible implementation is provided. A simple design is carried out
to show what impact parallelism can have on the performances of
such kinds of CAD tools. Finally, some comments are provided
on the possible exploitation in this parallel framework of further
improvements currently under development.
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