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Abstract—A single-level compression algorithm is described for the
plane wave response matrix, which defines the current excited on the
surface of a scatterer by a spectrum of incident plane waves. The
reported method is based on the physical principle that it is often
possible to organize plane waves originating from a given angular
region to form incident beams which excite localized currents on the
surface of an electrically large target. The properties of the method
are illustrated for several scattering problems in two dimensions.
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1. INTRODUCTION

Numerical solutions of surface integral equation formulations of time-
harmonic electromagnetic radiation and scattering from perfectly
conducting targets involve solving linear systems of the form [1]

M i = ZJ, (1)

where Z is the impedance matrix, the vector J contains the coefficients
of the basis functions used to represent the electric currents on the
surface of an obstacle, and the vector M i is determined by impressed
sources.

The use of surface integral equations usually leads to a full
impedance matrix. As a result, the computational costs associated
with standard solutions of (1) are prohibitive for electrically large
problems, and it is often necessary to solve (1) iteratively using
compression algorithms for the impedance matrix [2]. However, the
computational costs of fast iterative solvers can be significant when
the impedance matrix is poorly conditioned, and when solutions are
required for a large number of excitations.

A general scheme for addressing the limitations associated with
fast iterative solvers for electrically large problems should have two
properties. First, it should provide a computationally efficient
representation for the inverse of the impedance matrix, Z−1. To be
generally applicable, such a scheme should also provide an efficient
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procedure to determine the compressed representation of the inverse
from more directly available information, such as that contained in (1).

In this paper we restrict our attention to the first of these
requirements. Furthermore, instead of working directly with the
inverse of the impedance matrix, we present a compression algorithm
for a related problem. The algorithm we report compresses the plane
wave response matrix (P -matrix) which specifies the currents excited
on the surface of a target by a spectrum of incident plane waves.

The motivation for working with spectrally forced representations
of the scattering problem instead of working directly with the spatial
domain representation indicated by (1) follows from the physical
characteristics of wave phenomena. For many electrically large
scattering problems, with proper weighting, it is possible to group
plane wave sources originating from a small spread of angular directions
in order to form incident beams which excite surface currents that are
nonzero over a small fraction of a large obstacle. Using this principle,
we demonstrate that it is possible to determine a sequence of linear
transformations in the domain of the P -matrix which yield sparse
representations for electrically large problems.

The remainder of this paper is organized as follows. A class of
two-dimensional scattering problems is defined in Section 2. These
problems are used in the remainder of the document to illustrate the
properties of the BTM. The plane wave response matrix is defined
in Section 3, and its relationship to the impedance matrix of (1)
is identified. The spatial and angular groupings used by the BTM
are defined in Section 4. The single-level BTM is summarized in
Section 5, and numerical results obtained by applying the BTM to the
problems defined in Section 2 are reported in Section 6. A summary
and discussion of the BTM are provided in Section 7.

2. A MODEL PROBLEM

The beam transform method is illustrated below for the two-
dimensional problem of TMz scattering from open, perfectly
conducting cylinders. In this case the integral equation for the normal
derivative of the electric field satisfies [1]

0 = Ei
z(ρ) −

∫

C

G(ρ,ρ)
∂Ez(ρ′)

∂n
dC ′, (2)

where G is the two-dimensional Green function, and C denotes the
contour which defines the target. Finite projections of (2) will be
obtained using a point-matching moment method discretization [1].
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Figure 1. Properties of the BCM are illustrated for TMz scattering
from open, perfectly conducting cylinders with radius a and interior
angle β. When β = 2π, the open problem reduces to the problem of
scattering from a closed circular cylinder.

This reduces (2) to a matrix equation with the form indicated in (1)
where M i consists of samples of the incident field Ei

z, and J contains
the coefficients of the pulse basis functions used to expand the normal
derivative of the z-directed electric field.

In the remainder of this document we will restrict our
consideration to the linear systems obtained when a discrete form of (2)
is used to model scattering from the set of targets indicated by Figure 1.
Although relatively simple, these systems have several features which
make them numerically interesting. First, discrete forms of (2) are
poorly conditioned. For all β < 2π, the geometries illustrated in
Figure 1 are open. For TMz polarization, this implies that the solutions
to (2) are singular in neighborhood of φ = 0 and φ = β. Finally, when β
is near 2π, the geometry of Figure 1 is quasi-resonant, implying that (2)
incorporates strong, physical multiple scattering interactions. These
features make iterative solution methods for this class of problems
computationally expensive.
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3. THE P -MATRIX

Instead of directly considering compression methods for the inverse
impedance matrix, we consider the related problem of compressing
the plane wave response matrix (P -matrix), which defines the currents
excited on the surface of a target by a spectrum of incident plane waves.
While the P -matrix itself provides adequate information for a number
of important applications, we expect that it might also be useful in
developing more general representations for Z−1.

The P -matrix is obtained by assuming that the incident electric
field can be expanded as a sum of propagating plane waves:

Ei
z(ρ) =

1
2π

∫

2π

ejk·ρf i(φ)dφ, (3)

where k = k(x̂ cosφ + ŷ sinφ), k = 2π/λ and f i(φ) is the plane wave
spectrum of the incident field. In the following we denote the discrete
form of (3) as

Ei
z = Df i, (4)

where D is a discrete representation of the continuous integral operator
appearing in (3). In the numerical examples considered below, the
vectors Ei

z and f i are obtained as point samples of their continuous
counterparts. Similarly, the elements of D are point samples of ejk·ρ

multiplied by 1/Nφ, where Nφ is the number of uniformly spaced
samples used to discretize (3).

For the class of problems indicated by (2) and (3), Equation (1)
becomes

ZJ = M i = Df i. (5)

Assuming that Z is invertible, the desired solution is

J = Z−1Df i = Pf i, (6)

where P = Z−1D specifies the coefficients of the surface current
approximation excited by a weighted sum of incident plane waves.
For this reason, P is referred to as the plane wave response matrix
(P -matrix).

Figure 2 illustrates the plane wave response matrix for TMz

scattering from the target shown in Figure 1 when α = 20λ and
β = 1.5π. Each column of this matrix provides an approximation
of the electric current excited on the surface of the target for incident
plane waves originating from φ = 0 (the leftmost column) to φ =
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Figure 2. Absolute value of elements of plane wave response matrix
for the target illustrated in Figure 1 when a = 20λ and β = 1.5π.
N = 900 uniformly spaced samples were used to discretize the target.
Nφ = 558 angles were used to sample the incident plane wave spectrum.
The gray colorscale is mapped to the interval [0, 15], with white
indicating approximately zero amplitude, and black indicating an
amplitude of 15 or more.

1.5π(1− 1/Nφ) (the rightmost column). The first row of the P -matrix
provides an approximation of the current excited on the first segment
of the target (located at φ = 0 in Figure 1) due to each of the discretely
sampled incident plane waves. The last row of the P -matrix provides
similar information for the segment of the scatterer located at φ = β
in Figure 1. The approximately banded nature of P in Figure 2 is due
to the quasi-specular scattering observed for plane waves incident onto
smooth portions of the target.

4. ANGULAR AND SPATIAL GROUPS

Set-up for the beam transform method requires specification of
groupings for both angular and spatial variables. To increase the
efficiency of the resulting P -matrix compression algorithm, a multilevel
organization is used to define the spatial groups. However, a single-
level grouping is used to organize the angular data.
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4.1. Angular Groups

Having restricted our attention to a single-level algorithm for two-
dimensional scattering problems, specification of the far-field angular
groups is straightforward. Let Nφ indicate the total number of
uniformly spaced angular samples on the interval [0, 2π) used to
represent D and f i in (4), and let Mφ denote the number of equally
sized angular regions used to group these plane wave directions. The
number of samples in each angular region is approximately mφ =
Nφ/Mφ. The total number of angular samples is selected using the
formula [3]

Nφ = 2(2ka + 5 ln(2ka + π)) (7)

where a is the cylinder radius in Figure 1. Equation (7) provides
an estimate of the number of angular samples to characterize the
electromagnetic response of a target to separated observers.

4.2. Spatial Groups

A binary tree is used to define spatial groups for the geometry indicated
in Figure 1. This is accomplished by associating each point on the
surface of the scatterer with an angle on the interval [0, α] and forming
a binary tree for the angles on this interval.

The total number of points on the scatterer is N . The number
of levels in the multilevel binary tree is L. The levels are indexed by
l, l = 1, · · · , L. The level l = 1 is the root level of the tree. The
root level consists of a single group containing all spatial samples.
The number of groups at the lth level of the tree is M(l) = 2l−1,
and the number of spatial samples in each group is approximately
m(l) = N/M(l). The index i(l) is used to enumerate the groups at
each level, i(l) = 1, · · · , 2l−1. Finally, the two level-l groups contained
by a given group at level-(l−1) are referred to as the level-l children of
that level-(l − 1) parent. Groups at level-L have no children, and the
root group has no parent. The total number of levels, L, is chosen so
that the level-L groups have a maximum dimension of approximately
one wavelength.

Although the binary tree just described is adequate for the set of
problems indicated in Figure 1, a more general tree will be necessary
for more complex targets. The multilevel spatial decomposition trees
used with the multilevel fast multipole algorithm (MLFMA) [2] might
provide an adequate representation for general geometries.
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5. COMPRESSING THE P -MATRIX

The beam transform method for the P -matrix consists of defining
beams of weighted plane waves originating from a given angular
region which excite nonzero currents in only one of the spatial groups
defined above. The desired beams are determined as a sequence
of transformations. For a given tolerance ε, the first transform
reduces the number of degrees of freedom (DoF) associated with
a given angular region by retaining only those plane wave modes
which contribute significantly to currents on the surface of the target.
The second transform of the algorithm combines this reduced set
of plane wave modes to form beams which excite nonzero currents
on progressively larger sections of the scatterer surface. The basic
computational tool used to form these beams is motivated by an
algorithm developed by Canning [4]. Reference [4] provides an SVD-
based method for determining beams associated with a given spatial
region which radiate significant energy only to a small subset of all
possible angular directions. Here we use a similar SVD-based algorithm
in a different manner, forming combinations of beams impinging from a
given set of directions to excite currents over a limited section of a large
target. We have also found it necessary to develop a multiply resolved
implementation of the algorithm to facilitate the determination of
beams which illuminate successively larger spatial groups.

In the following discussion of the BTM, the notation P∀j will be
used to indicate the rectangular block of the P -matrix which identifies
the currents excited at all points on the surface of the scatterer due
to plane waves incident from angular group j. The dimension of this
block is N × mφ. Similarly, notation of the form Pi(l)j will be used
to represent currents excited in spatial group i at level-l due to plane
waves incident from angular group j.

5.1. DoF Compression

The first stage of the BTM consists of determining a minimal set
of plane wave modes originating from a given angular region which
contribute to currents excited on the surface of the target with a
relative mean square amplitude which exceeds a given tolerance ε. This
reduced basis is obtained by performing a singular value decomposition
of P∀j [5],

P∀j = û∀j ŝ∀j v̂
H
∀j , (8)
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and retaining those columns of v̂∀j having relative singular values
exceeding ε:

ŝ∀j > εmax(ŝ∀j). (9)

Let the resulting ε-approximation of P∀j be represented

P∀j ≈ u∀js∀jv
H
∀j , (10)

and denote the number of modes retained by rj :

rj = rank(v∀j). (11)

5.2. Beam-based Compression

An additional, beam-based compression of the P∀j is determined by
rewriting (10) as

P∀jv∀js
−1
∀j ≈ u∀j (12)

where we have used the fact that s∀j is invertible because any zero
singular values in P∀j have been removed in passing from (8) to (10).
The remaining matrix on the right side of (12) consists of the left
singular vectors of the original matrix, P∀j . Since the range of P
is the electric current on the target surface, the matrix u∀j specifies
how each column of v∀j is distributed over the target surface. (The
strength of each mode is specified by the diagonal elements of s∀j .)
In the remainder of this section we define sparsifying transforms for
u∀j . When combined with v∀js

−1
∀j on the left side of (12), the resulting

beam-based transforms will also sparsify P∀j .
The submatrices ui(l)j of u∀j specify how the modes in v∀j are

distributed over that portion of the scatterer contained by the ith
level-l spatial group, i(l). Since we are interested in determining beams
(i.e., combinations of the columns of v∀j) which excite currents only
in specified spatial groups, it is useful to perform a final SVD of the
blocks ui(l)j :

ui(l)j = Ui(l)jΣi(l)jV
H
i(l)j . (13)

Substituting this in (12) provides

Pi(l)jv∀js
−1
∀j Vi(l)j ≈ Ui(l)jΣi(l)j , (14)

where v∀js
−1
∀j Vi(l)j is the desired transform of Pi(l)j into modes sorted

by the degree to which they excite currents which are spatially localized
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in group i(l). To see this, recall that u∀j is unitary. Thus, the singular
values in Σi(l)j are necessarily less than or equal to one. The singular
values which are close to one correspond to modes Vi(l)j which excite
surface currents that are primarily localized in spatial group i(l). (The
actual distribution of this current within group i(l) is specified by
Ui(l)j .) Since the SVD indicated in (13) is assumed to sort modes in
the order of decreasing singular values, Vi(l)j provides a basis which
is ordered according to the degree with which each mode localizes
currents inside group i(l). Let σi(l)j denote the diagonal elements of
Σi(l)j . Those modes in Vi(l)j corresponding to singular values that
satisfy

1 − σi(l)j < ε2 (15)

are considered to be spatially localized to order ε. (A tolerance of ε2

is used because the final beam transform will have a condition number
of approximately 1/ε.)

Let V(l)j denote the collection of the Vi(l)j obtained by performing
the decomposition (13) for all level-l spatial groups which satisfy (15):

V(l)j =
M(l)⋃
i(l)=1

Vi(l)j

∣∣∣
σi(l)j>1−ε2

. (16)

Unfortunately, the rank of V(l)j is generally less than rj . This occurs
because, for a given problem, the number of spatially localized beams
originating from a given angular region will depend on the tolerance
ε, the size of the angular region, and the size of the spatial regions
to which each beam is localized. For a single beam, maximum
compression of P∀j is obtained by using the finest possible spatial
localization. However, using small spatial regions to define the ui(l)j

in (13) reduces the total number of modes satisfying (15).

5.2.1. Multiresolution BTM

To accommodate these competing constraints, multiple spatial
resolutions are used to determine the desired beam transform. The
desired beam transform modes are determined by looping through the
levels of the spatial tree of Figure 3, beginning at the finest level and
ending at the root level. The first time through this loop (level-L),
the basis V(L)j is determined as indicated in (16). This result is then
used to initialize the basis Vj which is used to accumulate the beam
transform modes as we proceed up the spatial tree. At each level, the
Vj basis is used to define an updated version of u∀j :

u∀j ⇐ u∀j − u∀jVjV
H
j . (17)
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Scatterer

level l=1 group 
level l=L groups 

level l=L-1 groups 

level l=2 group 

Figure 3. Illustration of multilevel binary tree used to define spatial
groups on surface of scatterer.

This updated matrix is then analyzed at the next (coarser) level using
the procedure indicated by Equations (12) to (16). The resulting
V(L−1)j are appended to Vj , the matrix u∀j is updated according to
(17), and the procedure continues to the next level of the tree. For
a given angular group j, this procedure is continued until the rank of
Vj is equal to rj . Because the root level contains all points on the
surface of the scatterer, we are guaranteed to always find the required
number of modes. To obtain good compression, we would like most
of the elements in Vj to come from the finer levels of the spatial tree.
In practice, this will largely be a function of the physical properties of
the scattering problem.

Having determined Vj , the final beam transform associated with
a given angular region is computed as

Λj = v∀js
−1
∀j Vj . (18)

The required inverse transform is

Λ−1
j = V H

j s∀jv
H
∀j . (19)
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Figure 4. BTM procedure for determining the diagonal blocks of the
beam transform matrices Λ and Λ−1.

Block diagonal beam transform matrices Λ and Λ−1 are used to
accumulate the transforms obtained from each angular region. The
numerical examples included below demonstrate that PΛ is often
sparse, and that (PΛ)Λ−1 provides an order-ε implementation of P .

Figure 4 summarizes the multiresolution BTM procedure for
determining the respective block diagonal transform and inverse
transform matrices Λ and Λ−1 obtained by accumulating the diagonal
blocks Λj and Λ−1

j for all angular regions.

5.3. Beam Transform of P -matrix

Let B denote the beam transform of P ,

B = PΛ. (20)

In the following we refer to B as the beam footprint matrix. A sparse,
order-ε representation of P is obtained by retaining in each column of
B only those rows which are in the spatial group i(l) towards which a
given beam in Λ is directed. These elements can be computed directly
from (20) once Λ is known. A somewhat more efficient alternative is to
compute the nonzero elements of B using the right side of (14) for each
element of V̂i(l)j satisfying (15). In the following numerical examples
we use the latter method to determine the nonzero elements of B.
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6. NUMERICAL EXAMPLES

The properties of the BTM for the P -matrix are illustrated using
several examples derived from the target configuration of Figure 1.
We also consider an application of the P -matrix to a problem involving
point source excitations.

6.1. Properties of the BTM

Figure 5 displays the nonzero elements of B for scattering from the
geometry indicated in Figure 1 when α = 20λ, β = 2π and an input
tolerance of ε = 0.01 is used. N = 1200 pulse basis functions are
used to expand the surface current, representing a sampling interval
of 0.105λ along the surface of the target. The multilevel spatial tree
has L = 6 levels, with a total of 32 groups at the finest level of the
tree. A total of Nφ = 558 angular samples are used, and they are
grouped into Mφ = 4 angular regions. The actual RMS error obtained
after compressing the P -matrix is 0.0044. The maximum RMS error in

 

 

 

 

 

 

 

 

 

 

Figure 5. Beam footprint matrix, B, for plane wave scattering from
the PEC shell of Figure 1 when a = 20λ and β = 2π. N = 1200 points
are used to discretize the target, and Nφ = 558 angular samples are
used in forming P . The nonzero elements of the B matrix which are
retained for a requested tolerance of ε = 0.01 are shown in black. The
zero elements of B are white.
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representing a given column of the P -matrix is 0.0055, indicating the
maximum RMS error encountered in using the compressed P -matrix
to calculate the current excited by a plane wave incident from any
direction.

For this example, the inverse transform matrix Λ−1(not shown)
has size 292 × 558. The nonzero elements of Λ−1 occur in four blocks
along the diagonal of the matrix. Two of the four diagonal blocks have
dimension 73 × 140, and two others have dimension 73 × 139. A total
of 1.18 × 105 complex numbers are required to represent both B and
Λ−1. The total number of nonzero elements required to directly store
Z−1 is 1.44 × 106, and the number required to store P is 6.70 × 105.

Figure 6 shows the transformed P -matrix for the case illustrated
in Figure 2 (a = 20λ, β = 1.5π). An input tolerance of ε = 0.01 was
used. The actual RMS error after the BTM compression is 0.0049. The
maximum error in representing any column of the P -matrix is 0.0060.
The total number of nonzero elements used to store B and Λ−1 is

 

 

 

 

Figure 6. Beam footprint matrix, B, for plane wave scattering from
the PEC shell of Figure 1 when a = 20λ and β = 1.5π. N = 900 points
are used to discretize the target. Nφ = 558 angular samples are used,
and Mφ = 4 angular groups are used to define the beam transform
matrix Λ. The nonzero elements of the B matrix which are retained
for a requested tolerance of ε = 0.01 are shown in black. The zero
elements of B are white.



Progress In Electromagnetics Research, PIER 55, 2005 203

1.43 × 105, which is larger than the number required for the example
considered in Figure 5. The primary reason for this increase is that in
the present case (β = 1.5π) the scatterer is an open cavity, and fewer
beams can be formed which excite currents at the finer levels of the
spatial tree. In particular, we observe from Figure 6 that, of the four
angular groups used, the angular region which has the largest number
of modes which are nonzero over the entire surface of the target is the
last (fourth) group. This group corresponds to sums of plane waves
which are incident from the angular sector 1.5π < φ < 2π, which
corresponds to the open end of the cavity (cf. Figure 1).

 

Figure 7. Complexity scaling of BTM representation of P -matrix for
geometries indicated in Figure 1 when β = π (triangles), β = 1.5π
(squares) and β = 2π (circles). The solid line is the equation
nnz = 0.6N2, the dashed line is nnz = 3N1.65, and the dashed-dotted
line is nnz = 3.7N1.5.

The complexity scaling of the BTM is illustrated in Figure 7
for three different target geometries. In all cases, the surface of the
target is discretized using 8 points per wavelength and a tolerance of
ε = 0.01 is used (the actual RMS error in the BTM representation
of the P -matrix varies between 0.004 and 0.00993). For the case
β = 2π the observed complexity scaling is O(N1.5). A faster scaling of
approximately O(N1.65) is observed when β = π and β = 1.5π.

It is expected that additional compression may be possible for the
cases β = π and β = 1.5π considered in Figure 7. The BTM discussed
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above has been designed to identify spatially contiguous beams
originating from a given angular region. While this is effective for
convex targets, configurations that exhibit strong multiple scattering
may benefit from a modified version of the BTM designed to search
for beams that excite small but disconnected spatial footprints.

Another extension of the BTM that is expected to improve the
performance of the algorithm for all β is a multilevel organization of
the angular groups. For example, Figure 8 illustrates the transformed
P -matrix for the same problem considered in Figure 6 when a single
angular region (Mφ = 1) is used to form the beam transform Λ. B is
evidently more sparse in this case than the result obtained in Figure 6
using Mφ = 4 angular groups. The price paid to obtain the sparse
form of B in Figure 8 is a full inverse beam transform matrix Λ−1. It
may be possible to lower the cost to implement Λ−1 by using either
a multilevel organization of the angular information or bandlimited
angular functions [6].

Figure 8. Same as Figure 6, but with Mφ = 1.

6.2. Finite Sources

A drawback to the P -matrix representation of the scattering problem
is the assumption that the problem excitation can be represented as a
sum of propagating plane waves (cf. (5)). For example, this implies
that, as presented here, the P -matrix associated with Figure 5 cannot
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be directly used to accurately determine the currents excited by a
point source located very close to the target surface. To quantify this
property, we again consider the scattering configuration obtained when
β = 1.5π.

We would like to determine the solution to this scattering problem
for an impressed point source located on the x-axis. Because the P -
matrix is defined in terms of plane wave excitations, we first seek
solutions to the problem

M i = Df i, (21)

where M i is the field radiated by the point source and sampled on
the target surface, and f i is the unknown plane wave excitation. For
a given M i, we determine a least-squares solution to (21) using the
pseudo-inverse of D [5],

f i = D†M i. (22)

The existence of numerically accurate solutions to (21) will depend on
the properties of M i. In cases for which (22) is an accurate solution of
(21) we have

Z−1M i ≈ PD†M i. (23)

Figure 9 shows the RMS error obtained when the compressed P -
matrix indicated by Figure 6 is used to estimate the electric current
excited on the target by a point source located at y = 0 as a function
of position x on the interval −40λ < x < 40λ. In all cases, the
reference solution is obtained by directly computing Z−1J i. Referring
to the figure, when the point source is located more than about
two wavelengths outside the PEC shell, the error is approximately
0.005. The larger error observed when the point source is located
near x = ±20 can be traced back to our inability to find accurate
solutions to (22). We also observe that accurate solutions (relative
to the reference solution) are obtained when the point source is more
than a few wavelengths “inside” the open PEC shell. Although we
only show results for the case β = 1.5π, similarly accurate results have
been obtained for all values of β, including the case β = 2π. The
compressed P -matrix for the latter case is shown in Figure 5.

While these results indicate that the P -matrix representation
may prove useful for problems excited by local sources, the scheme
outlined above requires an implementation of the pseudo-inverse D† in
(22). This was accomplished in the preceding numerical examples by
computing the singular value decomposition of D. To be numerically
efficient, the scheme reported above will require a more efficient
implementation of this operation.
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Figure 9. RMS error in surface current vector J as function of point
source location on the x-axis..

7. SUMMARY AND DISCUSSION

The beam transform method (BTM) provides a compressed represen-
tation of the plane wave response matrix for electrically large targets.
The BTM is based on the physical principle that it is often possible to
determine beams originating from a given angular region which excite
spatially localized currents on the surface of a target. Numerical exam-
ples indicate that the complexity of the resulting BTM representation
of the P -matrix increases at rates which vary between O(N1.5) and
O(N2). The lowest complexity, O(N1.5), was observed for the closed
PEC cylinder. In this case the scattering is dominated by single-bounce
effects. The complexity scaling was somewhat faster for geometries
which excite strong multi-bounce interactions. We anticipate that a
more efficient version of the BTM can be obtained in a number of
ways. For example, it may be beneficial to use a multilevel grouping
of the angular regions instead of the single-level grouping used here.
Other methods for improving the performance of the method are dis-
cussed elsewhere [6].

The numerical examples provided above indicate that the BTM
representation of the P -matrix can be used to determine the currents
excited on the surface of a target by a point source. This capacity of the
BTM representation depended on our ability to determine an accurate
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equivalent plane wave representation of the incident fields excited by
the point source. For the open PEC cylinders considered here, this
was observed to be possible even when the point source excitation was
located on the interior of a large cavity. However, it remains to be
determined if the required pseudo-inverse operation indicated in (22)
can be implemented efficiently.

The BTM discussed herein is a single-bounce (SB) algorithm
because the beam transforms used to compress the P -matrix are
determined by seeking solutions which are localized to a single group,
i(l), at level-l. Consider the more general case of a spectral mode
which is localized within two spatially disconnected level-l groups, i(l)
and j(l). We refer to these as two-bounce (2B) modes. The SB BTM
cannot incorporate a 2B mode until the algorithm reaches the coarse
level having a single group which contains the disconnected level-l
groups. This is one reason that the efficiency of the SB BTM decreases
when applied to targets which exhibit strong multiple scattering. A
multibounce version of the algorithm reported here will be considered
elsewhere.

Finally, an important limitation of the method discussed here
is that the P -matrix was obtained by first inverting the impedance
matrix, Z−1, and then multiplying by the plane wave transform matrix
Dα. While such an approach may be feasible for a restricted class of
problems, the applicability of the BTM would be significantly extended
if these set-up costs were reduced. Reference [7] outlines a procedure
for more efficiently determining localizing spectral modes.
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